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Abstract: It is well known that the permanent magnet synchronous motor (PMSM) exhibits chaotic
characteristics when its parameters fall within a certain range, which can lead to system instability.
This article proposes an adaptive control strategy for achieving the fixed-time chaotic stabilization of
PMSM, even in the presence of unknown parameters and perturbations. The developed controller is
synthesized by combining a parametric adaptive mechanism with a fixed-time control technique. The
stability analysis demonstrates that the system states under the developed controller can converge to
small neighborhoods around the equilibrium point within a fixed time. Thanks to the adoption of
the parametric adaptive mechanism, the developed controller is not only insensitive to unknown
parameters but also robust against perturbations. Finally, simulated studies are conducted to verify
and emphasize the effectiveness of the developed control strategy.

Keywords: permanent magnet synchronous motor; chaotic stabilization; fixed-time control; adaptive
control

MSC: 34C28; 37D45; 93C40

1. Introduction

Permanent magnet synchronous motors (PMSMs) play a crucial role in various indus-
trial applications. It is well-known that PMSMs can exhibit chaotic behavior when their
parameters fall within a certain range, which may lead to system instability. Ensuring
the safe operation of PMSMs requires the significant consideration of chaotic stabiliza-
tion [1–3]. Chaotic systems exhibit irregular and unpredictable dynamic behavior, which
is highly insensitive to initial conditions. To control or manipulate chaotic systems, two
main approaches are commonly used. The first approach involves using feedback control
techniques to regulate the system states from chaos to order. The second approach involves
estimating the system states using filtering techniques and then utilizing these estimates
for regulation. The chaotic stabilization of PMSMs falls under the first approach, where
appropriate feedback control is added to achieve the desired behavior. Various methods
have been extensively investigated for chaotic control, including adaptive control [4–6],
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backstepping control [7–14], sliding mode control [15–22], iterative learning control [23],
and intelligent control [24–35].

Notably, most of the above controllers can only achieve asymptotic stabilization or, at
best, exponential stabilization. In contrast, finite-time control can ensure that the system
states stabilize to zero or small neighborhoods around zero within a bounded settling
time. Finite-time control is mainly designed based on either the homogeneous system
theory [36] or the finite-time Lyapunov stability theory [37]. Finite-time controllers have
been utilized for the stabilization of chaotic systems in [38–46]. In [47], a finite-time adaptive
control scheme was implemented for the chaotic stabilization of PMSM with uncertain
parameters. Moreover, ref. [48] developed a terminal sliding mode controller for the
finite-time synchronization of fractional-order PMSM.

However, finite-time control has the disadvantage of having the settling time heavily
determined by the initial system states, which limits its practical application. Fortunately,
fixed-time control can overcome this weakness, as its settling time is bounded and in-
dependent of the initial system states. Fixed-time control is primarily designed based
on the bilimit homogeneous system theory [49] or the fixed-time Lyapunov stability the-
ory [50,51]. Fixed-time controllers have been developed for the stabilization of chaotic
systems in [52–57]. For instance, ref. [58] proposed a fixed-time adaptive control approach
for the stabilization of the Lorenz system, while a similar controller was applied to the
stabilization and synchronization of hyperchaotic Lü systems in [59]. However, these
studies [58,59] did not consider perturbations, and the performance of the controllers in
the presence of perturbations cannot be guaranteed.

Inspired by the aforementioned content, in this article, we propose an adaptive control
strategy for achieving the fixed-time chaotic stabilization of PMSM in the presence of
unknown parameters and perturbations. The developed controller is a combination of the
parametric adaptive mechanism and fixed-time control technique. The major contributions
of this work are two-fold.

• The developed controller is designed within the fixed-time control framework. Stabil-
ity analysis demonstrates that the developed controller can ensure the system states
stabilize within a fixed time to small neighborhoods around the equilibrium point.

• The parametric adaptive mechanism is incorporated into the developed controller
to estimate the unknown parameters and perturbations, respectively. Unlike the
controllers in [58,59], this design ensures that the developed controller is not only
insensitive to unknown parameters but also robust against perturbations.

The remainder of this paper is organized as follows: Section 2 describes the problem
and presents some preliminaries. Section 3 presents the main results. Section 4 conducts
the simulated studies. Finally, Section 5 summarizes the main conclusions.

2. Preliminaries and Problem Description
2.1. Preliminaries

The following lemmas can support to obtain the main results.

Lemma 1 (Ref. [51]). Consider the nonlinear system:

.
x = f (x), x(0) = 0, x ∈ Rn, (1)

where f (·) is a continuous function vector and R stands for the set of real numbers. If there is
a positive definite function V(x), such that

.
V(x) ≤ −ρ1Vp(x)− ρ2Vq(x) + ∆, where ρ1 > 0,

ρ2 > 0, 0 < p < 1, q > 1, and ∆ > 0, then system (1) is practically fixed-time stable and V(x)
can stabilize to the following small neighborhood about zero:

V(x) ≤ min

{(
∆

ρ1(1− ε)

) 1
p
,
(

∆
ρ2(1− ε)

) 1
q
}

, (2)
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where 0 < ε < 1, in fixed time Tc ≤ 1
ρ1ε(1−p) +

1
ρ2ε(q−1) .

Lemma 2 (Ref. [60]). For x1 ∈ R, x2 ∈ R, p > 0, q > 0, ξ > 0, the following inequality is true:

|x1|p|x2|q ≤
p

p + q
ξ|x1|p+q +

q
p + q

ξ
− p

q |x2|p+q. (3)

Lemma 3 (Ref. [60]). For xi ∈ R, i = 1, 2, . . . , n, 0 < p ≤ 1, and q > 1, the following inequalities
are true: (

n

∑
i=1
|xi|
)p

≤
n

∑
i=1
|xi|p, n1−q

(
n

∑
i=1
|xi|
)q

≤
n

∑
i=1
|xi|q. (4)

2.2. Problem Description

Referring to [1,2], the PMSM system can be expressed as
.
id = −id + iqw,
.
iq = −iq − idw + γw,
.

w = σ
(
iq − w

)
,

(5)

where id is the quadrature-axis current, iq is the direct-axis current, w is the motor angu-
lar frequency, and γ and σ are the system parameters. When γ = 20 and σ = 5.46, the
PMSM system has the chaotic characteristics. The chaotic phenomena are illustrated
in Figure 1 with the initial states set as id(0) = 5, iq(0) = 1, and w(0) = −1. Let
.
id =

.
iq =

.
w = 0. It is easy to find that the PMSM system has three equilibrium points

O(0, 0, 0), E+
(

19,
√

19,
√

19
)

, and E−
(

19,−
√

19,−
√

19
)

.
The PMSM system in the presence of controls and perturbations can be described as

.
id = −id + iqw + u1 + d1,
.
iq = −iq − idw + γw + u2 + d2,
.

w = σ
(
iq − w

)
+ u3 + d3,

(6)

where u1, u2, and u3 are the control inputs and d1, d2, and d3 are the perturbations. The
parameters γ and σ and the perturbations d1, d2, and d3 are supposed to be unknown in
the control design.
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(c) projection on the YZ plane; (d) projection on the ZX plane.

The objective is to develop an appropriate controller such that the system states can
stabilize to the small neighborhoods about the specific equilibrium point in fixed time.

3. Main Results

The main results are provided in this section. First, the controller is developed for the
chaotic stabilization about the equilibrium point O(0, 0, 0). Then, the controllers for the
chaotic stabilization about the equilibrium points E+

(
19,
√

19,
√

19
)

and

E−
(

19,−
√

19,−
√

19
)

are designed in a similar way.

3.1. Chaotic Control about O(0, 0, 0)

Theorem 1. For PMSM system (6), if the fixed-time adaptive controller is developed as
u1 = −k11sigp(id)− k12sigq(id) + id − iqw− d̂1,
u2 = −k21sigp(iq

)
− k22sigq(iq

)
+ iq + idw− γ̂w− d̂2,

u3 = −k31sigp(w)− k32sigq(w)− σ̂
(
iq − w

)
− d̂3,

(7)

where k11 > 0, k12 > 0, k21 > 0, k22 > 0, k31 > 0, k32 > 0, 0 < p < 1, q > 1, γ̂, σ̂, d̂1, d̂2, and
d̂3 are the estimations of γ, σ, d1, d2, and d3, sigp(·) is defined as sigp(x) = |x|psgn(x), and the
parametric adaptive mechanism is provided as

.
γ̂ = −η11γ̂ + η12wiq,
.
σ̂ = −η21σ̂ + η22

(
iq − w

)
w,

.
d̂1 = −η31d̂1 + η32id,
.
d̂2 = −η41d̂2 + η42iq,
.
d̂3 = −η51d̂3 + η52w,

(8)

where η11 > 0, η12 > 0, η21 > 0, η22 > 0, η31 > 0, η32 > 0, η41 > 0, η42 > 0, η51 > 0, and
η52 > 0, then the system states can stabilize to the small neighborhoods about the equilibrium point
O(0, 0, 0) in fixed time.

Proof. The Lyapunov function is involved as

V =
1
2

i2d +
1
2

i2q +
1
2

w2 +
1

2η12
γ̃2 +

1
2η22

σ̃2 +
1

2η32
d̃2

1 +
1

2η42
d̃2

2 +
1

2η52
d̃2

3, (9)
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where γ̃, σ̃, d̃1, d̃2, and d̃3 are the estimation errors of γ̃ = γ− γ̂, σ̃ = σ− σ̂, d̃1 = d1 − d̂1,
d̃2 = d2 − d̂2, and d̃3 = d3 − d̂3. Evaluating the time differentiation of V yields

.
V = id

(
−id + iqw + u1 + d1

)
+ iq

(
−iq − idw + γw + u2 + d2

)
+ w

(
σ
(
iq − w

)
+ u3 + d3

)
− 1

η12
γ̃

.
γ̂− 1

η22
σ̃

.
σ̂− 1

η32
d̃1

.
d̂1 − 1

η42
d̃2

.
d̂2 − 1

η52
d̃3

.
d̂3.

(10)

Substituting the fixed-time adaptive controller (7) and the parametric adaptive mechanism
(8) into (10), we have

.
V = id

(
−k11sigp(id)− k12sigq(id) + d̃1

)
+ iq

(
−k21sigp(iq

)
− k22sigq(iq

)
+ γ̃w + d̃2

)
+w
(
−k31sigp(w)− k32sigq(w) + σ̃

(
iq − w

)
+ d̃3

)
− 1

η12
γ̃
(
−η11γ̂ + η12iqw

)
− 1

η22
σ̃
(
−η21σ̂ + η22w

(
iq − w

))
− 1

η32
d̃1

(
−η31d̂1 + η32id

)
− 1

η42
d̃2

(
−η41d̂2 + η42iq

)
− 1

η52
d̃3

(
−η51d̂3 + η52w

)
= −k11|id|p+1 − k12|id|q+1 − k21

∣∣iq
∣∣p+1 − k22

∣∣iq
∣∣q+1 − k31|w|p+1 − k32|w|q+1

+ η11
η12

γ̃γ̂ + η21
η22

σ̃σ̂ + η31
η32

d̃1d̂1 +
η41
η42

d̃2d̂2 +
η51
η52

d̃3d̂3.

(11)

It is not difficult to derive the following inequalities:

η11

η12
γ̃γ̂ ≤ − η11

2η12
γ̃2 +

η11

2η12
γ2, (12)

η21

η22
σ̃σ̂ ≤ − η21

2η22
σ̃2 +

η21

2η22
σ2, (13)

η31

η32
d̃1d̂1 ≤ −

η31

2η32
d̃2

1 +
η31

2η32
d2

1, (14)

η41

η42
d̃2d̂2 ≤ −

η41

2η42
d̃2

2 +
η41

2η42
d̃2

2, (15)

η51

η52
d̃3d̂3 ≤ −

η51

2η52
d̃2

3 +
η51

2η52
d2

3, (16)

Substituting the above inequalities into (11), we have

.
V = −k11|id|p+1 − k12|id|q+1 − k21

∣∣iq∣∣p+1 − k22
∣∣iq∣∣q+1 − k31|w|p+1 − k32|w|q+1

−
(

η11
4η12

γ̃2
) p+1

2 −
(

η11
4η12

γ̃2
) q+1

2 −
(

η21
4η22

σ̃2
) p+1

2 −
(

η21
4η22

σ̃2
) q+1

2

−
(

η31
4η32

d̃2
1

) p+1
2 −

(
η31

4η32
d̃2

1

) q+1
2 −

(
η41

4η42
d̃2

2

) p+1
2 −

(
η41

4η42
d̃2

2

) q+1
2

−
(

η51
4η52

d̃2
3

) p+1
2 −

(
η51

4η52
d̃2

3

) q+1
2

+ ∆,

(17)

where ∆ is defined as

∆ =
(

η11
4η12

γ̃2
) p+1

2
+
(

η11
4η12

γ̃2
) q+1

2 − η11
2η12

γ̃2 +
(

η21
4η22

σ̃2
) p+1

2
+
(

η21
4η22

σ̃2
) q+1

2

− η21
2η22

σ̃2 +
(

η31
4η32

d̃2
1

) p+1
2

+
(

η31
4η32

d̃2
1

) q+1
2 − η31

2η32
d̃2

1 +
(

η41
4η42

d̃2
2

) p+1
2

+
(

η41
4η42

d̃2
2

) q+1
2 − η41

2η42
d̃2

2 +
(

η51
4η52

d̃2
3

) p+1
2

+
(

η51
4η52

d̃2
3

) q+1
2 − η51

2η52
d̃2

3.

(18)
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Consider the item
(

η11
4η12

γ̃2
) p+1

2
+
(

η11
4η12

γ̃2
) q+1

2 − η11
2η12

γ̃2 in the above inequality. Two cases

are discussed in the sequel. For the case that η11
4η12

γ̃2 ≥ 1, we have

(
η11

4η12
γ̃2
) p+1

2
+

(
η11

4η12
γ̃2
) q+1

2
− η11

2η12
γ̃2 ≤

(
η11

4η12
γ̃2
) q+1

2
− η11

4η12
γ̃2. (19)

For the case that η11
4η12

γ̃2 < 1, recalling Lemma 2, we have

(
η11

4η12
γ̃2
) p+1

2
+

(
η11

4η12
γ̃2
) q+1

2
− η11

2η12
γ̃2 ≤

(
η11

4η12
γ̃2
) p+1

2
− η11

4η12
γ̃2 ≤ (1− p)p

p
1−p , (20)

where p = p+1
2 . Construct a compact set Θ1 satisfying Θ1 = { γ̃ ∈ R||γ̃| ≤ θ1}, where

θ1 > 0. Combining (19) and (20), we have the following inequality:

(
η11

4η12
γ̃2
) p+1

2
+

(
η11

4η12
γ̃2
) q+1

2
− η11

2η12
γ̃2 ≤ µ1, (21)

where µ1 is defined as

µ1 =


(1− p)p

p
1−p , θ1 < 2

√
η12
η11

,(
η11

4η12
θ2

1

) q+1
2 − η11

4η12
θ2

1 , θ1 ≥ 2
√

η12
η11

.
(22)

Likewise, the following inequalities can be easily derived:

(
η21

4η22
σ̃2
) p+1

2
+

(
η21

4η22
σ̃2
) q+1

2
− η21

2η22
σ̃2 ≤ µ2, (23)

(
η31

4η32
d̃2

1

) p+1
2

+

(
η31

4η32
d̃2

1

) q+1
2
− η31

2η32
d̃2

1 ≤ µ3, (24)

(
η41

4η42
d̃2

2

) p+1
2

+

(
η41

4η42
d̃2

2

) q+1
2
− η41

2η42
d̃2

2 ≤ µ4, (25)

(
η51

4η52
d̃2

3

) p+1
2

+

(
η51

4η52
d̃2

3

) q+1
2
− η51

2η52
d̃2

3 ≤ µ5. (26)

Substituting the above inequalities into (17) and recalling Lemma 3, we have

.
V ≤ −ρ1V

p+1
2 − ρ2V

q+1
2 + ∆, (27)

where ρ1, ρ2, and ∆ are defined as

ρ1 = min

{
2

p+1
2 k11, 2

p+1
2 k21, 2

p+1
2 k31,

(η11

2

) p+1
2 ,
(η21

2

) p+1
2 ,
(η31

2

) p+1
2 ,
(η41

2

) p+1
2 ,
(η51

2

) p+1
2

}
, (28)

ρ2 = 8
1−q

2 min

{
2

q+1
2 k12, 2

q+1
2 k22, 2

q+1
2 k32,

(η12

2

) q+1
2 ,
(η22

2

) q+1
2 ,
(η32

2

) q+1
2 ,
(η42

2

) q+1
2 ,
(η52

2

) q+1
2

}
, (29)

∆ = µ1 + µ2 + µ3 + µ4 + µ5 +
η11

2η12
γ2 +

η21

2η22
σ2 +

η31

2η32
d2

1 +
η41

2η42
d2

2 +
η51

2η52
d2

3. (30)
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By Lemma 1, the closed-loop system is practically fixed-time stable and V can stabilize to
the following small neighborhood about zero:

V ≤ min


(

∆
ρ1(1− ε)

) p+1
2

,

(
∆

ρ2(1− ε)

) q+1
2

, (31)

where 0 < ε < 1, in fixed time, Tc ≤ 2
ρ1ε(1−p) +

2
ρ2ε(q−1) . Recalling the definition of V,

it follows that all error variables id, iq, w, γ̃, σ̃, d̃1, d̃2, and d̃3 can stabilize to the small
neighborhoods about zero in fixed time. This completes the proof. �

3.2. Chaotic Control about E+
(

19,
√

19,
√

19
)

and E−
(

19,−
√

19,−
√

19
)

Similarly, the controllers for the chaotic stabilization about the equilibrium points
E+
(

19,
√

19,
√

19
)

and E−
(

19,−
√

19,−
√

19
)

are provided in Theorems 2 and
3, respectively.

Theorem 2. For PMSM system (6), if the fixed-time adaptive controller is developed as
u1 = −k11sigp(id − 19)− k12sigq(id − 19) + id − iqw− d̂1,
u2 = −k21sigp

(
iq −
√

19
)
− k22sigq

(
iq −
√

19
)
+ iq + idw− γ̂w− d̂2,

u3 = −k31sigp
(

w−
√

19
)
− k32sigq

(
w−
√

19
)
− σ̂

(
iq − w

)
− d̂3,

(32)

and the parametric adaptive mechanism is provided as

.
γ̂ = −η11γ̂ + η12w

(
iq −
√

19
)

,
.
σ̂ = −η21σ̂ + η22

(
iq − w

)(
w−
√

19
)

,
.
d̂1 = −η31d̂1 + η32(id − 19),
.
d̂2 = −η41d̂2 + η42

(
iq −
√

19
)

,
.
d̂3 = −η51d̂3 + η52

(
w−
√

19
)

,

(33)

then the system states can stabilize to the small neighborhoods about the equilibrium point
E+
(

19,
√

19,
√

19
)

in fixed time.

Theorem 3. For PMSM system (6), if the fixed-time adaptive controller is developed as
u1 = −k11sigp(id − 19)− k12sigq(id − 19) + id − iqw− d̂1,
u2 = −k21sigp

(
iq +
√

19
)
− k22sigq

(
iq +
√

19
)
+ iq + idw− γ̂w− d̂2,

u3 = −k31sigp
(

w +
√

19
)
− k32sigq

(
w +
√

19
)
− σ̂

(
iq − w

)
− d̂3,

(34)

and the parametric adaptive mechanism is provided as

.
γ̂ = −η11γ̂ + η12w

(
iq +
√

19
)

,
.
σ̂ = −η21σ̂ + η22

(
iq − w

)(
w +
√

19
)

,
.
d̂1 = −η31d̂1 + η32(id − 19),
.
d̂2 = −η41d̂2 + η42

(
iq +
√

19
)

,
.
d̂3 = −η51d̂3 + η52

(
w +
√

19
)

,

(35)
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then the system states can stabilize to the small neighborhoods about the equilibrium point
E−
(

19,−
√

19,−
√

19
)

in fixed time.

Remark 1. It is worth noting that perturbations were not considered in [58,59], and as a result, the
performance of the controllers in those studies in the presence of perturbations cannot be guaranteed.
In contrast, in this article, we have embedded the parametric adaptive mechanism (Equation (8))
to estimate the unknown parameters and perturbations. This design ensures that the developed
controller is not only insensitive to unknown parameters, but also robust against perturbations.

Remark 2. The dynamic behavior of chaotic systems, such as the PMSM system, is irregular,
unpredictable, and highly insensitive to initial conditions. Due to this inherent nature, achieving
complete stabilization of chaotic systems is impossible. In fact, the developed controller cannot
stabilize the attractor itself but can only guide the system states to achieve the desired behavior.

4. Simulated Studies

Simulated studies are carried out to demonstrate the developed control strategy in this
section. Without loss of generality, we take account of the chaotic stabilization about the
equilibrium point O(0, 0, 0). The following simulations are deployed though two scenarios.
Scenario 1 is the performance comparisons and Scenario 2 is the fixed-time stability tests.

4.1. Performance Comparisons

In Scenario 1, the performance comparisons are made to show the advantages of the
developed controller. In the simulations, the parameters are set as γ = 20 and σ = 5.46, and
the perturbations are given as d1 = 0.2 sin(0.8t), d2 = 0.3 cos(0.9t), and d3 = 0.2 sin(0.9t).
The parameters and perturbations are supposed to be unknown in the control design. The
initial system states are chosen as id(0) = 1, iq(0) = 3, and w(0) = −2.

Besides the developed controller (7), the existing linear feedback controller is also
utilized for comparisons, which is presented as

u1 = −k1id,
u2 = −k2iq,
u3 = −k3w,

(36)

where k1 > 0, k2 > 0, and k3 > 0.
In the simulations, the parameters of the developed controller (7) are made as k11 = 10,

k12 = 10, k21 = 10, k22 = 10, k31 = 10, k32 = 10, p = 9/11, q = 13/11, η11 = 0.01, η12 = 1,
η21 = 0.01, η22 = 1, η31 = 0.01, η32 = 1, η41 = 0.01, η42 = 1, η51 = 0.01, and η52 = 1.
The initial values of the adaptive parameters are set as γ̂(0) = 18, σ̂(0) = 5, d̂1(0) = 0,
d̂2(0) = 0, and d̂3(0) = 0. The parameters of the existing controller (36) are made as k1 = 12,
k2 = 12, and k3 = 12.

The simulation results of Scenario 1 are given in Figures 2–4. Specifically, Figure 2
shows the time history of the system states. It is desirable that both the developed and
existing controllers can fulfill the chaotic stabilization successfully. Quantitatively, the
steady-state state errors id, iq, and w under the developed controller are within the ranges
of ±0.008, ±0.016, and ±0.01, and under the existing controller are within the ranges of
±0.02, ±0.06, and ±0.04. The existing controller can attain the much larger steady-state
state errors than the developed controller. This implies that the stabilization performance
of the developed controller is better than that of the existing controller in terms of higher
control accuracy. The time history of the control inputs is presented in Figure 3. The control
inputs under the existing controller even have a larger magnitude than those under the
developed controller. This means that comparisons are quite fair or at least not partial
to the developed controller. Figure 4 gives the time history of the adaptive parameters.
These adaptive parameters are changing smoothly with time. Owing to the utilization of
the parametric adaptive mechanism, the developed controller is not only insensitive to
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unknown parameters but also robust against perturbations. By contrast, the disturbance
rejection property of the existing linear feedback controller is really poor.
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4.2. Fixed-Time Stability Tests

In Scenario 2, the tests with different initial system states are provided to exam-
ine the fixed-time stability capability of the developed controller. Three groups of ini-
tial system states are considered. In Group 1, the initial system states are chosen as
id(0) = 1, iq(0) = 3, and w(0) = −2. In Group 2, the initial system states are chosen as
id(0) = −1.5, iq(0) = −0.5, and w(0) = 1. In Group 3, the initial system states are chosen
as id(0) = 3, iq(0) = −2.5, and w(0) = 2.5. In Group 4, the initial system states are chosen
as id(0) = −2.5, iq(0) = 2, and w(0) = 0.5. The perturbations and parameters of the
developed controller (7) are chosen in the same way as those in Scenario 1.

The simulation results of Scenario 2 are provided in Figures 5 and 6. It is clearly
seen that the developed controller can realize the chaotic stabilization within the similar
settling time Tc = 0.25 s in the presence of different initial system states. This means that
the settling time is bounded and particularly the upper bound is irrelevant to the initial
system states. Therefore, it can be derived that the developed controller has the fixed-time
stability capability.
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5. Conclusions

This article addresses the fixed-time chaotic stabilization of PMSM subject to unknown
parameters and perturbations by developing an adaptive control strategy. The developed
controller is synthesized by combining it with the parametric adaptive mechanism under
the fixed-time control framework. Stability analysis demonstrates that the system states
under the developed controller can stabilize within fixed time to small neighborhoods
around the equilibrium point. A distinctive advantage of the developed controller is its
insensitivity to unknown parameters and robustness against perturbations. Finally, the
developed control strategy is verified and highlighted through simulated studies.
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