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Abstract: A simultaneous reconstruction of the initial condition and the space-dependent reaction
coefficient in a multidimensional hyperbolic partial differential equation with interior degeneracy is
of concern. A temporal integral observation is utilized to achieve that purpose. The well-posedness,
existence, and uniqueness of the inverse problem under consideration are discussed. The inverse
problem can be reformulated as a least squares minimization and the Fréchet gradients are determined,
using the adjoint and sensitivity problems. Finally, an iterative construction procedure is developed by
employing the conjugate gradient algorithm while invoking the discrepancy principle as a stopping
criterion. Some numerical experiments are given to ensure the performance of the reconstruction
scheme in one and two dimensions.
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1. Introduction

Numerous significant applications in cosmology [1], data science [2], remote sens-
ing [3], medicine [4], and geophysics [5] are modeled in inverse problems involving the
determination of unknown coefficients of partial differential equations based on limited
information about the system over a finite period. Degenerate wave models are gaining
more focus these days in many physical applications [6–8]. A survey of the numerical
techniques that have been applied to direct and inverse problems with integer or fractional
order derivatives indicates a lot of focus in recent days [9–11]. A reconstruction of missing
sole terms in different styles of time-dependent fractional diffusion problems has been seen
in [12,13].

The problem under consideration invokes the one proposed in [14] in which the
reconstruction is only targeted to the potential term. We address here the reconstruction
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of two factors (initial condition and potential) in a multidimensional wave problem with
interior degeneracy.

∂tt ϕ−∇ · (a∇ϕ) + b ϕ = Q in I,
ϕ = 0 in (Rd\χ)× (0, S],

ϕ(·, 0) = u0(x) in χ,
ϕt(·, 0) = v0(x) in χ,

(1)

where I := χ× (0, S]. Endowed with the final observation data ϕ(·, S) in the domain χ,
where S > 0 and χ ⊂ Rd(d ≥ 1), Q ∈ L2(χ× (0, S)), b ∈ L2(χ) isa ∈ C1(χ) a function
that degenerates into a point x0 inside the spatial domain χ with {1 > a(x) > 0, ∀x ∈ χ}.
The Hilbert space is defined as

H1
a(χ) :=

{
ϕ ∈W1,1

0 (χ) :
√

a∇ϕ ∈ L2(χ)
}

,

with the inner product

〈ϕ, v〉H1
a

:=
∫

χ
a∇ϕ · ∇v dx +

∫
χ

ϕv dx.

An important application of the inverse problem (1) is to distinguish between various
types of seismic events, such as implosion, explosion, or earthquake, which generate waves
that propagate through the Earth and can be recorded using seismometers. In [15], a
seismic source modeled as a point moment tensor forcing in the elastic wave equation
for the displacement was estimated by minimizing the gap between the time-dependent
measured/recorded and computed waveforms (see [16]). The weak formulation of (1) is:∫

χ
∂tt ϕv dx +

∫
χ

a(x)∇ϕ · ∇v dx +
∫

χ
b ϕv dx =

∫
χ

Qv dx, ∀v ∈ H1
0(χ). (2)

In the literature, the inverse problem of determining the coefficient b(x) over a large
scale from time t = S and its time-integratation for temperature, among other data, has
been studied and used to prove its existence and uniqueness when the source term Q, the
Dirichlet boundary conditions, and the initial condition u0 are known [17–20].

In addition, several numerical methods have been proposed. Examples include the
standard regularization method of the Tikhonov type [21], the method of Armijo combined
with the finite element method [22], the (NAG E04FCF) combined with the method of finite
differences (FDM) [23], and the conjugate gradient method (CGM) [24] to reconstruct the
coefficient b(x) numerically from the additional measurements.

Extensive research has been conducted on the inverse problem of determining the
initial condition from time-integral temperature measurements and a final instant when
the reaction potential and the source term are known (see, for example, [25,26]).

In this paper, we study the generalization of the conditions used in [27], which amounts
to knowing the direct solution at certain instants of the time domain and at its end. This is
difficult in practice to implement with precision at recordings with an average time, which
reduces the possibility of significant measurement errors in the direct solution ϕ. More
specifically, using the average weighted integral observations given in (3) and (4), we study
the inverse problem to determine the pair (b(x) and u0(x)) in (1). Let ρ1(t), ρ2(t) be two
approximations to the delta function at t = S, such that ρ1(t), ρ2(t) ∈ C1(0, T), which are
given, and ψ1(x) and ψ2(x) are the average weighted integral observations that are also
given. Let ∫ S

0
ρ1(t)ϕ(x, t) dt = ψ1(x), x ∈ χ (3)

∫ S

0
ρ2(t)ϕ(x, t) dt = ψ2(x), x ∈ χ. (4)
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Taking into account the generalizations of the final observations ϕ(t = S), the integral
observations (3) and (4) can be thought of in this way. However, note that the selection
of the weighted functions (3) and (4) has a crucial role in obtaining the relevant data to
recover the two unknown values (b(x), u0); for more information, refer to [28]. On the
other hand, in the literature, the determination of the reaction potential and the source term
have been studied from the final observation of time in [27] and the measurement of the
integral observation in time in [29] for non-degenerate parabolic problems. In the inverse
problems (1), (3), and (4), these approaches can also be used to simultaneously calculate the
response coefficient b(x) and the initial condition u0(x).

The manuscript is arranged to have the uniqueness of the inverse problem in Section 2.
The stability and the regularity results, the proof of the Fréchet differentiability of the
objective functional, and the conjugate gradient and sensitivity problems are presented
in Section 3. Using the conjugate gradient method (CGM) regularized by the discordance
principle [30], the inverse problem is solved numerically in a stable way. Section 4 is devoted
to the numerical simulations and their good agreement with the theoretical analysis. The
well-posedness of the direct problem of (1) is discussed in the following theorem.

Theorem 1. Assume that v0 ∈ L2(χ), 0 ≤ b ∈ C1 and u0 ∈ H1
a(χ), Q ∈ L2(0, S, χ). The

problem (1) has the following unique weak solution

ϕ ∈ X0 = L2
(

0, S;H1
a(χ)

)
∩ L∞

(
0, S;L2(χ)

)
, ∂t ϕ ∈ L2(0, S;L2(χ)), (5)

with
sup

t∈[0,S]
‖ ϕ(t) ‖2

L2(χ) + ‖ ∂t ϕ ‖2
L2(0,S;L2(χ)) + ‖

√
a(x)∇ϕ ‖2

L2(0,S;L2(χ))

6 C
(
‖ u0 ‖2

H1
a(χ)

+ ‖ v0 ‖2
L2(χ)

+ ‖ Q ‖2
L2(0,S;L2(χ))

)
.

(6)

The constant C depends on χ and S.

Proof. The proof of the following theorem relies on the outlines used to prove the exis-
tence and uniqueness theorem for the degenerate linear viscose-elastic problem presented
in [31].

2. Well-Posedness of the Inverse Problem

Firstly, we introduce the following admissible set:

E = {b ∈ L∞(χ) : 0 ≤ b1 ≤ b(x) ≤ b2, a.e. x ∈ χ}

A reformulation of the inverse problems (1), (3), and (4) as a nonlinear non-classical
parabolic problem is targeted to simplify the proof of existence and uniqueness. By mul-
tiplying the first equation in (1) by ρ1(t) and ρ2(t), respectively, integrating the resulting
relations with respect to t from 0 to S, and using (3) and (4), we have

−ρ′i ϕ(x, T) + ρ′iu0(x) +
∫ T

0
ρ′′i ϕ(x, t) dt = ∇.

(
a.∇ψi

)
− b(x)ϕ(x, t) +

∫ T

0
ρi Q(x, t) dt (7)

Using (7), we have

q(x) = A2(x)(a1(x) + ϕ̄1(x))− A1(x)(a2(x) + ϕ̄2(x)) (8)

u0(x) = B2(x)(a1(x) + ϕ̄1(x))− B1(x)(a2(x) + ϕ̄2(x)) (9)
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where 

ai(x) = ∇.
(

a(x)∇ψi

)
+
∫ S

0
Q(x, t)ρi(t) dt

Ai(x) =
ρ′i(0)

ψ2ρ1(t)− ψ1ρ2(t)

Bi(x) =
ψi(x)

ψ2ρ1(t)− ψ1ρ2(t)
ϕ̄i = ρ′i ϕ(x, T)−

∫ T
0 ρ′′i ϕ(x, t) dt

We introduce the following assumptions:

(a) ψ1, ψ2 ∈ H2(χ) ∩ L∞(χ) and ρ1, ρ2 ∈ C2[0, T];
(b) ψ2ρ1(t)− ψ1ρ2(t) 6= 0;
(c) A1a1 − A1a2 ≥ K1 and B2a1 − B1a2 ≤ K2 a.e. in χ̄, for some positive constants K1 and

K1.

Inserting (8) and (9) into (1), we obtain
∂tt ϕ−∇ · (a∇ϕ) + A2(x)(a1(x) + ϕ̄1(x))− A1(x)(a2(x) + ϕ̄2(x)) ϕ = 0 in I,

ϕ = 0 in (Rd\χ)× (0, S],
ϕt(·, 0) = 0 in χ,

ϕ(·, 0) = B2(x)(a1(x) + ϕ̄1(x))− B1(x)(a2(x) + ϕ̄2(x)) in χ,

(10)

Thus, the solution to inverse problems (1), (3), and (4) is equivalent to obtaining the
solution ϕ(x, t) to the nonlinear parabolic problem (10). Utilize the technique in [19], and
consider the following two auxiliary hyperbolic problems:

∂ttΦ−∇ · (a∇Φ) +
(

A2(x)a1(x)− A1(x)a2(x)Φ = Q in I,

Φ = 0 in (Rd\χ)× (0, S],
Φt(·, 0) = 0 in χ,
Φ(·, 0) = 0 in χ,

(11)

and 

∂ttΨ−∇ · (a∇Ψ) + A2a1 − A1a2 + c
(

A2(Ψ̄1 + Φ̄1)− A1(Ψ̄2+

Φ̄2)
)

Ψ− c
(

A2(Ψ̄1 + Φ̄1)− A1(Ψ̄2 + Φ̄2)
)

Φ Φ = 0 in I,

Ψ = 0 in (Rd\χ)× (0, S],
Ψt(·, 0) = 0 in χ,

Ψ(·, 0) = B2a1 − B1a2 + c
(

B2(Ψ̄1 + Φ̄1)− B1(Ψ̄2+

Φ̄2)
)

Ψ− c
(

B2(Ψ̄1 + Φ̄1)− B1(Ψ̄2 + Φ̄2)
)

Φ in χ,

(12)

where c is a Lipschitz continuous function on R defined by

c(x) =


x i f |x| ≤ K0

K0 i f x > K0
−K0 i f x < −K0

and

Φ̄i = ρ′i(t)Φ(x, T)−
∫ T

0
ρ′′i Φ(x, t) dt, Ψ̄i = ρ′i(t)Ψ(x, T)−

∫ T

0
ρ′′i Ψ(x, t) dt (13)

Therefore Φ, and Ψ, satisfy

|Φ(x, t)| ≤ L2 a.e. (x, t) ∈ I, |Ψ(x, t)| ≤ L3 a.e. (x, t) ∈ I, (14)

with L1 > 0.
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To prove the existence and uniqueness of the solution to the inverse problems (1), (3),
and (4). We set

K3 :=
∣∣ρ′1(t)∣∣+ ∣∣ρ′2(t)∣∣+ ∫ S

0
ρ′1 dt +

∫ S

0
ρ′2 dt

K4 = max
x∈χ̄
{|A1|, |A2|, |B1|, |B2|} (15)

L3 :=
2K3K4(L1 + L2)

K1 − 2K3K4(L1 + L2)
(16)

Theorem 2. Let a, v0, ψ1, ψ2 ∈ L∞(χ), and ρ1, ρ2 ∈ L∞(0, S), Q ∈ L∞(I), and, for the func-
tional spaces inverse problem solution, we put Y0 = L2(0, S;H1

a(χ)
)
∩ L∞(0, S;L2(χ)

)
∩

H2,1(I).
Suppose that assumptions (a)–(c) are satisfied. Assume that there exists a number K0 ∈ (0, K1)

satisfying
2K3K4(L1 + L2) ≤ K0, L3 < 1. (17)

Then, there exists at most one solution (ϕ(x, t), b(x), u0(x)) ∈ X0 × L∞(χ)× L∞(χ) and
b(x) > 0 a.e. x ∈ χ̄ to the inverse problems (1), (3), and (4).

Proof. Using (13), we have

|Φ̄1| ≤
(∣∣ρ′1(t)∣∣+ ∫ T

0

∣∣ρ′′1 ∣∣ dt
)
‖Φ‖L∞(χ) ≤ K3L2 (18)

Likewise, we have |Ψ̄2| ≤ K3L2, |Ψ̄2| ≤ K3L1 , which imply that

|Φ̄i + Ψ̄i+| ≤ K3(L1 + L2), f or i = 1, 2.

|A2(Ψ̄1 + Φ̄1)− A1(Ψ̄2 + Φ̄2)| ≤ K3(L1 + L2)(|A1|+ |A2|) ≤ 2K3K4(N1 + N2),

|B2(Ψ̄1 + Φ̄1)− B1(Ψ̄2 + Φ̄2)| ≤ K3(L1 + L2)(|B1|+ |B2|) ≤ 2K3K4(N1 + N2),

Using inequality (17) and the definition of function c(.), we obtain

c
(

A2(Ψ̄1 + Φ̄1)− A1(Ψ̄2 + Φ̄2)
)
= A2(Ψ̄1 + Φ̄1)− A1(Ψ̄2 + Φ̄2),

c
(

B2(Ψ̄1 + Φ̄1)− B1(Ψ̄2 + Φ̄2)
)
= B2(Ψ̄1 + Φ̄1)− B1(Ψ̄2 + Φ̄2).

Hence, problem (12) becomes

∂ttΨ−∇ · (a∇Ψ) + A2a1 − A1a2 +
(

A2(Ψ̄1 + Φ̄1)− A1(Ψ̄2 + Φ̄2)
)

Ψ

−
(

A2(Ψ̄1 + Φ̄1)− A1(Ψ̄2 + Φ̄2)
)

Φ = 0 in I,

Ψ = 0 in (Rd\χ)× (0, S],
Ψt(·, 0) = 0 in χ,

Ψ(·, 0) = B2a1 − B1a2 +
(

B2(Ψ̄1 + Φ̄1)− B1(Ψ̄2+

Φ̄2)
)

Ψ−
(

B2(Ψ̄1 + Φ̄1)− B1(Ψ̄2 + Φ̄2)
)

Φ in χ,

(19)

By taking ϕ(x, t) = Ψ(x, t) + Φ(x, t), it is easy to obtain that ϕ satisfies the estimate

|ϕ(x, t)| ≤ L1 + L2 a.e. (x, t) ∈ Ī (20)
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Let w(x, t) and v(x, t) be two solutions to problem (10), and let w(x, t) = w(x, t)−
v(x, t). Then, ϕ3(x, t), satisfies the following problem:

∂ttz−∇ · (a∇z) +
(

A2a1 − A1a2 + A2(w̄1 − A1(w̄2

)
z

−
(

A2(z̄1 − A2(z̄2)v = 0 in I,

z = 0 in (Rd\χ)× (0, S],
zt(·, 0) = 0 in χ,

z(·, 0) =
(

B2(z̄1 − B1(z̄2

)
in χ,

(21)

with

w̄i = ρ′i(t)w(x, T)−
∫ T

0
ρ′′i w(x, t), v̄i = ρ′i(t)v(x, T)−

∫ T

0
ρ′′i v(x, t).

Using (17) and (18), we obtain

|A2a1 − A1a2 + A2w̄1 − A1w̄2| ≥ K1 −max
x∈χ̄
|A2w̄1 − A1w̄2|

≥ K1 − 2K3K4(L1 + L2) > K0 − 2K3K4(L1 + L2) ≥ 0,

and, as |z̄i| ≤ K3‖z̄i‖L2(I) for i = 1, 2, then

max |A2z̄1 − A1z̄2|, |B2z̄1 − B1z̄2| ≤ 2K3K4‖z‖L∞(I)

‖z‖L∞(I) ≤
2K3K4‖z‖L∞(I)‖v‖L∞(I)

K1 − 2K3K4(L1 + L2)
≤ L3‖z‖L∞(I).

Using the fact that L3 < 1, we obtain that ‖z‖L∞(I) = 0. This implies the uniqueness of
the solution to problem (10). This means that the potential b(x) given by (8) and the initial
condition u0(x) given by (9) only satisfy the inverse problems (1), (3), and (4). The proof is
completed.

In this paper, we generalize the constant-time observations to mean-time records,
which can be difficult to achieve in practice, and these records smooth out potentially
large measurement errors in the direct solution ϕ. More precisely, we are looking for the
triple (ϕ(x, t), b(x), u0(x)) of problem (1) with average weighted integral observations.
Let ϕ(x, t; b, u0) be the solution to the direct problem (1). Now, let us reformulate our
inverse problem as an optimization problem. In reality, the average weighted integral
observations ψ1, ψ2 ∈ L∞(χ), given in (3) and (4), respectively, may contain noise. Due
to the poor posing of the inverse problem, which causes tiny inaccuracies in the input
data (3) and (4) to lead to substantial errors in the output coefficients b(x) and u0(x). This
creates the main challenge numerically in the reconstruction of the solution. Numerically,
we are looking for an approximation of the answer using measurements with noise. Let us
consider ψδ

1, ψδ
2 ∈ L∞(χ), satisfying∥∥∥ψδ

i − ψ
∥∥∥2

L2(χ)
≤ δ, for i = 1, 2. (22)

Hence, we will simultaneously reconstruct the coefficient b(x) and the condition u0(x)
under the following noisy data: (ψδ

1(x), (ψδ
2(x))

∫ S

0
ρ1(t)ϕ(x, t) dt = ψδ

1(x), x ∈ χ, (23)

∫ S

0
ρ2(t)ϕ(x, t) dt = ψδ

2(x), x ∈ χ. (24)
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We minimize the objective functionalM[b, u0] : E × L2(χ) → R defined in (25) to
obtain the solution to the inverse problem

M[b, u0] =
1
2

∥∥∥ ∫ S

0
ρ1(t)ϕ(·, b, u0) dt− ψδ

1

∥∥∥2

L2(χ)
+

1
2

∥∥∥ ∫ S

0
ρ2(t)ϕ(·, b, u0) dt− ψδ

2

∥∥∥2

L2(χ)
. (25)

In this paper, our technique does not depend on the “regularize then discretize ap-
proach”; more precisely, we adopt the approach used in [32].

Theorem 3. The optimization problem in (25) admits at least one solution.

Proof. We know that infE×L2(χ)M[b, u0] =: M0 ≥ 0. This gives the existence of a mini-
mizing sequence {(bn, un

0 ) : n ∈ N} ⊂ E × L2 such that

lim
n→∞

M[bn, un
0 ] =M0.

Hence, the subsequence {(bn, un
0 ) : n ∈ N} is uniformly bounded in L∞(χ)×L2(χ),

which proves the existence of the subsequence (bn, un
0 ) which converges weakly to (b∗, u∗0)

in L∞(χ)×L2(χ). Using estimate (5), we find that the sequence {ϕn = ϕ(bn, un
0 ) : n ∈ N}

is uniformly bounded in H1
0(I), So we can extract a subsequence {ϕn : n ∈ N}, which

converges weakly to ϕ∗ ∈ H1
0(I) in H1

0(I).
Let θ ∈ H1

0(I) such that θ(., T) = 0. The variational formulation of problem (1) for
(ϕn, bn, un

0 ) gives∫
I

ϕn∂ttθ +
∫

I
a∇ϕn · ∇θ +

∫
I

bn ϕnθ =
∫

I
Qθ +

∫
I

un
0 ∂tθ(x, 0). (26)

We can write
∫

I
bn ϕnθ =

∫
I

b∗ϕnθ +
∫

I
(bn − b∗)ϕnθ. Using estimate (5) and the fact

that bn converges weakly to b∗ in L∞(χ), we find that
∫

I
(bn − b∗)ϕnθ → 0. Consequently,

by letting n tend to infinity in (26), we obtain∫
I

ϕ∗∂ttθ +
∫

I
a∇ϕ∗ · ∇θ +

∫
I

b∗ϕ∗θ =
∫

I
Qθ +

∫
I

ϕ∗0∂tθ(x, 0),

and, since H1
0 injects into L2(I), and the solution to the direct problem is unique, we deduce

that ϕ∗ = ϕ(b∗, u∗0). Now, by the weak lower semi-continuity of the norm, we have

M[b∗, u∗0 ] =
1
2

∥∥∥ ∫ S

0
ρ1(t)ϕ(·, t) dt− ψδ

1

∥∥∥2

L2(χ)
+

1
2

∥∥∥ ∫ S

0
ρ2(t)ϕ(·, t) dt− ψδ

2

∥∥∥2

L2(χ)

≤ 1
2

lim
n→∞

∥∥∥ ∫ S

0
ρ1(t)ϕn(·, t) dt− ψδ

1

∥∥∥2

L2(χ)
+

1
2

lim
n→∞

∥∥∥ ∫ S

0
ρ2(t)ϕn(·, t) dt− ψδ

2

∥∥∥2

LL2(χ)

≤ lim inf
n→∞

M[bn, un
0 ] = inf

E×L2(χ)
M[b, u0].

This shows that (b∗, u∗0) is a minimizer of (25) on the set E × L2(χ).

To calculate the gradient of the functionalM, we use the conjugate gradient method
introduced in Section 3. First, we show that this functionalM is differentiable as stated in
the following lemma:

Lemma 1. Let the coefficient b and the initial condition be perturbed by a small δb and δu0, with
(b + δb, u0 + δu0 ∈ E ×L2(χ), and let ϕ be the weak solution to (1) corresponding to (b, u0). The
function E × L2(χ)→ H1

0(I)× H1
0(I) continues, i.e.,∥∥∥ϕ(b + δb, u0)− ϕ(b, u0)

∥∥∥
L2(0,T,H1

0 (χ))
≤ c
∥∥∥δb
∥∥∥
L∞(χ)

, (27)
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∥∥∥ϕ(b, u0 + δu0)− ϕ(b, u0)
∥∥∥
L2(0,T,H1

0 (χ))
≤ c
∥∥∥δu0

∥∥∥
L2(χ)

. (28)

Proof. The proof is very simple. Just use estimate (5) and replace ϕ with ϕ(b + δb, u0) and
ϕ(b, u0 + δu0) in (1).

We rely on the following lemma to show the differentiability of the map u→ ϕ(b, u0).

Lemma 2. Assume that (b, u0) ∈ E × L2(χ). The map (b, u0) → u(b, u0) is Fréchet differ-
entiable; more precisely, there are two operators Ob,Ou0 : E × L2 → H1

0(I) × H1
0(I), such

that

lim∥∥∥δb
∥∥∥
L∞(χ)

→0

∥∥∥ϕ(b + δb, u0)− ϕ(b, u0)−Obδb
∥∥∥
L2(0,T,H1

0 (χ))∥∥∥δb
∥∥∥
L∞(χ)

= 0, (29)

lim∥∥∥δu0

∥∥∥
L2(χ)

→0

∥∥∥ϕ(b, u0 + δu0)− ϕ(b, u0)−Ou0 δu0

∥∥∥
L2(0,T,H1

0 (χ))∥∥∥δb
∥∥∥
L2(χ)

= 0. (30)

Proof. Let b, δb ∈ E , and ϕ(b, u0) be the solution to problem (1). We can verify that ϕ
satisfies the following problem:


∂tt ϕb −∇ · (a∇ϕb) + b ϕb + δb ϕ(b, u0) = 0 in I,

ϕb = 0 in (Rd\χ)× (0, S],
ϕb(·, 0) = 0 in χ,
ϕt(·, 0) = 0 in χ,

(31)

Then, problem (31) has a unique solution ϕb which depends linearly on δb. Let
zb := ϕ(b + δb, u0)− ϕ(b, u0)−Obδb = δϕb − ϕb. So, δϕb satisfies the following problem

∂ttδϕb −∇ · (a∇δϕb) + b δϕb + δb(δϕb + ϕ(b, u0)) = 0 in I,
δϕb = 0 in (Rd\χ)× (0, S],

δϕb(·, 0) = 0 in χ,
δ(ϕb)t(·, 0) = 0 in χ.

(32)
Using (31) directly shows that z verifies


∂ttzb −∇ · (a∇zb) + b zb + δbδϕb = 0 in I,

zb = 0 in (Rd\χ)× (0, S],
zb(·, 0) = 0 in χ,

(zb)t(·, 0) = 0 in χ.

(33)

Now, the application of estimate (5) to (33) gives∥∥∥zb

∥∥∥
L2(0,S,H1

a (χ))
≤ cb,u0

∥∥∥δb δϕb

∥∥∥
L2(I)

≤ cb,u0

∥∥∥δb
∥∥∥
L∞(I)

∥∥∥δϕb

∥∥∥
L2(I)

≤ cb,u0

∥∥∥δb
∥∥∥
L∞(I)

∥∥∥δϕb

∥∥∥
L2(0,S,H1

a (χ))
.

From (27), we conclude that∥∥∥ϕ(b + δb, u0)− ϕ(b, u0)−Obδb
∥∥∥
L2(0,S,H1

a (χ))
≤ cb,u0

∥∥∥δb
∥∥∥2

L∞(χ)
.
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Hence, the map (b, u0)→ ϕ(b, u0) is Fréchet differentiable. This shows relation (29).
Now, let δϕu0 = ϕ(b, u0 + δu0)− ϕ(b, u0) be the solution to the problem

∂tt ϕu0 −∇ · (a∇ϕu0) + b ϕu0 + b δϕb = 0 in I,
ϕu0 = 0 in (Rd\χ)× (0, S],

δϕu0(·, 0) = 0 in χ,
δ∂t ϕu0(·, 0) = 0 in χ.

(34)

In the same way, we can directly prove (30) for the coefficient b.
To calculate the gradient of ∇M[b, u0, we need the following lemma, which gives the

existence and uniqueness of the following adjoint problem of (1)
−∂tt p−∇ · (a∇p) + b p =

2

∑
k=1

ρk(t)
( ∫ S

0
ρk ϕ(x, τ) dτ − ψδ

k

)
in I,

p = 0 in (Rd\χ)× (0, S],
p(·, 0) = 0 in χ,

∂t p(·, 0) = 0 in χ.

(35)

Lemma 3. Assume that ρ1, ρ2 ∈ L∞(χ) and b ∈ L∞(χ), ψ1, ψ2 ∈ L∞(0, S). Based on these
assumptions, problem (35) admits a unique solution. Moreover, there is c′ > 0 such that

∥∥∥p
∥∥∥
L2(I)

≤ c′
2

∑
k=1

∥∥∥ρk

∥∥∥
L∞(0,S)

(∥∥∥ψδ
k

∥∥∥
L∞(χ)

+
∥∥∥ρk

∥∥∥
L∞(0,S)

∥∥∥ϕ
∥∥∥
L∞(I)

)
. (36)

Proof. To show the existence and uniqueness of p, we use the same approach for prob-
lem (1). Multiplying both sides of the first equation of (35) by pt and integrating it over χ,
we obtain

∫
χ

∂tt p ∂t p−
∫

χ
∇ · (a(∇ p)∂t p +

∫
χ

b p =
∫

χ

2

∑
k=1

ρk(t)
( ∫ S

0
ρk ϕ(x, τ) dτ − ψδ

k

)
∂t p.

Now, we integrate for t ∈ [0, S], and we use the fact that p(x, t) =
∫ t

0
∂t p(x, τ) dτ +

p(x, 0) to obtain

∥∥∥p
∥∥∥2

L2(I)
+
∫

I
a(∇ ϕ)2 +

∫
I

b p2 ≤ c′
2

∑
k=1

∫
I

pρk(t)
( ∫ S

0
ρk ϕ(x, τ) dτ − ψδ

k

)
.

since∣∣∣∣∫I
pρk(t)

( ∫ S

0
ρk ϕ(x, τ) dτ − ψδ

k

)∣∣∣∣ ≤ c′
(∥∥∥ψδ

k

∥∥∥
L∞(χ)

∥∥∥ρk

∥∥∥
L∞(0,S)

+
∥∥∥ρk

∥∥∥2

L∞(0,S)

∥∥∥ϕ
∥∥∥
L∞(I)

)∥∥∥p
∥∥∥
L2(I)

,

dividing by
∥∥∥p
∥∥∥
L2(I)

, we find that

∥∥∥p
∥∥∥
L2(I)

≤ c′
2

∑
k=1

∥∥∥ρk

∥∥∥
L∞(0,S)

(∥∥∥ψδ
k

∥∥∥
L∞(χ)

+
∥∥∥ρk

∥∥∥
L∞(0,S)

∥∥∥ϕ
∥∥∥
L∞(I)

)
.

this proves Lemma 3.

Theorem 4. The functionalM[b, u0] is Fréchet differentiable, and its gradients are given respec-
tively by

∇Mb[b, u0] = −
∫ S

0
ϕ(x, t) p(x, t) dt, ∀x ∈ χ, (37)
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∇Mu0 [b, u0] = p(x, 0), ∀x ∈ χ, (38)

such that p is the solution to the adjoint problem (35).

Proof. Let δb be a small perturbation of b such that b + δb ∈ E , denoted by
δub = ϕ(b + δb, u0)− ϕ(b, u0). Then, δb is the solution to the the following problem

∂ttδϕb −∇ · (a∇δϕb) + b δbδϕb + δbϕ(b + δb, u0) = 0 in I,
δϕb = 0 in (Rd\χ)× (0, S],

δϕb(·, 0) = 0 in χ,
∂tδϕb(·, 0) = 0 in χ,

(39)

Then, we have

M[b + δb, u0)−M[b, u0) =
∫

I
δub

[
ρ1(t)

( ∫ S

0
ρ1 ϕ(x, τ) dτ − ψδ

1

)
+ ρ2(t)

( ∫ S

0
ρ2 ϕ(x, τ) dτ − ψδ

2

)]
+

1
2

2

∑
k=1

∥∥∥∥∫ S

0
ρk(t)δϕb

∥∥∥∥2

L2(χ)

= −∂tt p−∇ · (a∇p) + bp +
1
2

2

∑
k=1

∥∥∥∥∫ S

0
ρk(t)δϕb(., τ) dτ

∥∥∥∥2

L2(χ)
.

Using problems (35) and (39) and integrating over I, we obtain

∫
I

δub

(
− ∂tt p−∇ · (a∇p) + bp

)
=
∫

I
p
((

∂ttδϕb −∇ · (a∇δϕb) + b δϕb
))

= −
∫

I
p δb ϕ(b + δb, u0)

= −
∫

I
p δb δϕb −

∫
I

p δb ϕ(b, u0).

Hence,

M[b + δb, u0)−M[b, u0) = −
∫

I
p δb δϕb −

∫
I

p δb ϕ(b, u0) +
1
2

2

∑
k=1

∥∥∥∥∫ S

0
ρk(t)δϕb(., τ) dτ

∥∥∥∥2

L2(χ)
.

According to an estimate similar to that of (5) for δϕb, we have∥∥∥∥∫ S

0
ρk(t)δϕb(., τ) dτ

∥∥∥∥2

L2(χ)
≤ c‖ρk(t)‖L∞(0,S)‖δb‖L∞(χ),

and ∣∣∣∣∫I
p δb δϕb

∣∣∣∣ ≤ c‖δb‖2
L∞(χ)‖p‖L2(I).

Therefore,

M[b + δb, u0)−M[b, u0] =
∫

χ

( ∫ S

0
−pϕ dt

)
dx.

Hence,

∇Mb[b, u0] = −
∫ S

0
ϕ(x, t) p(x, t) dt, ∀x ∈ χ.
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Using the same approach used to calculate the gradient with respect to b, we cal-
culate the gradient with respect to the initial condition u0, such that the direct solution
δϕu0 = ϕ(b, u0 + δu0 − ϕ(b, u0) is the solution to the following problem

∂ttδϕu0 −∇ · (a∇δϕu0) + b δϕu0 = 0 in I,
δϕu0 = 0 in (Rd\χ)× (0, S],

δϕu0(·, 0) = δu0(x) in χ,
∂tδϕu0(·, 0) = 0 in χ,

(40)

so we find (38).

3. Conjugate Gradient Method

To reconstruct simultaneously the coefficient b and the initial condition u0, we apply a
process based on the conjugate gradient method (CGM), which consists of minimizing the
functional in Equation (25). This process is given by:

bi+1 = bi + βi
bγi

b, ui+1
0 = ui

0 + βi
u0

γi
u0

i = 0, 1, · · · , (41)

where b0(x), u0
0(x) are the initial guesses for b(x), u0(x) where i is the number of iterations,

and βi denotes the step size. Moreover, we define the search directions γi
b and γi

u0
by

γi
b =

{
−∇M0

b f or i = 0,
−∇Mi

b + ρi
b∇M

i−1
b f or i ≥ 1,

γi
u0

=

{
−∇M0

u0
f or i = 0,

−∇Mi
u0
+ ρi

u0
∇Mi−1

u0
f or i ≥ 1,

(42)

Additionally, we can use Fletcher–Reeves formula in [33] to obtain the step sizes βi
b, βi

u0

ρi
b =

∥∥∇Mi
b

∥∥
L2(χ)∥∥∥∇Mi−1

b

∥∥∥
L2(χ)

, ρi
u0

=

∥∥∇Mi
u0

∥∥
L2(χ)∥∥∥∇Mi−1

u0

∥∥∥
L2(χ)

, f or i = 1, 2, · · · . (43)

In the same way, we can find βi
b and βi

u0

M(bi+1, ui+1
0 ) = min

βb ,βu0≥0
M(bi + βbγi

b, ui
0 + βu0 γi

u0
). (44)

According to the arguments used in [34], the fact that ∇b(b, u0), ∇u0(b, u0) is Frécher
differentiable, and the fact that the functional M(bi+1, ui+1

0 ) is a monotone decreasing
convergent sequence, we obtain the following result:

Theorem 5. The CGM (41)–(44) either terminates at a stationary point or converges in the
following senses:

lim inf
i→∞
‖∇b(b, u0)‖L2(χ) = lim inf

i→∞
‖∇u0(b, u0)‖L2(χ). (45)

Since the errors can be noticed at the average weighted integral observations (3) and (4).
The iteration process given by (42) cannot be preformed by the conjugate gradient method,
and so the method is not well-posed because we do not have the regularization term.
However, the method can become well-posed if we apply a divergence criterion so that the
iteration procedure is stopped. This criterion is given by:

M(b, u0) ≤
1
2

∥∥∥ψδ − ψ
∥∥∥2

L2(χ)
≤ δ2. (46)

Thus, the iterations of this algorithm, based on CGM for the numerical reconstruction
of the coefficient b(x) and the initial condition u0(x), are as given by Algorithm 1.
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Algorithm 1 CG algorithm for the minimizer of (25)

1. Set i = 0 and initiate b0 and u0
0 for the coefficient b and initial condition u0.

2. Determine numerically, using the finite difference method, the solution to the direct
problem (1) ϕ(x, t, bi, ui

0) and the objective functional (25).
3. Determine numerically, using the finite difference method, the solution to the adjoint

problem (35) p(x, t, bi, ui
0) and the gradient of the objective functional (37) and (38).

Calculate the coefficients (ρi
b, ρi

u0
) and (γi

b, γi
u0
) given in Equations (43) and (42),

respectively.
4. Determine numerically, using the finite difference method, the solution to the sensitiv-

ity problems (39) and (39) δϕb(x, t, bi, ui
0) and δϕu0(x, t, bi, ui

0) by using δϕi
b = γi

b and
δϕi

u0
= γi

u0
, where the step sizeS βi

b and βi
u0

are given in (44)
5. Update bi, ui

0 using (41).
6. If the condition (46) is satisfied, go to Step 7 . Else, set i = i + 1 and return to Step 2.
7. End.

4. Numerical Experiments

Here, we apply the CG method [35] in one and two dimensions in order to identify
simultaneously the coefficient b and the initial condition u0 in 1. We discretize this problem
using the finite element method in space and the Crank–Nicholson scheme in time direction.
For the two-dimensional problem, we apply the alternating direction implicit (ADI) method
as described in [28]. We create the noisy data, and a random perturbation is added, i.e.,

ψδ
1(x) = ψ1 + η × random(1), ψδ

2(x) = ψ2 + η × random(1),

where η = p/100×maxx∈χ{|ψ1|, |ψ2|}, and p represents the percentage of noise.
We calculate the approximate L2 error by the following formula to demonstrate the

precision of the numerical solution

Ei
b =

∥∥∥bi − bex
∥∥∥
L2(χ)

, (47)

Eu0 =
∥∥∥ui

0 − uex
0

∥∥∥
L2(χ)

, (48)

where (bi, ui
0) are the initial guesses reconstructed at the kth iteration, and (bex, uex

0 ) are the
exact values. The residual Ri at the ith iteration is given by

Ri
1 =

∥∥∥u(bi)− ψδ
1

∥∥∥
L2(χ)

, Ri
2 =

∥∥∥u(ui
0)− ψδ

2

∥∥∥
L2(χ)

.

4.1. One-Dimensional Problem

We fix χ = [0, 1] without a loss of generality. We also fix δt = 1
100 and δx = 1

100 ,
respectively, and let a(x) = (x− 0.5)2. We choose ρ1(t) and ρ2(t) in (3) and (4) as

ρi(t) =
1

q
√

π
exp

(
− (t− ti)

2

10−6

)
t ∈ [0, S], i = 1, 2, (49)

where q is a small positive constant, and t1 6= t2 ∈ [0, S]. It is clear that ρi(t) ≈ δ(t− ti) for
small values of q, where δ(.) is the Dirac delta function. Then, according to the properties
of the Dirac delta function, Equations (3) and (4)would become

ψi =
∫ S

0
ρi(t)ϕ(x, t) ≈

∫ S

0
δ(t− ti)ϕ(x, t) = ϕ(x, t).
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For all the three numerical examples presented later, we choose the weight functions as

ρ1(t) =
1000√

π
exp

(
− (t− 0.3)2

10−6

)
, ρ2(t) =

1000√
π

exp
(
− (t− 1)2

10−6

)
.

Example 1. To validate this choice, we apply our proposed algorithm for the reconstruction of the
coefficient and the initial condition defined on χ by

bex(x) = 1 + x2, uex
0 (x) = x(1− x). (50)

We take the initial guesses b0(x) = 1, u0
0(x) = 0.

Figure 1 is devoted to showing the variation of the functional according to the number
of iterations i for the simultaneous determination of the coefficient b and the initial condition
u0, in the cases of no noise (p = 0) and with noise (p = 1), (p = 5). It can be observed
that if p = 0, then the functionM(b, u0) quickly converges to a very small value because it
is a decreasing function according to the values of i. We see that the number of iterations
for the algorithm to stop is i∗ = 20 in the case of no noise and i∗ = 3 in the case of noise.
These numbers of iterations are obtained via the discrepancy in (46). Errors (47) and (48)
associated with b(x) and u0(x) have been found for Eb = 0.00008/0.0284/0.0274 and
Eu0 = 0.000025/0.00322/0.00223 with the noise levels p = 0/1/5, respectively. Therefore,
we can conclude that our numerical process is reasonably accurate in determining the
coefficient b(x) and the initial condition u0(x). Similarly, the norms of the gradients of the
functional are obtained for ‖∇Mb‖L2(χ) = 2× 10−5/0.0009/0.0014 and

∥∥∇Mu03
∥∥
L(2(χ) =

1.64× 10−5/0.00018/0.00015 with p = 0/1/5.
In Figure 2, we illustrate the comparison between the functions of the recovered

coefficient b and the initial condition u0 and their exact values with the noise levels
p = 0/1/5.

Figure 2 illustrates the numerical reconstruction of the coefficient b and the initial
condition u0 with the number of final iterations i∗ given in Figure 1 with different values for
the noise levels, p = 0/1/5. From Figure 1, we can notice that the exact and the numerical
solutions are almost equal; that is, the proposed algorithm to determine the two coefficients
converges to the required solutions.

(a)

0 2 4 6 8 10 12 14 16 18 20

10
-6

10
-5

10
-4

10
-3

Figure 1. Cont.
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Figure 1. Graph of the functionalM(bi, ui
0) to Example 1 with (a) p = 0; (b) p = 1; (c) p = 5.

In the following example, we will apply our method to reconstruct the coefficient b
and the initial condition defined by

Example 2. We consider

bex(x) = x3 + sin(πx), uex
0 (x) = sin(πx). (51)

Similarly, for Example 1, using the discrepancy in (46), the stopping iterations are,
i∗ = 20/3/3 for the noise levels p = 0, 1, and 5. The errors (47) and (48) associated
with b(x) and u0(x) have been found for Eb = 0.000025/0.0081/0.0092 and
Eu0 = 0.00018/0.00254/0.00353 with noise level p = 0, 1 and 5, respectively, Under these
stopping iterations, Figure 3 illustrates the exact and numerical solutions for Example 2 for
different values of the noise levels (p = 0, 1, and 5).
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(a)

(b)
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Exact solution

p=0
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Figure 2. Reconstruction results for Example 1 with p = 0, 1, and 5. (a) coefficient b; (b) the initial
condition u0.

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

Exact solution

p=0

p=1

p=5

Figure 3. Cont.
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(b)
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Figure 3. Reconstruction results for Example 2 with p = 0, 1, and 5. (a) coefficient b; (b) the initial
condition u0.

4.2. Two-Dimensional Problem

The space–time region χ× [0, S] := [0, 1]2× [0, 1] is partitioned into 40× 40× 80 equidis-
tant meshes. We testify the numerical performance of the Algorithm 1 for the reconstruction
of the coefficient b and the initial condition b with the following degeneracy

a(x) := a(x1, x2) =
√
(x1 − 0.3)2 + (x2 − 0.3)2. (52)

We take the initial guesses b0(x1, x2) = 1, u0
0(x1, x2) = 0.

Example 3. Suppose that the exact coefficient and initial condition for the degenerate wave prob-
lem (1) are given by:

bex(x1, x2) = cos(2πx1) cos(3x2), uex
0 (x1, x2) = (1− x2) sin(πx1). (53)

For this example, the number of the final iterations of CGM is i∗ = 60/3/3, for the
noise levels p = 0, 1, and 5 (Figure 4). Errors (47) and (48), associated with b(x) and u0(x),
have been found for Eb = 0.01, 0.05, and 0.21. Additionally, Eu0 = 0.051, 0.154, and 0.254.

(a)
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10
-4

10
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Figure 4. Cont.
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(b)
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Figure 4. Graph of the functionalM(bi, ui
0) for Example 3 with (a) p = 0; (b) p = 1; (c ) p = 5.

The exact coefficient, initial condition functions, and recovered solution are shown
in Figures 5 and 6.The absolute errors between the exact coefficient and initial condition
functions and their numerical reconstruction are shown in Figures 7 and 8.We can notice
that the recovered terms are very close to the exact solutions; this shows the effectiveness
of our proposed method.

The following Tables 1 and 2 are devoted to the different values of Ei
b and Ei

u0
for

p = 0, p = 1, and p = 5.

Table 1. Numerical results (accuracy error Ei
b).

p = 0 p = 1 p = 5

Example 1 0.00008 0.0284 0.0377
Example 3 0.000025 0.003020 005040
Example 3 0.01 0.05 0.21

Table 2. Numerical results (accuracy error Ei
u0

).

p = 0 p = 1 p = 5

Example 1 0.00025 0.00322 0.00524
Example 3 0.00221 0.00102 0.00417
Example 3 0.051 0.0254 0.0354
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Here, we summarize the results of the numerical experiments. For one-dimensional
problems, as considered in Example 1, the resulting figures can be described as follows.
Figure 1a represents the graph of the functionalM without a noise level (0 percent) and
with the iteration number i∗ = 20, while Figure 1b represents the graph of the functional
M with a noise level (1 percent) with the number of iterations i∗ = 3, Figure 1c represents
the graph of the functionalM with a noise level (5 percent) with the number of iterations
i∗ = 3. Figure 2a represents the graph of the reaction coefficient b without a noise level
(0 percent) and with a noise level (1 and 5 percent). Additionally, Figure 2b represents the
graph of the initial condition u0 without a noise level (0 percent) and with a noise level
(1 and 5 percent). For Example 2, Figure 3a represents the graph of the reaction coefficient
b without a noise level (0 percent) and with a noise level (1 and 5 percent). Moreover,
Figure 3b represents the graph of the initial condition u0 without a noise level (0 percent)
and with a noise level (1 and 5 percent).

Figure 5. True coefficient function (53) for Example 3.

Figure 6. True initial condition function (53) for Example 3.
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Figure 7. Absolute error between exact and numerical coefficient b with different noise levels
(a) p = 0; (b) p = 1; (c) p = 5 for Example 3.
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Figure 8. Absolute error between exact and numerical initial condition u0 with different noise levels
(a) p = 0; (b) p = 1; and (c) p = 5 for Example 3.
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For two-dimensional problems, as given in Example 3, Figure 4a represents the graph
of the functionalM without a noise level (0 percent) and with the iteration number i∗ = 60.
Figure 4b represents the graph of the functional J with a noise level (1 percent) and with
the number of iterations i∗ = 3. Figure 4c represents the graph of the functional J with a
noise level (5 percent) and with the number of iterations i∗ = 3. Figure 5 represents the
exact solution to the recovered reaction coefficient. Figure 9a, Figure 9b, and Figure 9c
represent the graphs of the reaction coefficient b without a noise level (0 percent) and with
noise levels (1 and 5 percent), respectively. Figure 7a, Figure 7b, and Figure 7c represent the
graphs of the absolute error between the exact and numerical reaction coefficient b without
a noise level (0 percent) and with noise levels (1 and 5 percent), respectively . Figure 6 gives
the exact solution to the initial condition. Figure 10a, Figure 10b, and Figure 10c represent
the graph of the reaction coefficient b without a noise level (0 percent) and with noise levels
(1 and 5 percent), respectively. Figure 8a, Figure 8b, and Figure 8c represent the graphs of
the absolute error between the exact and numerical reaction coefficient b without a noise
level (0 percent) and with noise levels (1 and 5 percent), respectively.

(a)

(b)

Figure 9. Cont.
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(c)

Figure 9. Numerical coefficient function reconstruction results for Example 3 with different noise
levels (a) p = 0; (b) p = 1; (c) p = 5.

(a)

(b)

Figure 10. Cont.
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(c)

Figure 10. Numerical initial condition function reconstruction results for Example 3 with different
noise levels (a) p = 0; (b) p = 1; (c) p = 5.

5. Conclusions

In this article, we were concerned with the simultaneous determination of the reaction
coefficient, which depends on space, and the initial condition of a hyperbolic problem with
degeneracy within the spatial domain from temporal integral observations. The existence,
uniqueness, and stability of the inverse problem are examined. The CG conjugate gradient
method has been proposed with adjoint and sensitivity problems for simultaneously
reconstruction of the two unknown functions by minimizing the objective least squares
functional. In the simulation part, we consider some numerical experiments in which we
reconstruct numerically the initial condition and potential for wave problems in one and
two dimensions.
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