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Abstract: This paper proposes a new two-dimensional discrete hyperchaotic system and utilizes
it to design a pseudo-random number generator (PRNG) and an efficient color image encryption
algorithm. This hyperchaotic system has very complex dynamic properties and can generate highly
random chaotic sequences. The complex hyperchaotic characteristics of the system are confirmed via
bifurcation diagram, chaotic attractor, Lyapunov exponents, correlation analysis, approximate entropy
and permutation entropy. Compared with some traditional discrete chaotic systems, the new chaotic
system has a larger range of chaotic parameters and more complex hyperchaotic characteristics,
making it more suitable for application in information encryption. The proposed PRNG can generate
highly random bit sequences that can fully pass all NIST testing items. The proposed color image
encryption algorithm achieves cross-channel permutation and diffusion of pixels in parallel. These
strategies not only greatly improve the encryption speed of color images, but also enhance the security
level of cipher images. The simulation experiments and security analysis results show that the
algorithm has strong robustness against differential attacks, statistical attacks and interference attacks,
and has good application potential in real-time secure communication applications of color images.

Keywords: color image encryption; hyperchaotic map; PRNG; cross-channel permutation
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1. Introduction

With the development of computer vision and deep neural networks, a large amount
of image data are disseminated on social networks. If these image data are not protected
during transmission, this will easily lead to the disclosure of user privacy. From the
perspective of confidentiality and security, it is worth studying how to protect image
data [1]. Image encryption is an effective method to protect image data. Image data
generally take up more space than character data, especially high-resolution color images,
which consist of red, green and blue color channels. Therefore, they contain a large number
of redundant pixels. So, for color image data, a traditional encryption algorithm such
as RSA is unable to meet the efficient encryption of color image data [2–4]. However, in
order to improve the time efficiency of the image encryption algorithm, there is usually
an increase in the risk of the cryptographic algorithm being cracked. So, the question of
how to improve the encryption efficiency under the premise of ensuring the security and
reliability of the image encryption algorithm is a hot research issue [5–7].

Many novel image encryption algorithms have been proposed in recent years [8–10].
Among them, the image encryption algorithm using a chaotic system to generate a key
sequence has attracted the attention of more and more researchers [11–13]. Due to the ex-
treme sensitivity of chaotic systems to initial values and the high randomness of sequences

Mathematics 2023, 11, 3171. https://doi.org/10.3390/math11143171 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143171
https://doi.org/10.3390/math11143171
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1949-9588
https://orcid.org/0000-0003-2740-8025
https://doi.org/10.3390/math11143171
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143171?type=check_update&version=1


Mathematics 2023, 11, 3171 2 of 23

generated by chaotic systems, image encryption algorithms based on chaotic systems have
been widely used [14–16]. Chaotic systems are usually referred to as mathematical models,
which are classified into continuous-time differential equation systems and discrete-time it-
erative mapping systems [17–19], each of which has its own advantages and disadvantages.
Generally speaking, a continuous-time differential equation system can only show a chaotic
state in three dimension and above. However, a discrete-time iterative mapping system can
show a chaotic state in one dimension. High-dimensional chaotic systems have a higher
chaotic performance than low-dimensional chaotic systems. From the point of view of
cryptography, this means that high-dimensional chaotic cryptosystems are more difficult
to be cracked by attackers. However, the key sequence generated by a high-dimensional
chaotic cryptosystem takes longer time and is difficult to be physically realized. In gen-
eral, a low-dimensional chaotic system is easier to implement and saves more time than a
high-dimensional chaotic system, and it can better encrypt a large amount of image stream
data in real time. Therefore, the design and implementation of low-dimensional chaotic
cryptosystems have attracted more and more researchers’ attention [20–22]. In 2023, Lai
et al. [16] proposed a high-sensitive cross-channel color image encryption algorithm using
a two-dimensional chaotic map. In 2023, Zhou et al. [18] proposed a new two-dimensional
discrete chaotic encryption system based on S-box. In 2022, Yang et al. [15] proposed an
efficient color image encryption algorithm based on 2D sine-logistic–Gaussian coupled
chaos and a multi-objective optimized S-box. In 2022, Elghandour et al. [14] proposed a
new cryptographic algorithm using a two-dimensional piecewise smooth nonlinear chaotic
map. In 2022, Erkan et al. [23] proposed an image encryption algorithm using a novel 2D
chaotic map, which is based on Euler and Pi numbers. Although two-dimensional discrete
chaotic systems are more convenient than high-dimensional continuous chaotic systems
when applied to cryptographic algorithms, some existing two-dimensional discrete chaotic
systems have the problems of being narrow and having a discontinuous chaotic behavior
parameter interval. Such a consequence is that the key space of the cryptographic algorithm
is small, which increases its risk of being cracked. Therefore, it is necessary to construct
a new two-dimensional chaotic system with a better chaotic performance. Considering
that the most prominent feature of a color image is the large amount of data, the time
complexity of an encryption algorithm is worthy of attention for color image encryption.
Therefore, a focus of this article is to reduce the time cost of encryption algorithms.

Based on the reasons above, a new 2D hyperchaotic map was constructed and applied
in random number generation and color image encryption. The main contributions of this
paper are as follows:

(1) A new two-dimensional hyperchaotic map with a wide range of chaotic parameters
and strong chaotic performance is proposed.

(2) An efficient PRNG is designed, which can generate highly random bit sequences and
can be used in various applications.

(3) A new image encryption scheme with cross-channel parallel permutation and diffusion
(CCPPD) is proposed, which performs pixel scrambling and diffusion simultaneously,
and the shuffling of pixel positions is across color channels. This strategy can improve
the security and speed of encryption. The security of the image encryption scheme is
verified using a large number of experiments and security analysis.

The rest of this paper is organized as follows. In Section 2, a new 2D hyperchaotic
map is proposed, and its complex nature is analyzed and demonstrated. In Section 3, an
efficient PRNG is designed and tested. A novel color image encryption algorithm based
on the new 2D hyperchaotic map is proposed in Section 4. The experimental results and
security analysis of the encryption scheme are provided in Section 5. Finally, the conclusion
is given in Section 6.

2. The New 2D Hyperchaotic Map

This section presents the mathematic model of the 2D hyperchaotic map and numer-
ically analyzes its dynamical complex nature in terms of attractor trajectory, bifurcation
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diagrams and Lyapunov exponent (LE), approximate entropy (ApEn), permutation entropy
(PeEn), which demonstrates that it is the preferred system in pseudo-random number
generator (PRNG) design, and image encryption application.

2.1. Mathematic Model of the 2D Hyperchaotic Map

The proposed new system is a 2D discrete map consisting of the square of the sine
function structure. Its mathematical model is expressed as follows:{

xn+1 = sin2(aπ/xn + byn)
yn+1 = sin2(bπyn + axn)

(1)

where a and b are the controlling parameters of the system. xn and yn are the state variables
corresponding to the n-th discrete time point, while xn+1 and yn+1 are the state variables
corresponding to the (n + 1)-th discrete time point. If xn ∈ R and yn ∈ R, then xn+1 ∈ R
and yn+1 ∈ R. Equation (1) is a mapping of R→ R.

2.2. Bifurcation Diagram and Trajectory

A bifurcation diagram can visually show the evolution of state variables with dif-
ferent control parameters, which, in turn, reflects the parameter range where the system
exhibits chaotic behavior. Figure 1 shows the bifurcation of variables xn and yn with the
control parameters a in the range [0, 40], and b = 30 for the system with the initial state
(x0, y0) = (0.2, 0.3). From Figure 1, one can see that variables xn and yn can be spread over the
entire value range, indicating that the 2D map is of ergodicity and has a chaotic characteris-
tic. The trajectory of the chaotic attractor can reveal the behavior of the nonlinear system.
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Figure 1. The bifurcation diagram of system (1): (a) bifurcation of variable xn versus the control
parameters a; (b) bifurcation of variable yn versus the control parameters a.

Figure 2 depicts the phase diagram of the system with the initial conditions of
(x0, y0) = (0.2, 0.3) and the control parameters a = 30 and b = 20.

2.3. Lyapunov Exponent

The Lyapunov exponent (LE) is a characteristic quantity describing the sensitive
dependence of nonlinear systems on the initial condition. If there is a positive Lyapunov
exponent in a system, it means that the system is chaotic. If there are two or more positive
Lyapunov exponents, then the system is said to be a hyperchaotic system, which indicates
higher randomness and more complex dynamical behavior than a chaotic system. The LE
of a one-dimensional discrete iterative mapping system xn+1 = f (xn) can be calculated using

LE = lim
N→∞

1
N

N−1

∑
i=0

ln
∣∣ f ′(xi)

∣∣ (2)
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where f ′(xi) represents the value of the derivative of the iterated function f (xi) at the i-th
time point, and N is the number of iterations of the system under certain fixed control
parameters. The n-dimensional discrete iterative system (n ≥ 1) has n Lyapunov exponents.
The QR decomposition method is commonly used to calculate n Lyapunov exponents. For
details of the QR decomposition algorithm, refer to [24]. Figure 3 intuitively displays a
Lyapunov exponent graph of three 2D chaotic maps, the classical Hénon map, the recently
proposed 2D-SLG map [15] and the new 2D map proposed in this paper. From Figure 3a, it
can be seen that the Hénon map has only one positive Lyapunov exponent and it is very
small. From Figure 3b, it can be seen that the 2D-SLG map has two positive Lyapunov
exponents when b =−0.5, c = 26.9 and a varies from 0 to 20, but the exponents of this system
are smaller than the exponent values of the new 2D map. Figure 3c shows the variation of
the Lyapunov exponents with respect to the variation of parameter a and b = 40. Figure 3d
shows the variation of the Lyapunov exponents with respect to the variation of parameters
b and a = 30. From the results in Figure 3, it can be seen that the proposed system has two
positive Lyapunov exponents, thus confirming that the system is hyperchaotic. Moreover,
the parameter range for the hyperchaotic phenomena is very large. The above results
indicate that the two-dimensional hyperchaotic system proposed in this paper has better
chaotic characteristics.
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xn, yn.
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2.4. Correlation Analysis

The correlation coefficient can describe the correlation of time series. The autocorrela-
tion of time series with good randomness should have a form similar to the δ function, and
the cross-correlation of time series with good randomness should be zero. The autocorrela-
tion coefficient at lag k of a series {x(i), i = 1, 2, . . . , N} can be calculated as follows:

autocorr(k) =

N−|k|
∑

i=1
(x(i)− x)(x(i + |k|)− x)

N−|k|
∑

i=1
(x(i)− x)2

(3)

where x is the average value of the series {x(i)}.
The cross-correlation of the two series {x(i)} and {y(i)} of length N at lag k is defined

as follows:

crosscorr(k) =

N−|k|
∑

i=1
(x(i)− x)(y(i + |k|)− y)√

N−|k|
∑

i=1
(x(i)− x)2

√
N−|k|

∑
i=1

(y(i)− y)2

(4)

where x and y are the average values of the series {x(i)} and {y(i)}, respectively.
For system (1), the autocorrelation coefficient curve of the chaotic sequence {x(i)} gener-

ated using the system parameters a = 30, b = 40 and the initial state value
(x0, y0) = (0.321, 0.987) is shown in Figure 4a, and the cross-correlation coefficient curve of
the two chaotic sequences {x(i)} and {y(i)} generated using a = 30, b = 40 and
(x0, y0) = (0.321, 0.987) is shown in Figure 4b. Figure 4 shows that the time series generated
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by the system has good randomness, and that its autocorrelation and cross-correlation
coefficients meet the requirements of random sequences.
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2.5. Approximate Entropy Analysis

The approximate entropy (ApEn) is another important indicator used to measure the
complexity of time series. The ApEn describes the probability of generating new patterns
in a sequence with the increase in the embedding dimension. For a detailed description of
the algorithm for calculating the approximate entropy of time series, please refer to [25].

Figure 5 shows the ApEn values of the chaotic systems. Figure 5a plots the ApEn of the
2D-SLG chaotic map when b = −0.5, c = 26.9 and a varies from 0 to 20. Figure 5b plots the
ApEn of the proposed new hyperchaotic map when b = 40 and a varies from 0 to 50. From
Figure 5, one can see that system (1) has larger approximate entropy values and a larger
parameter change range a > 0. For the proposed 2D system, the average ApEn value of {xi}
is 1.950, and the average ApEn value of {yi} is 1.9493, while for the 2D-SLG chaotic map for
the proposed 2D system, the average ApEn value of {xi} is 1.9273, and the average ApEn
value of {yi} is 1.8782. It can be seen that the proposed 2D hyperchaotic system has a better
chaotic performance.
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2.6. Permutation Entropy Analysis

Permutation entropy (PeEn) is another important method used for analyzing the
complexity of time series, which can verify the degree to which the chaotic sequence
generated by the proposed mapping approaches randomness. More complex sequences
have a larger PeEn, which is more applicable in image encryption. Figure 6 shows the PeEn
volatility of the chaotic maps under parameter changes. Figure 6a shows the PeEn volatility
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of the 2D-SLG system with the system parameters b = −0.5 and c = 26.9. Figure 6b shows
the PeEn volatility of the proposed system, where the system parameter b is fixed to 40. The
PeEn of the proposed 2D system fluctuates stably within the region [1.870, 1.880], with an
average value of 1.8770 for the x sequence and 1.8769 for the y sequence, indicating that the
mapping has good and stable sequence complexity. The PeEn of the 2D-SLG chaotic map
fluctuates stably within the region [1.6757, 1.8804], with an average value of 1.8742 for the x
sequence and 1.8764 for the y sequence. The results indicate that the average PeEn value of
the 2D hyperchaotic system in this paper is slightly higher than the average PeEn value of
the 2D-SLG system, once again proving that the proposed new system in this paper has a
better chaotic performance.
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3. The Proposed Pseudo-Random Number Generator and Its Performance Test

Random number generators (RNG) include true random number generators (TRNG)
and pseudo-random number generators (PRNG). TRNGs are based on physical processes,
while PRNGs generate sequences that are computed from an initial seed value. A common
requirement of PRNGs is that they possess good statistical properties, meaning their
output approximates a sequence of true random numbers [26]. In this section, we describe
the proposed pseudo-random number generator, which uses the proposed 2D discrete
hyperchaotic map, based on the IEEE 754 double-precision floating-point number standard.

3.1. Algorithm of the Pseudo-Random Number Generator

The proposed pseudo-random number generator (PRNG) uses parameters a, b, x0
and y0 of the hyperchaotic map. The pseudo-random number sequences are binary bit
sequences, which facilitates testing the randomness of the sequence using NIST software.
The other relevant parameters are as follows: m represents the number of groups in the
binary sequence (its recommended value is 1000), M represents the total length of the
binary sequence composed of all group sequences and L represents the length of the chaotic
sequence that should be generated. The algorithm of the proposed pseudo-random number
generator is described as follows.

Step 1: Initialize parameters a, b, x0, y0 and m = 1000. M = m × 106, L = M/8.
Step 2: The chaotic system (1) is iterated L times to generate chaotic sequences X and

Y with a length of L.
Step 3: Store each double-precision real number in a chaotic sequence using the IEEE

754 double-precision floating-point number standard and form a 64-bit binary string using
the binary numbers in memory in ascending order. Divide the 64-bit binary string into
eight equal groups, converting each group into an unsigned integer. In this way, each real
number in the chaotic sequence is converted into eight unsigned integers. The chaotic real
number sequence with a length of L is transformed into an integer sequence with a length
of 8L, say, IntX = {IntX(i), i = 1, 2, . . . , 8L}, IntX(i)∈{0, 1, 2, . . . , 255}.



Mathematics 2023, 11, 3171 8 of 23

Step 4: Take the fifth integer from the group of integers corresponding to the real
number of each chaotic sequence to form a new integer sequence. This operation is
equivalent to starting from the fifth number in the sequence of IntX and sampling in steps
of eight to obtain a sub-sequence of length L, say, xb = {xb(i), i = 1, 2, . . . , L} = IntX (5:8:end),
xb(i)∈{0, 1, 2, . . . , 255}.

Step 5: Save the sequence xb as a binary file f.bin. The binary sequence in the file f.bin
is the output result of the pseudo-random number generator.

The details of the algorithm are shown in Algorithm 1.

Algorithm 1 Generating the chaotic secret key streams

Input: The security keys (x0, y0, a, b) and the number of groups in the binary sequence m.
1: Initialization: Set values of (x0, y0, a, b), m = 1000, L = m × 106/8
2: [X, Y] = HCS(x0, y0, a, b, L); //HCS() is a function to generate chaotic sequences
3: Intx = typecast(swapbytes(X),‘uint8’); //Get the integer sequence Intx
4: xb = Intx(5:8:end); //Obtain the sub-sequence xb of length L
5: FID = fopen(‘D:\NIST\f.bin’,‘w’); fwrite(FID,xb,‘uint8’); //Save the sequence xb to a file
Output: The binary sequence in the file f.bin of the PRNG

3.2. NIST SP800-22 Test of the PRNG

The NIST (National Institute of Standards and Technology, USA) SP800-22 is a standard
test software package to evaluate the randomness performance of time series. It requires
multiple sequences (recommend 1000 sequences) to be tested, and the length of each
sequence is 1,000,000 bits. There are two performance indicators, the p-value and pass
rate, that are employed to measure the stochastic performance of time series. The default
significant level α = 0.01. The confidence interval that is used to test the pass rate is defined
as 1− α± 3

√
α(1− α)/m, where m is the number of groups of bit sequences. When α = 0.01

and m = 1000, the confidence interval is 1 − 0.01 ± 3
√

0.01× 0.99/1000 = [0.9806, 0.9994],
which indicates that the minimum passing rate must be 98.06%.

To test the stochastic performance of sequences generated by the proposed PRNG
based on the hyperchaotic map, we generated 1000 chaotic real number sequences, each
with a length of 1,000,000/8 real numbers. The parameters are set as a = 40, b = 30,
x0 = 0.134 and y0 = 0.987. We generated a binary bit sequence using the chaotic sequence
X of the algorithm in Section 3.1, and then tested the randomness of the binary sequence
using the NIST software package. The NIST statistical test results are shown in Table 1.
From the test results, it can be seen that each p-value is larger than 0.0,1 and the minimum
p-value is 0.016488. Each pass rate is larger than 98.06%, and the minimum pass rate for
each statistical test is 98.1%.

Table 1. NIST statistical test results for the PRNG.

The Statistical Test Item Name p-Value Pass Rate Results

Frequency (Monobit) 0.660012 993/1000 = 99.3% Pass
Block Frequency (m = 128) 0.417219 993/1000 = 99.3% Pass
Cumulative Sums (Forward) 0.08151 994/1000 = 99.4% Pass
Cumulative Sums (Reverse) 0.089301 990/1000 = 99.0% Pass
Runs 0.263572 993/1000 = 99.3% Pass
Longest Run of Ones 0.348869 991/1000 = 99.1% Pass
Rank 0.769527 992/1000 = 99.2% Pass
FFT 0.263572 993/1000 = 99.3% Pass
Non-Overlapping Templates * 0.016488 989/1000 = 98.9% Pass
Overlapping Templates 0.825505 989/1000 = 98.9% Pass
Universal 0.643366 991/1000 = 99.1% Pass
Approximate Entropy 0.496351 990/1000 = 99.0% Pass
Random Excursions * 0.331257 623/627 = 99.4% Pass
Random Excursions Variant * 0.080439 623/627 = 99.4% Pass
Serial Test 1 0.213309 990/100 = 99.0% Pass
Serial Test 2 0.181557 990/100 = 99.0% Pass
Linear Complexity 0.19692 991/100 = 99.1% Pass

* Note: The non-overlapping template, random excursions and random excursions variant contain 148, 8 and 18
sub-tests, respectively, and the results listed in Table 1 are the worst results among the multiple sub-tests (i.e., the
result with the lowest corresponding p-value).
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4. The Proposed Color Image Encryption and Decryption Scheme

The color image encryption scheme consists of the following three procedures: gen-
erating chaotic secret key streams, the first round of cross-channel parallel permutation
and diffusion (CCPPD) and the second round of cross-channel parallel permutation and
diffusion. Figure 7 shows the encryption structure of the proposed color image encryption
scheme. The detailed descriptions of each step are given in Sections 4.1–4.3 below.
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4.1. Chaotic Secret Key Streams Generation

The secret key of the encryption scheme consists of four double-precision floating-point
numbers of (x0, y0, a, b) and an 8-bit unsigned integer c0. Each double-precision floating-
point number contains 64 bits, and the 8-bit unsigned integer c0 has 8 bits. Therefore, the
secret key has a length of 264 bits of binary data. The structure of the secret key is shown
in Figure 8, where 0 < x0 < 1, 0 < y0 < 1, a > 0, b > 0 and c0∈{0, 1, 2, . . . , 255}. The four
double-precision real numbers {x0, y0, a, b} are used as the initial state values and system
parameters of the 2D hyperchaotic system. Chaotic secret key streams are generated by
using the above five secret key parameters, and the steps of generating chaotic secret key
streams are as follows.
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Step 1: Set the initial secret key parameters of {x0, y0, a, b, c0}. Obtain the pixel row
number M and column number N of one color channel in the color image to be encrypted,
and calculate L = M × N.

Step 2: Iterate system (1) for (L + 500) times with initial state {x0, y0} and system
parameters {a, b} to generate two chaotic real number sequences X and Y. Remove the first
500 state values from the sequence, and obtain the final chaotic sequences X and Y using
the length of L.

Step 3: Generate two integer sequences r and s by sorting sequences X and Y. Here, r
will be a shuffled arrangement of the integer sequence {1, 2, . . . , M}, satisfying the condition
r(i) 6= r(j) if i 6= j, and s will be a shuffled arrangement of the integer sequence {1, 2, . . . , N},
satisfying the condition s(i) 6= s(j) if i 6= j.

Step 4: Generate a chaotic integer secret key matrix K by X. Here, K will be an M × N
matrix, and K(i, j)∈{0, 1, 2, . . . , 255}, i = 1, 2, . . . , M, j = 1, 2, . . . , N.

Step 5: Generate a 3D chaotic integer secret key matrix t by Y. Here, t will be an
M × N × 3 matrix, and t(i, j, k)∈{1, 2, 3}, i = 1, 2, . . . , M, j = 1, 2, . . . , N, k = 1, 2, 3.

The details of the algorithm are shown in Algorithm 2.
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Algorithm 2 Generating the chaotic secret key streams

Input: The row number M, column number N, and security keys (x0, y0, a, b).
1: Initialization: r = 1:M; s = 1:N; K = zeros (M, N); t = zeros (M, N, 3).
2: [X, Y] = HCS(x0, y0, a, b, M × N); //HCS() is a function to generate chaotic sequences.
3: [~, r] = sort (X(1:M); //sort() is a function to sort the sequence X (1:M)
4: [~, s] = sort (Y(1:N)); //sort() is a function to sort the sequence Y (1:N)
5: cs = reshape (X, M, N); K = mod(floor(cs × 106), 256);
6: cs = reshape (Y, M, N); t(:, :, 1) = mod(floor(cs × 106), 3) + 1;
7: t (:, :, 2) = mod (t (:, :, 1) + 1, 3) + 1; t (:, :, 3) = mod (t (:, :, 2) + 1, 3) + 1;
Output: The chaotic secret key matrix: r, s, K, t.

4.2. The First Round of Cross-Channel Parallel Permutation and Diffusion

The core idea of CCPPD is to change the positions and values of the pixels simul-
taneously, and the change in position is across color channels. The implementation of
cross-color channel permutation is based on the three integer matrices r, s and t generated
previously. Specifically, the position is changed according to the following corresponding
relationship: the pixels at the i-th row and j-th column of the k-th color channel in the
encrypted image come from the pixels at the r(i) row, s(j) column and t(i, j, k) color channel
of the image to be encrypted. Suppose that the original plaintext image is represented by P,
and the ciphertext image obtained from the first round of encryption is represented by C.
Figure 9 depicts the specific details of this idea by using a small 3 × 4 × 3 color image. The
general permutation relationship is as follows: C(i, j, k)← P(r(i), s(j), t(i, j, k)).
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The specific values of r, s and t in Figure 9 are r = [3, 1, 2], s = [ 2, 1, 4, 3] and

t(:, :, 1) =

 2 2 1 3
2 2 2 3
3 3 3 3

, t(:, :, 2) =

 1 1 3 2
1 1 1 2
2 2 2 2

, t(:, :, 3) =

 3 3 2 1
3 3 3 1
1 1 1 1

.

For example, C(1, 1, 1) = 18← P(r(1), s(1), t(1, 1, 1)) = P(3, 2, 2) = 18; C(1, 3, 2) = 36←
P(r(1), s(3), t(1, 3, 2)) = P(3, 4, 3) = 36; C(1, 4, 3) = 9← P(r(1), s(4), t(1, 4, 3)) = P(3, 3, 1) = 9.

In our proposed color image encryption scheme, the key operational statements of the
algorithm that simultaneously implement the pixel position cross-channel permutation
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and pixel value transformation, and introduce the diffusion mechanism, are presented in
Equation (5) as follows:

C(i, j, k) = mod(P(r(i), s(j), t(i, j, k)) + K(i, j) + Pre, 256) (5)

where i = 1, 2, . . . , M; j = 1, 2, . . . , N; k = 1, 2, 3; Pre represents the value of a previously
encrypted pixel. When encrypting the first pixel value, the value of Pre is initialized to
be equal to c0. For a detailed description of the first round of the cross-channel parallel
permutation and diffusion process, please refer to Algorithm 3.

Algorithm 3 The first round of CCPPD

Input: The plain image P, c0, and the chaotic secret key matrix of {r, s, K, t}.
1: Initialization: [M, N, ~] = size(P); C = zeros(M, N, 3); Pre = c0.
2: for k = 1 to 3 do
3: for j = 1 to N do
4: for i = 1 to M do
5: C(i, j, k) = mod(P(r(i), s(j), t(i, j, k)) + K(i, j) + Pre, 256);
6: Pre = C(i, j, k) ;
7: end for
8: end for
9: end for
Output: The intermediate cipher image C.

4.3. The Second Round of Cross-Channel Parallel Permutation and Diffusion

In the second round of the cross-channel parallel permutation and diffusion process,
the input image is the intermediate cipher image C, which is the output in the first round
of encryption processing. The output image is the final encrypted image, denoted by D.
The key operational statement of the second round of cross-channel parallel permutation
and diffusion is

D(i, j, k) = mod(C(r(i), s(j), t(i, j, k)) + K(i, j) + Pre, 256) (6)

where i = 1, 2, . . . , M; j = 1, 2, . . . , N; k = 1, 2, 3; Pre represents the value of a previously
encrypted pixel. When encrypting the first pixel value in the second round of encryption,
the value of Pre is equal to the last encrypted pixel value, that is, C(M, N, 3). For a detailed
description of the second round of cross-channel parallel permutation and diffusion process,
please refer to Algorithm 4.

Algorithm 4 The second round of CCPPD

Input: The intermediate cipher image C and the chaotic key matrix of {r, s, K, t}.
1: Initialization: [M, N, ~] = size(C); D = zeros(M, N, 3); Pre = C(M, N, 3).
2: for k = 1 to 3 do
3: for j = 1 to N do
4: for i = 1 to M do
5: D(i, j, k) = mod(C(r(i), s(j), t(i, j, k)) + K(i, j) + Pre, 256);
6: Pre = D(i, j, k);
7: end for
8: end for
9: end for
Output: The final cipher image D.

4.4. The Decryption Process

The operational steps of the decryption process are the reverse ones of the encryption
process. The decryption operation also includes the following three stages: (1) generating
the chaotic key matrices, (2) the first round of decryption operation and (3) the second
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round of decryption operation. The operation of generating the chaotic key matrices is
identical to the encryption process. The first round of decryption operation is to solve the
intermediate ciphertext image C from the final ciphertext image D. The main difficulty is
to find the first Pre value, and the core decryption operation is the inverse operation of
the corresponding encryption process. The detailed steps of the first round of decryption
operation are shown in Algorithm 5.

Algorithm 5 The first round of decryption operation

Input: The final cipher image D and the chaotic key matrix of {r, s, K, t}.
1: Initialization: [M, N, ~] = size(D); C = zeros(M, N, 3); Pre = C(M, N, 3).
2: i = find(r = = M); //Find the index of the element has value M in matrix r
3: j = find(s = = N); //Find the index of the element has value N in matrix s
4: k = find(t(i, j, :) = = 3); //Find the 3rd index of the element t(i, j, :)
5: if (i >1) Then Pre = D(i−1, j, k);
6: if (i = = 1) & (j > 1) Then Pre = D(M, j−1, k);
7: if (i = = 1) & (j = = 1) Then Pre = D(M, N, k−1);
8: C(r(i),s(j),t(i, j, k)) = mod(D(i, j, k) − K(i, j) − Pre, 256);
9: Pre = C(r(i), s(j), t(i, j, k));
10: for k = 1 to 3 do
11: for j = 1 to N do
12: for i = 1 to M do
13: C(r(i), s(j), t(i, j, k)) = mod(D(i, j, k) − K(i, j) − Pre, 256);
14: Pre = D(i, j, k);
15: end for
16: end for
17: end for
Output: The intermediate cipher image C.

In order to better understand steps 5, 6 and 7 of Algorithm 5, further detailed expla-
nations are provided as follows. We know that the Pre obtained in the second round of
encryption is D(i, j, k), where i, j and k in C(r(i), s(j), t(i, j, k)) satisfy r(i) = M, s(j) = N and
t(i, j, k) = 3. Steps 1, 2 and 3 find {i, j, k}, which satisfy r(i) = M, s(j) = N and t(i, j, k) = 3.
The order of encrypting pixels in this algorithm is from the R color channel (k = 1) to the
G color channel (k = 2) and to the B color channel (k = 3). And each color channel is in
the first column. The meaning of Step 5 is that if the last encrypted pixel does not belong
to the first row but is after the first row, then the previous encrypted pixel value D is in
the position of the previous row in the same color channel and column, so the previous
ciphertext pixel of D(i, j, k) is D(i−1, j, k). The meaning of Step 6 is that if the last encrypted
pixel is at the first row but is after the first column, then the previous encrypted pixel value
D is at the position of the previous column and the last row in the same color channel, so
the previous ciphertext pixel of D(i, j, k) is D(M, j−1, k). The meaning of Step 7 is that if the
last encrypted pixel is at the first row and the first column, then the previous encrypted
pixel value D is at the position of the last row and the last column in the previous color
channel, so the previous ciphertext pixel of D(i, j, k) is D(M, N, k−1).

The detailed steps of the second round of decryption operation are shown in
Algorithm 6.
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Algorithm 6 The second round of decryption operation

Input: The intermediate cipher image C, c0, and the secret key matrix of {r, s, K, t}.
1: Initialization: [M, N, ~] = size(C); P = zeros(M, N, 3); Pre = c0.
2: for k = 1 to 3 do
3: for j = 1 to N do
4: for i = 1 to M do
5: P(r(i), s(j), t(i, j, k)) = mod(C(i, j, k) −K(i, j) − Pre, 256);
6: Pre = C(i, j, k) ;
7: end for
8: end for
9: end for
Output: The restored decrypted image P.

5. Experimental Results and Security Analysis

We used MATLAB 2022b to verify the proposed color image encryption algorithm on
a PC with an Intel(R) Core i7-9700 @ 3.00 GHz CPU and 16.0 GB memory. The test images
were obtained from USC-SIPI. The secret parameters are set as a = 30, b = 40, x0 = 0.134,
y0 = 0.987 and c0 = 66. The encryption results of several test images are shown in Figure 10.

5.1. Key Space Analysis

The performance of a cryptographic system against brute force attacks depends on
the size of its key space. According to the current computing speed of the computer, when
the key space of a cryptographic system is greater than 2100, the cryptographic system
has security against brute force attacks [27]. In the proposed cryptosystem, the length of
the key is 264 bits, so its key space is approximately 2264, which is much larger than 2100.
Therefore, the key space of the proposed scheme is large enough to effectively resist brute
force attacks.
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Figure 10. The test images and the encrypted results. (a) The plain image, cipher image and decrypted
image of 4.2.04.tif. (b) The plain image, cipher image and decrypted image of 4.2.05.tif. (c) The plain
image, cipher image and decrypted image of 4.2.06.tif. (d) The plain image, cipher image and
decrypted image of 4.2.07.tif.

5.2. Histogram Analysis

The distribution of pixel values in an image can be intuitively expressed through
histograms; therefore, a histogram analysis is often one of the most intuitive indicators to
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measure the distribution of pixel values in an image. Therefore, for excellent encryption
algorithms, the histogram of a cipher image should have a uniform distribution pattern so
that attackers find it difficult to obtain useful statistical information from the histogram
distribution to analyze the cryptographic system. Figure 11 shows the two images we
used to demonstrate the histogram pattern of the cipher image obtained via the proposed
encryption algorithm. The results show that the histograms of the cipher images are
relatively flat, so our cryptographic system has a strong resistance to histogram attacks.

5.3. Pixel Correlation Analysis

Usually, the pixel distribution of a meaningful natural image has continuity of values
in its position, characterized by adjacent pixels that have very close pixel values. This
property is called a strong correlation between adjacent pixels. A good image encryption
algorithm should make the adjacent pixels of the ciphertext image irrelevant or weakly
correlated. In order to quantitatively describe the correlation strength of the adjacent pixels
in an image, the Pearson correlation coefficient (Pcc) is usually used as an indicator. The Pcc
between the pixel group x and y can be calculated using

Pcc =
∑N

i=1 (xi − x)(yi − y)√
∑N

i=1(xi − x)2∑N
i=1(yi − y)2

(7)

where x = {x1, x2, . . . , xN} and y = {y1, y2, . . . , yN} represent the pixel value of a group
of adjacent pixels in the image, and N is the total number of samples. x and y are the
average values of {xi} and {yi}, respectively. We selected the neighboring pixels of different
images before and after encryption to calculate their Pcc values, and the results are shown
in Table 2. Figure 12 shows the neighboring pixel distribution of the image Pepper before
and after encryption using the proposed encryption algorithm.
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Figure 11. Plain/cipher images and their histograms. (a) Plain and cipher image of 4.1.06.
(b) Histogram of R channel in plain and cipher image of 4.1.06. (c) Histogram of G channel in
plain and cipher image of 4.1.06. (d) Histogram of B channel in plain and cipher image of 4.1.06.
(e) Plain and cipher image of 4.1.04. (f) Histogram of R channel in plain and cipher image of 4.1.04.
(g) Histogram of G channel in plain and cipher image of 4.1.04. (h) Histogram of B channel in plain
and cipher image of 4.1.04.
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Figure 12. Correlation test results of adjacent pixels. (a) R channel of Pepper in horizontal, vertical
and diagonal directions; (b) G channel of Pepper in horizontal, vertical and diagonal directions; (c) B
channel of Pepper in horizontal, vertical and diagonal directions; (d) R channel of encrypted Pepper
in horizontal, vertical and diagonal directions; (e) G channel of encrypted Pepper in horizontal,
vertical and diagonal directions; (f) B channel of encrypted Pepper in horizontal, vertical and
diagonal directions.

Table 2. Correlation coefficients of cipher images encrypted using different algorithms.

Algorithm Image Name Direction R Channel G Channel B Channel

This work 2.1.04/Oakland Horizontal 0.0027 −0.0004 0.0025
This work 2.1.04/Oakland Vertical 0.0011 0.0014 0.0007
This work 2.1.04/Oakland Diagonal 0.0012 0.0005 −0.0009
Ref. [28] 2.1.04/Oakland Horizontal −0.0012 0.0003 0.0014
Ref. [28] 2.1.04/Oakland Vertical 0.0009 0.0030 −0.0027
Ref. [28] 2.1.04/Oakland Diagonal −0.0014 −0.0021 −0.0009

This work 2.2.01 Horizontal 0.0001 −0.0007 −8.7595 × 10−5

This work 2.2.01 Vertical 0.0003 0.0013 0.0005
This work 2.2.01 Diagonal 7.979 × 10−5 0.0009 −0.0010
Ref. [29] 2.2.01 Horizontal −0.0003 0.0006 0.0019
Ref. [29] 2.2.01 Vertical 0.0003 0.0007 0.0025
Ref. [29] 2.2.01 Diagonal −0.004 0.0002 0.0003

This work 4.2.04 Horizontal −0.0027 −4.6744 × 10−5 0.0043
This work 4.2.04 Vertical 0.0029 −0.0009 −5.6333 × 10−5

This work 4.2.04 Diagonal 0.0018 −0.0012 0.0015
Ref. [29] 4.2.04 Horizontal 0.0006 −0.0004 0.0001
Ref. [29] 4.2.04 Vertical −0.0012 −0.0007 0.0005
Ref. [29] 4.2.04 Diagonal 0.0008 0.0007 0.0006

This work 4.2.05 Horizontal −0.00062639 0.0018238 −0.0010242
This work 4.2.05 Vertical 0.00017306 0.00065355 −0.0004688
This work 4.2.05 Diagonal 0.0026312 0.00047658 −0.0013144
Ref. [15] 4.2.05 Horizontal 0.0017 0.0026 0.0017
Ref. [15] 4.2.05 Vertical 0.0019 0.0019 0.0015
Ref. [15] 4.2.05 Diagonal 0.0017 0.0021 0.0020

This work 4.2.03 Horizontal −0.00011509 0.00056796 0.0013133
This work 4.2.03 Vertical 0.0017407 −0.00075841 −0.0016187
This work 4.2.03 Diagonal 0.00054237 0.001598 −0.000471
Ref. [29] 4.2.03 Horizontal −0.0003 0.0008 0.0008
Ref. [29] 4.2.03 Vertical −0.0002 −0.0002 0.0008
Ref. [29] 4.2.03 Diagonal −0.0011 0.0005 0.0025
Ref. [15] 4.2.03 Horizontal 0.0015 0.0018 0.0023
Ref. [15] 4.2.03 Vertical 0.0026 0.0031 0.0021
Ref. [15] 4.2.03 Diagonal 0.0017 0.0022 0.0016

This work 4.2.07 Horizontal 0.0031349 −0.0038061 0.0024694
This work 4.2.07 Vertical −0.0013014 0.0012009 0.0025589
This work 4.2.07 Diagonal −2.7096 × 10−5 0.0011369 −0.0030308
Ref. [15] 4.2.07 Horizontal 0.0017 0.0016 0.0017
Ref. [15] 4.2.07 Vertical 0.0022 0.0016 0.0022
Ref. [15] 4.2.07 Diagonal 0.0020 0.0026 0.0022

The above test results indicate that the Pcc values of images fluctuate in different
directions. The Pcc values of the proposed algorithm are relatively smaller than those
of the comparator. The average value is closer to 0, which means that the distribution
of adjacent pixels in the encrypted image is random. The proposed algorithm can more
effectively reduce the correlation between adjacent pixels, indicating its stronger ability to
resist statistical attacks.
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5.4. Information Entropy Analysis

Information entropy can measure the randomness or uncertainty of an information
source. Greater information entropy means that the more random or uncertain the informa-
tion source is, the more difficult it will be to predict or decipher. The information entropy
of an information source can be calculated using the following formula:

H(S) = −
n

∑
i=1

pi log2(pi) (8)

where S = {s1, s2, . . . , sn} represents the information source, and pi represents the probabil-
ity of si occurrence. For the information source of an 8-bit image, there are 256 gray levels,
and n = 256. Therefore, the maximum information entropy that can be reached by the 8-bit
image is log2 256 = 8. The information entropy of various standard test images encrypted
using this algorithm and some recently published algorithms are listed in Table 3. The
results show that the information entropy of ciphertext images is very close to 8. Compared
with other algorithms, the images encrypted using the proposed algorithm have a larger
information entropy in many cases.

Table 3. Information entropy of encrypted images for several different algorithms.

Image Name Channels Ours Ref. [15] Ref. [30] Ref. [31] Ref. [29]

2.2.01/San Diego R 7.9998 \ \ \ 7.9998
2.2.01/San Diego G 7.9998 \ \ \ 7.9998
2.2.01/San Diego B 7.9998 \ \ \ 7.9998

4.2.03/Baboon R 7.9993 7.9993 \ 7.9992 7.9992
4.2.03/Baboon G 7.9993 7.9994 \ 7.9993 7.9993
4.2.03/Baboon B 7.9993 7.9993 \ 7.9993 7.9991

4.2.04/Lena R 7.9994 \ 7.9994 7.9993 7.9976
4.2.04/Lena G 7.9994 \ 7.9994 7.9994 7.9973
4.2.04/Lena B 7.9993 \ 7.9994 7.9993 7.9971

4.2.05/Airplane R 7.9993 7.9993 7.9993 7.9992 \
4.2.05/Airplane G 7.9994 7.9993 7.9992 7.9993 \
4.2.05/Airplane B 7.9994 7.9992 7.9993 7.9993 \
4.2.07/Peppers R 7.9993 7.9993 7.9993 7.9993 7.9991
4.2.07/Peppers G 7.9992 7.9993 7.9994 7.9993 7.9992
4.2.07/Peppers B 7.9993 7.9993 7.9993 7.9993 7.9992

5.5. Sensitivity Analysis

Sensitivity includes the sensitivity of encrypted images to key changes and plaintext
changes, which, respectively, reflect the degree to which the algorithm’s actual key space
approaches the theoretical key space and its ability to resist differential attacks.

5.5.1. Secret Key Sensitivity

Whether a cryptographic system is sensitive to keys is related to whether the actual
total number of keys available can reach the theoretical value of the key space. Testing
whether a cryptographic system is sensitive to keys can usually be performed separately
during the encryption and decryption processes.

During the encryption process, if two slightly different keys are used to encrypt the
same image, resulting in two completely different ciphertext images, it can be verified
from the encryption process that the cryptographic algorithm is sensitive to the key. It is
more intuitive to use data to reflect the difference between two ciphertext images. The
mean squared error (MSE) can reflect the difference between two images, which can be
calculated using

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

[DK(i, j)− DK′(i, j)]2 (9)

where DK(i, j) is the pixel value of the cipher image encrypted using the secret key K,
DK′(i, j) is the pixel value of the cipher image encrypted using the secret key K′, M is the
row number and N is the column number. Table 4 lists the mean squared error (MSE) results
of the ciphertext obtained by encrypting the same image Airplane using different keys.
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Where the original key is of K = {a = 30, b = 40; x0 = 0.134, y0 = 0.987}, MSE1 corresponds
to the key of K1 = {a = 30 + 10−14, b = 40; x0 = 0.134, y0 = 0.987}, MSE2 corresponds to the
key of K2 = {a = 30, b = 40 + 10−14; x0 = 0.134, y0 = 0.987}, MSE3 corresponds to the key of
K3 = {a = 30, b = 40; x0 = 0.134 + 10−14, y0 = 0.987} and MSE4 corresponds to the key of
K4 = {a = 30, b = 40; x0 = 0.134, y0 = 0.987 + 10−14}. The results indicate that the algorithm is
sensitive to keys.

Table 4. The MSE values of encrypted images using slightly different keys.

Channels MSE1 MSE2 MSE3 MSE4

R 10,937 10,920 10,951 10,929
G 10,966 10,870 10,955 10,967
B 10,911 10,940 10,878 10,907

During the decryption process, if there is a slight difference between the actual key
used in the decryption process and the right key, and there is a significant difference
between the decrypted image and the original plaintext image, the cryptographic system is
said to be sensitive to the key. The more sensitive the cryptosystem is to keys, the greater
the difficulty for attackers to crack the cryptosystem by using exhaustive secret keys, and
the stronger the security of the cryptosystem. In order to test the sensitivity of the proposed
algorithm to secret keys, we used Baboon images as the test image, and decrypted its
encrypted images using another set of slightly changed keys. Each change of key only
changed the initial value or one of the system parameters of the chaotic system by 10−14.
The decrypted images are shown in Figure 13a,b,c,d, respectively. From these decryption
results, it can be seen that all the decrypted images are still unrecognizable and meaningless
images similar to noise signals. This indicates that the small differences in keys lead to
incorrect decryption. Therefore, the algorithm is very sensitive to secret keys.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 23 
 

 

results, it can be seen that all the decrypted images are still unrecognizable and meaning-

less images similar to noise signals. This indicates that the small differences in keys lead 

to incorrect decryption. Therefore, the algorithm is very sensitive to secret keys. 

    
(a) (b) (c) (d) 

Figure 13. Baboon test results of key sensitivity in decryption. (a) Modified x0 with 10−14, (b) Modified 

y0 with 10−14, (c) Modified a with 10−14, (d) Modified b with 10−14. 

5.5.2. Plain Image Sensitivity 

Differential analysis is a chosen-plaintext attack. Its basic idea is to obtain the largest 

key possible by analyzing the influence of a specific plaintext difference on the corre-

sponding ciphertext difference. In order for the cryptographic system to resist differential 

attacks, encryption algorithms must be very sensitive to changes in plaintext. The com-

monly used indicators for measuring the sensitivity of algorithms to plaintext are the 

NPCR (number of pixel change rate) and UACI (unified average change of intensity). The 

formulas for calculating the NPCR and UACI are as follows: 

1, ( , ) ( , )
( , )

0, ( , ) ( , )

if C i j C' i j
D i j

if C i j C' i j


= 

=
 (10) 

1 1

1
NPCR ( , ) 100%

M N

i j

D i j
M N = =

= 


  (11) 

1 1

( , ) ( , )1
UACI ( ) 100%

255

M N

i j

C i j C' i j

M N = =

−
= 


  (12) 

where M and N denote the row and column numbers of the image. The ideal values of the 

NPCR and UACI are 99.6094% and 33.4635%, respectively. The larger the NPCR is and 

the closer the UACI is to the center of the expected value range (i.e., 33.4636%), the better 

the anti-difference performance of the algorithm is. We adopted the image Lena (512 × 512 

× 3) as the test image in the experiment, and selected the pixel at the middle position point 

(i.e., P(512,512,2)) to increase its pixel value by 1. Table 5 lists the NPCR and UACI results 

obtained using our algorithm and several published algorithms. Compared with the re-

sults provided by the literature in the table, our scheme NPCR and UACI are both close 

to the ideal values of 99.6094% and 33.4635%, and the NPCR values of our scheme have a 

certain competitive advantage. Therefore, the proposed scheme performs better in resist-

ing differential attacks. 

Table 5. NPCR and UACI test results of different image encryption schemes. 

Algorithms 
NPCR (%) UACI (%) 

R G B R G B 

Ours 99.6136 99.6059 99.6143 33.4562 33.4078 33.4610 

Ref. [30] 99.6167 99.6046 99.6158 33.4395 33.4587 33.4566 

Ref. [32] 99.6109 99.6208 99.6067 33.4782 33.4580 33.4228 

Ref. [29] 99.6140 99.6017 99.6140 33.5627 33.5218 33.4339 

Figure 13. Baboon test results of key sensitivity in decryption. (a) Modified x0 with 10−14,
(b) Modified y0 with 10−14, (c) Modified a with 10−14, (d) Modified b with 10−14.

5.5.2. Plain Image Sensitivity

Differential analysis is a chosen-plaintext attack. Its basic idea is to obtain the largest
key possible by analyzing the influence of a specific plaintext difference on the correspond-
ing ciphertext difference. In order for the cryptographic system to resist differential attacks,
encryption algorithms must be very sensitive to changes in plaintext. The commonly used
indicators for measuring the sensitivity of algorithms to plaintext are the NPCR (number
of pixel change rate) and UACI (unified average change of intensity). The formulas for
calculating the NPCR and UACI are as follows:

D(i, j) =
{

1, i f C(i, j) 6= C′(i, j)
0, i f C(i, j) = C′(i,j)

(10)

NPCR =
1

M× N

M

∑
i=1

N

∑
j=1

D(i, j)× 100% (11)
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UACI =
1

M× N
(

M

∑
i=1

N

∑
j=1

∣∣∣C(i, j)− C′(i,j)
∣∣∣

255
)× 100% (12)

where M and N denote the row and column numbers of the image. The ideal values of
the NPCR and UACI are 99.6094% and 33.4635%, respectively. The larger the NPCR is
and the closer the UACI is to the center of the expected value range (i.e., 33.4636%), the
better the anti-difference performance of the algorithm is. We adopted the image Lena
(512 × 512 × 3) as the test image in the experiment, and selected the pixel at the middle
position point (i.e., P(512,512,2)) to increase its pixel value by 1. Table 5 lists the NPCR and
UACI results obtained using our algorithm and several published algorithms. Compared
with the results provided by the literature in the table, our scheme NPCR and UACI are
both close to the ideal values of 99.6094% and 33.4635%, and the NPCR values of our
scheme have a certain competitive advantage. Therefore, the proposed scheme performs
better in resisting differential attacks.

Table 5. NPCR and UACI test results of different image encryption schemes.

Algorithms
NPCR (%) UACI (%)

R G B R G B

Ours 99.6136 99.6059 99.6143 33.4562 33.4078 33.4610
Ref. [30] 99.6167 99.6046 99.6158 33.4395 33.4587 33.4566
Ref. [32] 99.6109 99.6208 99.6067 33.4782 33.4580 33.4228
Ref. [29] 99.6140 99.6017 99.6140 33.5627 33.5218 33.4339

5.6. Robustness Analysis

Images inevitably suffer from noise pollution or data loss during channel transmission.
If the encryption algorithm is not robust, the decryption process cannot obtain recognizable
plaintext information. A good encryption algorithm should be able to resist noise pollution
or data loss attacks. Figure 14 shows the decryption result of the Lena cipher image after
being polluted by noise, where (a1), (a2), (a3) and (a4) are noisy cipher images polluted by
salt-and-pepper noise (SPN) with densities = 0.005 and 0.05, and Gaussian noise (GN) with
densities = 0.0005 and 0.005, respectively. (b1), (b2), (b3) and (b4) are decrypted images
of (a1), (a2), (a3) and (a4), respectively. Figure 15 shows the decryption results of the
Lena cipher images after data loss, with (a1), (a2), (a3) and (a4) being cropped by 32 × 32,
64 × 64, 128 × 128 and 256 × 256. (b1), (b2), (b3) and (b4) are the decrypted images of (a1),
(a2), (a3) and (a4), respectively. It can be seen that the cipher images that underwent noise
pollution or cropping processing can still obtain recognizable decrypted images. Therefore,
the proposed encryption algorithm has a strong resistance to noise and cropping attacks.

5.7. Security Analysis for Classical Attacks

According to the intensity of attacks, there are four classical types of attacks, namely,
ciphertext-only attack, known plaintext attacks, chosen-plaintext attack, and chosen-
ciphertext attack. Chosen-plaintext and chosen-ciphertext attacks are the most powerful
attacks. If a cryptosystem can resist these two attacks, it can resist other types of attacks.
For chosen-plaintext and chosen-ciphertext attacks, the commonly used methods are to
obtain the corresponding ciphertext (plaintext) image by selecting a special plaintext (ci-
phertext) image through an encryption machine (decryption machine) in order to crack the
intermediate equivalent key of the cryptographic system.

At present, most image encryption algorithms separate the permutation process and
diffusion process, which provides convenience for attackers to crack the equivalent key
of the diffusion process and the permutation process step by step and greatly reduces the
difficulty of cracking. The equivalent keys of the proposed cryptosystem in this paper
include sequences r, s, t and K. The proposed cryptosystem combines permutation and
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diffusion processing in parallel, and there are two encryption rounds. Therefore, attackers
cannot individually crack some of the keys in a step-by-step manner, but can only break all
{r, s, t, K} keys at the same time. The difficulty is equivalent to an exhaustive attack on the
ciphers set of {r, s, t, K}. For images of size M × N, the sequence r has M! possible forms,
and the sequence s has N! possible forms. There are three possible forms; sequence t has
3M×N×3 possible forms, and sequence K has 256M×N possible forms, so the equivalent key
space size is (M!)× (N!)× (3M×N×3)× (256M×N). Such a large key space is sufficient to
resist exhaustive attacks.
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Figure 14. The resistance to noise attack: (a1) noisy images via SPN with density = 0.005; (a2) noisy
images via SPN with density = 0.05; (a3) noisy images via GN with density = 0.0005; (a4) noisy
images via GN with density = 0.005; (b1) decrypted image of (a1); (b2) decrypted image of (a2);
(b3) decrypted image of (a3); (b4) decrypted image of (a4).
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Figure 15. The resistance to cut attack: (a1) clipping image with size of 32 × 32; (a2) clipping image
with size of 64 × 64; (a3) clipping image with size of 128 × 128; (a4) clipping image with size of
256 × 256; (b1) decrypted image of (a1); (b2) decrypted image of (a2); (b3) decrypted image of (a3);
(b4) decrypted image of (a4).
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5.8. Time Complexity Analysis

In addition to security, the speed of encryption and decryption is also an important
aspect of measuring the performance of image encryption algorithms. Table 6 lists the time
required to encrypt and decrypt different images using our algorithm.

Table 6. Running time of different images.

Images Size Encryption Time (s) Decryption Time (s)

House 256 × 256 × 3 0.0602 0.0157
Airplane 512 × 512 × 3 0.0854 0.0539
Peppers 512 × 512 × 3 0.0862 0.0555

San Diego 1024 × 1024 × 3 0.3498 0.2088

Table 7 compares our algorithm with other algorithms in Lena (512 × 512 × 3). The
running time of image encryption was compared. From the values in the table, it can
be seen that our encryption algorithm has excellent running speed compared to other
encryption algorithms.

Table 7. Running time of different algorithms for 512 × 512 × 3 Lena image.

Algorithms Encryption Time (s) Decryption Time (s)

Ours 0.1027126 0.0614000
Ref. [29] 0.9220030 0.8414570
Ref. [33] 1.7961050 0.8475750
Ref. [34] 1.3053220 1.0264940
Ref. [35] 1.4933000 7.8065000

6. Conclusions

In this paper, a new two-dimensional discrete hyperchaotic system is proposed. The
system has very complex hyperchaotic properties and can produce highly random chaotic
sequences, which are confirmed via bifurcation diagrams, chaotic attractor, Lyapunov
exponents, correlation analysis, approximate entropy and permutation entropy. As an
application, a pseudo-random number generator (PRNG) and an efficient color image
encryption algorithm were designed based on the hyperchaotic system. The bit sequence
generated by the proposed PRNG can completely pass all the NIST test items. The proposed
color image encryption algorithm can implement cross-channel scrambling and pixel value
diffusion encryption in parallel, which not only greatly improves the encryption speed
of color images, but also improves the security level of cipher images via cross-channel
simultaneous scrambling and the diffusion of plain images. The proposed algorithm is
robust to differential attacks, statistical attacks and interference attacks, and its overall
performance is better than some existing algorithms. Chaos-based image encryption is an
interesting and meaningful research topic.

For future works, we will further optimize the encryption structure to improve security
and efficiency, including further optimization of the scrambling strategy design and the
diffusion operation design.
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