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Abstract: The Sel’kov model for glycolysis is a highly effective tool in capturing the complex feedback
mechanisms that occur within a biochemical system. However, accurately predicting the behavior of
this system is challenging due to its nonlinearity, stiffness, and parameter sensitivity. In this paper, we
present a novel deep neural network-based method to simulate the Sel’kov glycolysis model of ADP
and F6P, which overcomes the limitations of conventional numerical methods. Our comprehensive
results demonstrate that the proposed approach outperforms traditional methods and offers greater
reliability for nonlinear dynamics. By adopting this flexible and robust technique, researchers can
gain deeper insights into the complex interactions that drive biochemical systems.

Keywords: biochemical system; nonlinear dynamics; neural network; Sel’kov model; coupled
differential equations
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1. Introduction

The human body is an intricate system capable of exhibiting a range of behaviors,
ranging from low complexity and seemingly disordered behavior to high complexity and
unpredictable behavior [1]. The field of nonlinear dynamics [2] aims to comprehend the
complex and frequently unforeseeable behavior of systems that adhere to nonlinear equa-
tions [3]. Nonlinear dynamics can be a valuable tool in comprehending the behavior of
biological systems [4] within the human body, such as the nervous system [5], muscu-
loskeletal [6], and circulatory systems [7]. Through studying the dynamics of these systems,
we can gain a better understanding of the underlying mechanisms of various diseases and
conditions, as well as potential solutions.

We are considering one of the nonlinear dynamical systems: a mathematical model that
depicts the behavior of a biochemical reaction network [8] containing glycolysis [9], a crucial
metabolic process [10] in living creatures, known as the Sel’kov glycolysis model [11,12],
which was first put forth by Russian biochemist Anatolii Sel’kov in 1968. Due to the
model’s simplicity and capacity to grasp crucial aspects of glycolytic oscillations found
empirically in yeast and other organisms, it has received extensive study and analysis in
the field of systems biology. The Sel’kov model for glycolysis has been studied using a
variety of methodologies, including analytical methods, numerical methods, data-driven
approaches, and sensitivity analysis [11,13]. Moreover, finding the bifurcation points in
a system is crucial for stability analysis in order to comprehend the system’s dynamics
and transition [14]. Researchers commonly combine several approaches to gain a deeper
knowledge of the dynamics and behavior of the system.

Deep neural networks (DNNs) [15] have demonstrated great potential in the field of
solving nonlinear dynamical systems because of their capacity to recognize intricate, non-
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linear relationships between input and output factors [16]. DNNs have been particularly
effective in modeling and predicting the behavior of complicated nonlinear systems. Tradi-
tional numerical methods [17] to solve complicated nonlinear differential equations [18]
require high computational cost and simplification of the underlying system that might
not always be suitable; the capacity of the DNN-based approach to approximate extremely
complex and nonlinear relationships between input and output variables made them well
suited for the solution of differential equations with complex dynamics. In summary, the
application of deep neural networks (DNNs) has the potential to enhance the handling and
prediction of complex nonlinear dynamical systems across a range of disciplines, including
applied mathematics [19], engineering [20], and biology [21]. By providing a powerful
tool for capturing nonlinear dynamics and bifurcation behavior, DNNs offer significant
opportunities for advancing our understanding of complex systems and developing more
effective approaches for managing and predicting their behavior.

2. Mathematical Model and Deep Neural Network
Sel’kov Glycolysis Model

The theories of nonlinear dynamics, or “the study of complexity,” offer a strict, math-
ematical foundation for the description of living things. Consequently, both nonlinear
dynamicists and biologists need to be knowledgeable about nonlinear dynamics. We
considered the Sel’kov model in order to apply our proposed DNN-based approach to
the simulation of nonlinear dynamics. Two nonlinear differential equations are used in
the model to characterize the amounts of the two chemical species that are engaged in
glycolysis. Its simplified version of temporal dynamics in mathematical form is given as
follows: 

du
dt = −u + av + u2v (a)
dv
dt = b− av− u2v (b)
u(0) = 1, v(0) = 0

 (1)

With the inclusion of both positive and negative feedback mechanisms, the Equation (1)
reflects the dynamics of the two variables u and v over time.

The dependent variables u and v represent concentrations of adenosine diphosphate
(ADP) [22] and fructose 6-phosphate (F6P) [23] in the process of glycolysis. Equation (1)(a)
represents the rate of change in the concentration of ADP with respect to time. The term
−u indicates the decay of ADP, a (a > 0) is the rate of the constant for the production of
F6P, the term av with a positive sign is responsible for the rate of production of ADP due to
presence of v scaled by using parameter a, and u2v is responsible for nonlinearity, implying
that the concentration of u promotes its own production multiplied by the concentration
of v.

Equation (1)(b) represents the rate of change in the concentration of fructose 6-phosphate.
The term b (b > 0) is the rate constant for the decay of ADP and the term−av is responsible for
the rate of consumption of F6P due to the reaction of u and v. The product term u2v indicates
nonlinear interactions between two chemical species, suggesting that the concentration of u
inhibits the production of v. Due to the squared components involving u2v, the model shows
nonlinearity, which can result in fascinating behaviors such as oscillations or the establishment
of persistent steady states.

3. Methodology

For the simulation of the aforementioned problem, we took advantage of a DNN-based
strategy to solve a set of nonlinear differential equations. The working rule that DNN
follows to solve differential equations is that it codifies the differential equation [24] as
a loss function [25,26] for optimization problems and then curtails the loss by adopting
different optimization techniques. Here, a thorough explanation of how neural networks
function and perform is offered.
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3.1. Data Preparation

In approximating a dependent variable of a differential equation using DNN, the type
of data typically consists of input features and corresponding dependent variable values.
The parameters a and b in our system of differential equations serve as the input features.
By input features, we mean the variables or parameters that are known in the situation
at hand. We must select definite a and b values as well as the time period at which we
wish to approximate. The dependent variable values u(t) and v(t) are the solutions of a
given system of differential equations at a different time t; these are unknown and must be
approximated by DNN. Pairs of input characteristics (a, b) with their associated values of
(u(t), v(t)) at various time points t would make up the dataset.

The fully connected layer can estimate the dependent variable for new input config-
urations by utilizing this dataset to understand the underlying patterns and connections
between the input characteristics and the dependent variable values. The dataset is divided
into a training set and a testing set as per the setup of the Python package known as
NeuroDiffEq [27].

3.2. Neural Network Architecture Design

As baseline architecture, we adopted a fully connected neural network (FCNN) to
meet our task described in our proposed methodology.

For each dependent variable, the settings in our model that make the neural network
architecture consist of one input layer, one output layer, and three fully connected hidden
layers. The first two hidden layers each contain 64 units of neurons, and the third layer has
128 neurons. Before moving on to the next layer, the input is stimulated during the process
by using an activation function. The activation function [28], which is in charge of activating
neurons, aims to create nonlinearity between the levels. The activation function used in
our setup, the Tanh function activation [29], is smooth and continuous. This characteristic
of the Tanh activation function enables the network to have continuous and differentiable
outputs, supporting gradient-based optimization techniques such as backpropagation. In
this baseline architecture of DNN, we adjusted the hyperparameters including the learning
rate, activation function, optimization technique, number of layers, and number of neurons
per layer manually in the process of training a neural network. Figures 1 and 2 unveil the
inner working of the neural network intended for use in the simulation of a given problem.
There are several layers in the network, including input, hidden, and output layers, which
are connected by weighted connections. To approximate the behavior of the glycolysis
system, each layer carries out specialized computations.

3.3. Training of the Model

The model is trained by initializing random weights and biases after all structural
settings have been completed. For the training loop, we set epochs to 30,000 and the
learning rate to 0.01. The input data are sent forward over the network. After computing
the weighted sum of the inputs in each layer, the activation function is applied and the
output is propagated to the next layer. A specified threshold value is used by the activation
function to determine whether or not a neuron should be stimulated to transfer output to
the next layer. This loop keeps running until the output layer is reached. The activation
function enhances the expressive power of the fully connected layer. Through this predicted
output, the error or the loss is calculated using the appropriate loss function.

Mean squared error (MSE) [30], which is frequently used as a metric for regression
problems [31], is adopted here to calculate the average difference between predicted and
actual output values in order to measure the performance of the model during training.
The mathematical form of MSE is given in Equation (2).

MSE =
1
n

(
n

∑
i=1

(yi_true− yi_predicted)2

)
(2)
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n = the number of sample points in the dataset,
yi_true = true values of the ith sample
yi_predicted = predicted values of the ith sample
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Using optimization techniques [32] in backpropagation [33], this loss is then mini-
mized to update the model’s parameters (weights and biases) and improve accuracy. The
optimization technique we utilized is the integration of momentum and adaptive learning
rate techniques; that is, the Adam (adaptive moment estimation) algorithm [34]. It is



Mathematics 2023, 11, 3216 5 of 9

efficient because even with large datasets, it tends to converge rapidly. The working rule of
the Adam algorithm can be summarized mathematically as follows:

mt = β1mt−1 + (1− β1)(gt)
2

Vt =
√

β2Vt−1 + (1− β2)(gt)
2

θt+1 = mt − η

√
(1−β2)

(1−β1)
. mt
Vt+ε

 (3)

The term mt is the first-moment estimate and is the mean of the gradients calculated
at each time step t, β1 and β2 are exponential decaying parameters, Vt is the second-
moment estimate which is the variance of the gradients calculated at each time step, gt is
the gradient calculated at each time step t, η is the learning rate for regulating the step size
in the parameter update, and θt+1 is the updated parametric value at time t + 1.

3.4. Analysis of the Model’s Performance

Once the model is trained, we validated the model, which helps to improve the
performance of the model by adjusting parameters [35] and hyperparameters such as the
number of epochs and the learning rate, and then we test the model to see if it could handle
new data points. As a final stage, the accuracy and loss of the suggested methodology
were determined by comparing the findings to those of a conventional numerical method.
We took advantage of the state-of-the-art programming language Python to simulate and
visualize the results of our model of a system of a differential equation. The DNN-based
technique is clearly illustrated in Figure 3, which makes it easier to analyze and comprehend
the steps required in approximating a dependent variable with a DNN.
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4. Results and Discussion

This section will discuss the simulation results achieved using the suggested DNN-
centered scheme. We carried out various experiments to observe how changes in the
parametric values of the nonlinear temporal dynamical model provided in Equation (1)
can affect the solution of a set of differential equations.

Figure 4 shows oscillations produced during the glycolysis process evaluated using
a DNN-based method. We noticed impacts of various values of parameter “b” ranging
from 0.10 to 0.95 on the oscillations while holding the parameter “a” fixed to a value of 0.08
as shown in all the graphs of Figure 4. In the second training run, these outcomes were
attained. In Figure 4, the orange color represents the solution of Equation (1)(a) and the
blue color represents the solution of Equation (1)(b). Figure 4 shows that as the value of “b”
rises, there are a growing number of oscillations. For smaller values of b, the oscillations
begin as tiny and the graphs for v show monotonic declines while graphs for u show abrupt
increases that eventually achieve their maximum value. Oscillation values rise along with
increasing values of b, and they abruptly shift after a while.
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Figure 4. Representing the solutions of the Sel’kov glycolysis model for different values of kinetic
parameters using a DNN-based approach.

A comparison between the DNN-based solutions and the solutions obtained from
the numerical method (the Runge–Kutta method) are plotted in Figure 5. It is obvious
from the graphical results how beautifully the neural network approximated the solution
of the nonlinear dynamical system presented in Equation (1). Figure 5 shows plots with
dotted lines for neural network approximation and solid lines for numerical method
approximation that are very well matched with one another. Runge–Kutta and other
numerical techniques can be computationally costly, especially for complicated systems or
large-scale problems. Moreover, the cost of computation rises as more iterations are needed
to reach a solution. DNN-based solutions can offer predictions or answers significantly
faster than numerical approaches once they have been trained. The Runge–Kutta method is
predicated on the assumptions and the underlying mathematical model; on the other hand,
a DNN can potentially generalize to a wider range of problems once trained on diverse
and representative data.
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We performed an error analysis and documented the loss and accuracy of the desired
model in order to verify the veracity of our suggested advanced DNN-based scheme, as
is evident from the bar graph shown in Figure 6. It shows the loss and accuracy for both
u and v. It is clear that, starting at b = 0.95, we have little loss but high accuracy, and
that, for b = 0.85, accuracy temporarily decreases. However, for a decrease in the value of
parameter b, we observed maximum accuracy in the case of b = 0.10. It is observed that the
proposed architecture of the DNN outperformed the traditional numerical techniques for
the nonlinear dynamical system, as it produces findings that are precise and effective.
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5. Conclusions

In conclusion, the proposed DNN-based strategy has proven to be a powerful tool for
simulating the Sel’kov glycolysis model, which is a complex nonlinear dynamical system.
Through a series of experiments, we have demonstrated that the DNN architecture is
effective in capturing the system’s nonlinear dynamics and bifurcation behavior, even
when parametric values are changed. In an error analysis, it is helpful to visualize the
effects of each parametric value on the dependent variable. The deviance and trends that
the model identified are highlighted in the graphical findings. These findings suggest that
the DNN-based approach can provide a valuable means for understanding and analyzing
the concentration profiles of biochemical reactions. We are confident that our research
will contribute to the development of more advanced and effective approaches to solving
nonlinear dynamical systems, paving the way for new discoveries in this field. Overall,
this study highlights the immense potential of the DNN-based approach in understanding
complex systems and advancing scientific research. The proposed strategy can be integrated
with recently proposed activation functions to optimize and better capture the complexities
of nonlinear dynamical systems. Additionally, extending the proposed methodology to
more complex biological models beyond Sel’kov and incorporating the oscillatory activation
function [27,36] can offer new opportunities to investigate chemical reactions with vibratory
structures.
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