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Abstract: We propose a joint optimization algorithm that combines the optimal shape parameter–Gaussian
radial basis function (G-RBF) surrogate model with global and local optimization techniques to
improve accuracy and reduce costs. We analyze factors that affect the accuracy of the G-RBF sur-
rogate model and use the particle swarm optimization (PSO) algorithm to determine the optimal
shape parameter and control the number and spacing of the sampling points for a high-precision
surrogate model. Global optimization refines the surrogate model, serving as the initial value for
local optimization to further refine the problem. Our experiments show that this method significantly
reduces computation costs. We optimize the section size of cantilever beams for different materials,
obtaining the optimal section size and mass for each. We find that hard aluminum alloy is the
optimal choice, meeting yield strength and deflection requirements through finite element analysis
verification. Our work highlights the effectiveness of the joint optimization algorithm based on the
surrogate model, providing valuable tools and insights into optimizing various structures.

Keywords: joint optimization; G-RBF; surrogate model; shape parameter; PSO; cantilever beam
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1. Introduction

In practical systems, physical models may be insufficient to describe system behavior
due to external factors and error terms. Response surface methodology (RSM) [1] is a mod-
eling approach that explores nonlinear relationships between input and output variables
and models, predicts, and optimizes the objective function. However, the objective function
is often complex, nonlinear, and difficult to solve using analytical methods. Therefore,
constructing a response surface model that approximates the objective function using
experimental data can help engineers and scientists better understand practical systems,
predict unknown behavior, and make scientific decisions. Different methods can be used to
construct response surface models, including polynomial regression, moving least squares,
Kriging, and radial basis function (RBF) methods. Polynomial regression [2] is simple and
easy to use and can handle most nonlinear problems but can face difficulties in addressing
high-dimensional problems. Moving least squares (MLS) [3] is simple in form and compu-
tationally efficient but it has poor approximation ability for nonlinear models. Kriging [4]
is a widely used approximation method for handling linear and nonlinear problems with
high prediction accuracy, but it has high computational costs and is unsuitable for discrete
output variables. RBF [5] has several advantages, including a simple form, isotropy, dimen-
sion independence, and suitability for high-dimensional problems. This paper adopts the
G-RBF as the approximation function to construct a high-precision surrogate model. The
selection of shape parameters directly affects the interpolation effect when using the G-RBF
for interpolation [6–8]. Nevertheless, the selection of shape parameters is mostly achieved
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using trial-and-error or empirical methods, resulting in low efficiency or accuracy. Hence,
this paper employs the particle swarm algorithm to select the shape parameters for test
functions of different dimensions. Comparative experiments are performed to verify that
the selected shape parameters can achieve high interpolation accuracy.

In the field of multidisciplinary design optimization, direct optimization utilizing
high-precision models becomes infeasible when the complexity of the models expands.
Frequently, a response surface model is created as a low-precision model to iteratively
optimize and decrease the frequency at which the high-precision model is executed, ulti-
mately decreasing expenses. Although some approaches can enhance the precision of the
approximate model, they may not be as effective in reducing the high-precision model’s
frequency of execution. In contrast, techniques that incorporate optimized solutions into
the approximate model could cause the approximate model to converge locally and lose
global optimality [9,10]. Our proposed method aims to regulate the number of times the
high-precision model is run during the model approximation process. In particular, our
global optimization method optimizes the approximate model’s solution and utilizes it
as the starting point for the local optimization of the high-precision model. This guaran-
tees that the solution will be valid within the feasible domain. The global optimization
method’s ability to search on a global scale enables it to discover superior initial conditions,
whereas the quick convergence rate of the local optimization method can minimize the high-
precision model’s frequency of execution and guarantee solution reliability. Experimental
testing provides verification of the efficacy of the joint optimization algorithm.

Cantilever beams are extensively used in the automatic feeding devices of single-
machine multi-station stamping systems and their structural parameters require opti-
mized designs to ensure higher stability and economic benefits under specific working
conditions [11]. However, the choice of optimization methods significantly impacts the
final optimization results. Although numerical optimization methods such as the gra-
dient method, simplex method, and direct search method are highly efficient, they of-
ten yield locally optimal solutions, making it challenging to achieve a globally optimal
solution [12–14]. On the other hand, optimization methods like colony optimization and
the genetic algorithm possess good global optimization capabilities but come with high
computational costs [15,16]. This study proposes a joint optimization algorithm based on
the G-RBF surrogate model with optimal shape parameters to achieve the lightest weight
of the cantilever beam structure of automatic feeding devices. Our algorithm achieves
a globally optimal solution while significantly reducing the frequency of high-precision
model calls, thus saving computational costs. Our work contributes to material design by
providing a practical and efficient optimization approach for cantilever beam structures in
automatic feeding devices, which can enhance their stability and economic benefits under
specific working conditions.

2. G-RBF Surrogate Model
2.1. G-RBF Interpolation Principle

The radial basis function consists of a weighted sum of radial basis functions centered
at different points in the input space. In our study, we used a Gaussian radial basis
function, and the centers were chosen to be the training samples. The weights of the radial
basis functions were determined by solving a linear system of equations that enforced the
interpolation or approximation of the training data. This expression is shown below [7]:

∼
y =

n

∑
k=1

ωk(φk(‖x− xk‖) = W
T

Φ(x) (1)

The weight coefficient vector, represented by W = [ω1, ω2, . . . , ωn]
T , can be calculated

using the following formula:

W = A−1y (2)



Mathematics 2023, 11, 3169 3 of 20

Matrix A can be computed using the following formula:

A =

ϕ(‖x1 − x1‖) · · · ϕ(‖x1 − xn‖)
...

. . .
...

ϕ(‖xn − x1‖) · · · ϕ(‖xn − xn‖)

 (3)

where ϕ(|x− x1|) is a radial basis function. A common choice for ϕ is the Gaussian
radial basis function (G-RBF), which can be expressed as follows:

ϕ(r) = e−c2r2
(4)

In Equation (4), c is the shape parameter of the Gaussian radial basis function.
In two-dimensional space, the G-RBF can be expressed as [17]:

Gauss = exp

[
− (x− µx)2

2δx2 − (y− µy)2

2δy2

]
(5)

In three-dimensional space, the Gaussian radial basis function can be expressed as [17]:

Gauss = exp

[
− (x− µx)2

2δx2 − (y− µy)2

2δy2 − (z− µz)2

2δz2

]
(6)

In Equations (5) and (6), (x, y, z) is the coordinate of the center of the grid; (µx, µy, µz) is
the center coordinate of the radial basis function; and δx, δy, and δz are the distribution radii
of the radial basis function. The radial basis function is used to approximate the underlying
function of the dataset, which enables us to make predictions for new, unseen data points.
By using the radial basis function, we are able to capture the nonlinear relationships
between the input variables and the output variable, which cannot be achieved with
linear models.

2.2. Factors Affecting the Effectiveness of the G-RBF Surrogate Model

There are two main factors that impact the G-RBF interpolation effect, which are as
follows [7]:

• Shape parameter:

The Gaussian radial basis function (G-RBF) interpolation method has been widely
used in various fields due to its high accuracy and efficiency. However, the choice of the
shape parameter, c, is critical to the success of the G-RBF interpolation, as it directly affects
the shape of the basis function. As shown in Figure 1, different values of c can result in
significantly different shapes of the G-RBF. Furthermore, an optimal value of c, denoted as
copt, exists for each unique interpolation problem, which can greatly improve the accuracy
of the interpolation results.

To demonstrate the importance of selecting an appropriate value for c, we conducted
an experiment on the interpolation of Equation (16) using the G-RBF method with different
values of c. As shown in Figure 2, the interpolation error is highly dependent on the choice
of c, with an optimal value of copt that minimizes the interpolation error. These findings
are consistent with previous studies, highlighting the critical role played by the shape
parameter c in the G-RBF interpolation method.

Therefore, selecting an appropriate shape parameter c is crucial for obtaining accurate
and reliable G-RBF interpolation results. Future studies could explore robust methods for
determining the optimal value of c in various interpolation problems and further investigate
the performance of the G-RBF interpolation method in different applications.
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Figure 1. G-RBF with different shape parameters.

Figure 2. c and RMSE.

• Conditional number:

Determining the value of A−1 in Equation (16) is crucial for obtaining the interpolation
function. Although A is non-singular when the sampling points are dissimilar, its condition
number can become exceedingly large. The condition number of A is defined as

condA =
∣∣∣A−1

∣∣∣ · |A| (7)

To calculate condA, one needs to evaluate λmax and λmin, which are the maximum and
minimum eigenvalues of A. The formula is given by

condA = |λmax/λmin | (8)

When the sampling points are near, A is a matrix that is often considered poorly
conditioned. Figure 3 illustrates the relationship between the matrix condition number
and the number of sampling points used for the G-RBF interpolation of Equation (16). It
can be observed that as the number and distribution of the sampling points increase, the
matrix condition number becomes more ill-conditioned. The problem posed by a poorly
conditioned matrix is that imperfections in the solution of linear equations can significantly
affect the precision of the approximation.
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Figure 3. Sampling point and condition number.

Generally, there are two approaches to handling a poorly conditioned matrix: im-
proving the distance between the sampling points or utilizing a more precise equation.
However, increasing the number of sampling points can exacerbate the equation-solving
challenge to the extent that an accurate solution becomes practically unattainable, greatly
impairing model accuracy.

With regard to the two main factors that affect the G-RBF interpolation effect men-
tioned above, we appropriately set them in Sections 2.3.1 and 2.4, respectively. This results
in a high-precision G-RBF surrogate model.

2.3. Optimal Shape Parameter Determination in G-RBF Interpolation
2.3.1. Optimal Shape Parameter Determination Based on Particle Swarm Optimization in
G-RBF Interpolation

The selection of the shape parameters in G-RBF interpolation can be transformed into
the following optimization problem:

Emax(c) = max
x∈(a,b)

|s(x, c)− f (x)| (9)

{
Find copt

min Emax(c)
(10)

The parameters of the interpolation include the interpolation basis function s(x, c), the
primitive function f (x), the maximum error Emax(c), and the required optimal shape
parameter copt for the interpolation.

Particle swarm optimization (PSO) [18] is a population-based optimization algorithm
inspired by the social behavior of birds. PSO maintains a population of particles, each
representing a potential solution to the optimization problem. Each particle has a position
and velocity in the search space, and the algorithm updates these values iteratively to
search for the optimal solution.

The position of each particle at iteration t is represented by a vector xi(t), and its
velocity is represented by a vector vi(t). The best position that particle i has achieved so far
is denoted by pi(t), and the best position achieved by any particle in the swarm is denoted
by g(t). The objective function to be optimized is denoted by f (x).

At each iteration, the algorithm updates the position and velocity of each particle
based on its current position, velocity, and the best positions achieved by both itself and
the swarm as a whole. The position and velocity updates are given by:

vi(t + 1) = wvi(t) + c1r1(pi(t)− xi(t)) + c2r2(g(t)− xi(t)) (11)
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xi(t + 1) = xi(t) + vi(t + 1) (12)

where w is the inertia weight, which controls the particle’s tendency to maintain its current
velocity. c1 and c2 are the cognitive and social learning factors, respectively, which control
the particle’s tendency to follow its personal best position and the swarm’s best position. r1
and r2 are random numbers drawn from a uniform distribution.

The algorithm terminates when a stopping criterion, such as a maximum number
of iterations or a desired level of convergence, is met. The best solution found by the
algorithm is the particle with the best position achieved throughout the iterations.

In summary, PSO is a population-based optimization algorithm that updates the
position and velocity of each particle based on its current position, velocity, and the best
positions achieved by both itself and the swarm as a whole. By emulating the social
behavior of birds, PSO is capable of efficiently searching for the optimal solution to complex
optimization problems.

This paper employs PSO to optimize the shape parameters of G-RBF interpolation.
This technique is particularly advantageous when dealing with complex systems that have
a large amount of data to model using the G-RBF proxy. It provides a significant time
reduction for parameter determination. G-RBF interpolation requires the determination
of the optimal shape parameter copt to minimize the interpolation error. The process is
as follows:

Step 1: Initialize the particle swarm
Assuming that the particle swarm consists of n particles, the position and velocity of

each particle can be denoted by xi and vi, respectively. The initial position and velocity are
generated randomly and typically follow a uniform or Gaussian distribution.

Step 2: Determine the fitness value.
The position of each particle represents a viable design solution. Based on the current

position, the objective function value indicated by the maximum absolute error is used as
the particle’s fitness value fi.

Step 3: Update particle speed and position.
The velocity (vit) and position (xit) of the particles are updated during the t-th iteration

as follows:
vit = wvit + c1r1(xpbesti − xit) + c2r2(xgbest − xit) (13)

xit+1 = xit + vit (14)

Here, the inertia weight (w) regulates the particle motion’s inertia. The acceleration
coefficients (c1 and c2) determine the impact of the particle’s individual historical best
position (xpbesti) and the global best position (xgbest) on the particle’s velocity. The random
numbers (r1 and r2) create a stochastic element in the calculation.

Step 4: Update the optimal value
Following each iteration, the historical and globally optimal values of every particle

are updated. For the ith particle, if the current position generates a fitness value fi, which
is less than its historical optimal fitness value fpbesti

, pbesti = xi and fpbesti
= fi will

be updated. gbest is updated with the position that has the lowest fitness value among
all particles.

Step 5: Convergence Judgment
It is determined whether the particle swarm has converged, meaning that the position

of the particle has barely changed or not changed at all. If the iteration stop condition is
met, the globally optimal value and position are output. Consequently, the algorithm ends.
If not, the algorithm returns to Step 3 for another iteration. To ensure the reproducibility
of our results, we have provided detailed information on the specific parameters and
settings used in the PSO algorithm. The PSO algorithm was used to optimize the shape
parameter and manage the sampling points. The swarm size was set to 50, the maximum
number of iterations was set to 500, the inertia weight was set to 0.8, and the cognitive
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and social parameters were set to 1.5. The constriction factor was set to 0.729 to ensure the
convergence of the algorithm.

In conclusion, the PSO algorithm outputs the optimal shape parameter copt of the
G-RBF based on the calculated results. Following experimental research by numerous
researchers [19–26], it has been confirmed that the method proposed in [27] demonstrates
high accuracy in selecting the shape parameters of radial basis function interpolation.
Therefore, it has been widely utilized. In this section, this study selected seven test functions
from [27–29] (Tables 1 and 2) and calculated them under the same conditions specified
in Section 2.3.1, comparing the experimental results to those obtained using the method
in [27] (Table 3).

Table 1. Test functions.

f

f1 = x2

8+x5

f2 = 0.75 exp
(
− (9x−2)2+(9y−2)2

4

)
+ 0.75 exp

(
− (9x+1)2

49 +
9y+1

10

)
+0.5 exp

(
− (9x−7)2+(9y−3)2

4

)
− 0.2 exp

(
−(9x− 4)2 − (9y− 7)2

)
f3 =

tanh(9y−9x)+1
9

f4 =
1.25+cos(5.4y)
6(1+(3x−1)2)

f5 =
5
∑

i=1

[
3
10 + sin

(
16
15 xi − 1

)
+ sin2

(
16
15 xi − 1

)]
f6 =

10
∑

i=1
xi(1 + ln xi

xi+x10
)

Table 2. Parameter setting.

f Vars. Design Domain Sample Points

f1 1 x ∈ [0, 7] 21

f2 2 x ∈ [0, 1], y ∈ [0, 1] 1000

f3 2 x ∈ [0, 1], y ∈ [0, 1] 1000

f4 2 x ∈ [0, 1], y ∈ [0, 1] 1000

f5 5 xi ∈ [−1, 1] 80

f6 10 xi ∈ [0.5, 10] 200

Table 3. Comparison with the effect of the method in [27].

f copt RMSE Operation Time(s)

PSO [27] PSO [27] PSO [27]

f1 0.333 0.392 1.23× 10−2 1.41× 10−2 0.015 1.601

f2 0.172 0.188 2.01× 10−3 2.55× 10−3 0.226 2.279

f3 1.327 1.0878 4.23× 10−3 5.33× 10−3 1.439 3.763

f4 0.356 0.8465 1.96× 10−4 7.45× 10−4 3.014 7.419

f5 0.012 0.625 7.82× 10−3 6.84× 10−2 10.812 39.726

f6 0.714 1.826 1.71× 10−2 5.92× 10−2 1.171 3.365

Based on the experimental results in Table 3, the PSO algorithm was found to be
effective in determining the optimal shape parameters of G-RBF interpolation. Specifically,
our method significantly reduced the operational cost and improved the accuracy of
interpolation, particularly for f5.
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2.4. Control of Sampling Points

Section 2.2 examines how sampling points affect the accuracy of the G-RBF surro-
gate model, and we regulate it with regard to the selection, number, and spacing of
sampling points.

First of all, the selection of sampling points is a crucial step in the research methodology
and must be carried out according to specific principles. It is imperative that the sampling
points chosen for this study are representative of the entire space, as the accuracy of the
approximate model heavily relies on this factor. Given the unique properties of the Latin
hypercube method [30], it is the preferred approach for extracting information from the
entire space and is therefore utilized in this study.

Moreover, the addition of sample points needs to be regulated. Once the model attains
a specific accuracy level, there is no need to continue adding sample points. Here is the
particular regulation method: the accuracy threshold is established as θ for the proxy model.
If the root mean square error (RMSE) is less than θ, there is a need to increase the sample
point. On the other hand, it is unnecessary to add sample points if the RMSE is greater
than or equal to θ. Moreover, the number of sampling times is restricted to a maximum
value of N.

Finally, it is critical to regulate the spacing between sampling points. As described in
Section 2.2, having sampling points that are too close may result in an ill-conditioned matrix
A, hence the need to regulate the spacing between added points. In some cases, it is also
essential to ensure that the distance between points is not too close since, at times, this could
inadequately represent the system’s entire information, thus negatively affecting the global
optimization outcomes. Moreover, a program may end too early when an addition point is
too close to an existing sampling point, thus failing to meet the precision requirements. As
a result, it is crucial to filter and remove points that are too close after adding them. The
current sampling points are labeled as Se =

{
x1, . . . , xj, . . . , xs

}
. The collection of points

added after them is marked as Sa = {x1, . . . , xi, . . . , xn}. Since the shape parameter c mainly
determines matrix element values and plays a significant role in assessing points’ proximity
degree, the criterion for governing sampling point spacing, after the determination of copt
using the method described in Section 2.3.1, is whether di =

∥∥xi − xj
∥∥ > copt satisfies a

specific condition for each xi in sa.

3. Joint Optimization Algorithm Based on G-RBF Surrogate Model
3.1. Main Idea of the Joint Optimization Algorithm

One of the key advantages of global optimization algorithms is their ability to escape
the limitations of locally optimal solutions. Although they possess strong search capabilities,
their convergence speed is relatively slow, necessitating multiple high-precision model
calculations. Alternatively, local optimization methods demonstrate faster convergence
rates but are prone to reaching locally optimal solutions, particularly when a poor initial
value is selected. In response to these issues, the joint optimization method utilizes the
global search capabilities of the former coupled with the faster convergence rate of the
latter to ensure optimization convergence, minimize high-precision model calculations,
and reduce calculation costs.

Initially, data are utilized to determine the optimal shape parameters using the method
described in Section 2.3.1. Then, a surrogate model using G-RBF is constructed. Subse-
quently, the global optimization method is used to optimize the model, with the optimiza-
tion cost being very small due to the simplicity of the G-RBF surrogate model. Lastly, the
optimized variable value is taken as the initial value, and a local optimization algorithm is
subsequently used to optimize the high-precision surrogate model to ensure the accuracy
of the optimized solution.

3.2. Process of the Joint Optimization Algorithm

This section first provides specific details regarding the control thresholds for various
parameters and the error evaluation method for the joint optimization process. The accuracy
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threshold for the surrogate model is represented by θ, the maximum number of sampling
times is N, and the inter-sample distance is controlled by copt. The evaluation of errors is
computed using the root-mean-square-error (RMSE) method expressed as:

RMSE =

√√√√√ N
∑

i=1
(yi − ỹi)

N
(15)

The following section outlines the specific steps involved in the joint optimization
algorithm based on the G-RBF surrogate model with an optimal shape parameter.

Step 1: The entire system is sampled using Latin hypercube, followed by the selection
of the optimal shape parameters based on the sampling points using the method described
in Section 2.3.1.

Step 2: The surrogate model undergoes precision verification, where the existence
of RMSE > θ warrants the further addition of points. According to the description in
Section 2.4, validation procedures are necessary for each addition. Newly added point xi
must satisfy the condition di =

∥∥xi − xj
∥∥ > copt relative to the preexisting point xj. Thus,

the addition of each point is either valid or invalid, and the invalid point must be re-added
until RMSE < θ is achieved or the maximum number of sampling times reaches N.

Step 3: The G-RBF surrogate model obtained can be optimized using global optimiza-
tion techniques to determine the optimal solution. The use of a sampling strategy that
ensures that points are well spaced allows the surrogate model to represent global informa-
tion. Therefore, the optimal solution obtained through global optimization techniques is
likely to be very close to the optimal solution of the original problem.

Step 4: The global optimization solution serves as an initial value submitted to the
local optimization method to further optimize the high-precision G-RBF surrogate model,
resulting in the optimal solution of the joint optimization algorithm.

The joint optimization algorithm is presented in the form of a flowchart in Figure 4.

Figure 4. Algorithm flow.
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3.3. Testing the Joint Optimization Algorithm

In this section, we test the effectiveness of the G-RBF surrogate-based joint optimiza-
tion algorithm using two two-dimensional test functions. In practical applications, it is
important to avoid excessive calls to high-precision models. Therefore, when comparing
the global optimization algorithm, local optimization algorithm, and joint optimization
algorithm, the maximum absolute error (MaxError) was chosen as the measure of error for
the design variables. The MaxError in function values (Ey), the MaxError in variable values
(Ex), and the number of G-RBF surrogate model calls (T) are compared.

• Test case 1: Ackley Function

The Ackley Function [31] is a multimodal function with multiple local minima and a
very complex landscape. It is defined as follows:

f (x, y) = −20 exp

(
−0.2

√
1
2
(x2 + y2)

)
− exp

(
1
2
[cos(2πx) + cos(2πy)]

)
+ e + 20 (16)

Here, x and y are the independent variables that lie in the range −5 ≤ x, y ≤ 5.
The optimal solution and value refer to the minimum point and value, respectively,

of the function. The optimal solution for the Ackley Function is (0, 0), where the function
reaches its minimum value of f (0, 0) = 0. Optimization algorithms can be employed to find
the optimal solution. This study employed a genetic algorithm as the global optimization
algorithm and a gradient descent method as the local optimization algorithm.

A genetic algorithm (GA) is a population-based optimization algorithm that mimics
the process of natural selection to search for the optimal solution. The algorithm maintains
a population of candidate solutions, represented by a set of chromosomes, and iteratively
applies genetic operators, such as selection, crossover, and mutation, to generate new
offspring. The fitness of each individual is evaluated based on the objective function, and
the population evolves toward better solutions over time. The GA terminates when a
stopping criterion, such as a maximum number of generations, is met or when the optimal
solution is found.

The gradient descent method is an iterative optimization algorithm that seeks to
minimize a function by iteratively adjusting the parameters in the direction of the negative
gradient of the function. At each iteration, the algorithm computes the gradient of the
function with respect to the current parameter values and updates the parameters in the
direction of the negative gradient. The step size of the update is controlled by a learning
rate parameter, which determines the size of the step taken in each iteration. The algorithm
terminates when a stopping criterion, such as a desired level of convergence or a maximum
number of iterations, is met.

In this study, the GA was employed as the global optimization algorithm to search for
the optimal set of design variables, whereas the gradient descent method was used as the
local optimization algorithm to refine the solution obtained using the GA. Specifically, the
GA was used to generate a set of candidate solutions, and the best solution was selected
as the initial point for the gradient descent method. The gradient descent method was
then employed to fine-tune the solution by iteratively adjusting the design variables in the
direction of the negative gradient of the objective function. The process was repeated until
convergence was achieved or a maximum number of iterations was reached.

In summary, the combination of the genetic algorithm and gradient descent method
allowed for efficient global and local optimization, respectively, and enabled the algorithm
to search for the optimal solution in a large search space. A population size of 30 and
100 generations was used. The initial values for the gradient descent method were set to
[−5, 0].

The best shape parameter copt = 1.668 for the G-RBF interpolation of (16) was deter-
mined using the method described in Section 2.3.1. The RMSE threshold for the surrogate
model was set to θ = 1× 10−6, and Figures 5 and 6 show the RMSE of the G-RBF surrogate
model and the distribution of sampled points.
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Figure 5. RMSE of G-RBF surrogate model.

Figure 6. Distribution of sampling points.

The distribution of the sampling points, including the added points, appeared to be
fairly uniform across the global range. This suggests that the controlled refinement strategy
in Section 2.4 was effective in ensuring that the surrogate model adequately captured the
global characteristics. This ensures that our joint optimization algorithm can find the global
optimal solution.

The convergence of the genetic algorithm optimization of the original objective func-
tion and our proposed joint optimization algorithm are compared in Figures 7 and 8.

Figure 7. Genetic algorithm.
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Figure 8. Joint optimization algorithm.

Table 4 compares the optimization error and the number of function evaluations for
the objective function (16).

Table 4. Comparison of optimization methods for the objective function (16).

Algorithm Ey Ex T

Genetic 1× 10−6 1× 10−6 1038

gradient descent 3.3× 10−2 5.8× 10−1 560

Joint optimization 1× 10−6 1× 10−6 170

As the gradient descent method exhibited significantly larger errors compared to the
other two algorithms, we do not discuss it in detail here. In contrast, both the genetic
algorithm and joint optimization methods converged to the exact solution, as demonstrated
in Figures 7 and 8 and Table 4. However, there were differences in their convergence
behaviors. The joint optimization method converged more swiftly to the vicinity of the
exact solution during the iteration thanks to decent initial values. In contrast, the genetic
algorithm required considerably more operations of the high-fidelity G-RBF surrogate
model before converging to the solution. These results highlight the effectiveness of the
joint optimization method in reducing computation costs and accelerating convergence
while ensuring solution accuracy.

• Test case 2: Rosenbrock’s Banana Function

Rosenbrock’s Banana Function [32] is a well-known constrained optimization problem,
which is frequently utilized for evaluating optimization algorithms’ performance. The
function can be formulated as minimizing the Equation:

f (x, y) = (1− x)2 + 100(y− x2)2, x + y ≤ 2 (17)

where x and y are bounded by the range [−2, 2]. The optimal solution to this problem is
achieved when x = 1 and y = 1, at which point the objective function attains the minimum
value of f (x, y) = 0. We employed the ant colony algorithm as our global optimization
method and the simplex method as the local optimization in our study.

The ant colony algorithm (ACA) is a metaheuristic optimization algorithm inspired by
the behavior of ants in finding the shortest path between their colony and food sources.
The algorithm maintains a set of artificial ants, each representing a potential solution to
the optimization problem. The ants construct a pheromone trail based on the quality of
the solutions they encounter, and the pheromone trail guides subsequent ants toward
better solutions. The algorithm terminates when a stopping criterion, such as a maximum
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number of iterations or a desired level of convergence, is met. The best solution found by
the algorithm is the one with the highest pheromone trail.

The simplex method is an iterative optimization algorithm that seeks to minimize a
linear objective function subject to linear constraints. The algorithm starts with a feasible
solution and iteratively moves toward the optimal solution by adjusting the variables within
the constraints. At each iteration, the algorithm identifies a non-basic variable that can
improve the objective function value and moves along the direction of the corresponding
constraint boundary until a new basic feasible solution is found. The algorithm terminates
when a stopping criterion, such as a desired level of convergence or a maximum number of
iterations, is met.

In this study, we employed the ACA as the global optimization algorithm and the
simplex method as the local optimization method. Specifically, the ACA was used to
explore the search space and identify promising regions for the optimization problem.
The best solution found by the ACA was then used as the initial point for the simplex
method, which iteratively improved the solution by adjusting the design variables within
the constraints. The process was repeated until convergence was achieved or a maximum
number of iterations was reached.

In summary, the combination of the ant colony algorithm and simplex method allowed
for efficient global and local optimization, respectively, and enabled the algorithm to search
for the optimal solution in a large search space subject to linear constraints.

The optimal parameter is copt = 1.001, with an RMSE threshold of θ = 1× 10−6.
Figures 9 and 10 illustrate the convergence process of the ant colony and joint optimization
algorithms. Table 5 compares the results obtained using the three optimization algorithms.

Figure 9. Ant colony algorithm.

Figure 10. Joint optimization algorithm.
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Table 5. Comparison of optimization algorithms for the objective function (17).

Algorithm Ey Ex T

Ant Colony 1× 10−6 1× 10−6 1945

Simplex 8.9× 10−1 3.2× 10−1 661

Joint optimization 1× 10−6 1× 10−6 382

The solution obtained using the simplex method was far from optimal so we do not
discuss this in detail here. Table 5 and Figures 9 and 10 show that both the ant colony and
joint optimization algorithms converged to the optimal solution. It should be noted that
the joint optimization algorithm needs to run the Gaussian radial basis function surrogate
model only one-fifth of the times required by the ant colony algorithm. This further
supports the effectiveness of the algorithm proposed in this study.

3.4. Feasibility of the Joint Optimization Algorithm

Our joint optimization algorithm employs three technologies: a high-precision G-RBF
surrogate model with an optimal shape parameter, global optimization, and local optimiza-
tion. In order to ensure uniformity in space, express the whole-space characteristics, and
bring the solution of the global optimization algorithm closer to the actual solution, the
control-plus-point strategy is employed in the sampling distribution. The convergence of
the method is guaranteed by the existing global optimization algorithms. Hence, the joint
optimization algorithm is deemed feasible.

From the two classic test functions, it is evident that the joint optimization algorithm
can efficiently attain global optimization goals. Our optimization technique significantly
reduces the number of high-precision model calls, thereby enhancing the method’s effec-
tiveness and reducing costs in real-world applications.

4. Application of the Joint Optimization Algorithm in Cantilever Beam Design
4.1. Optimal Design Model of Cantilever Beam

Below is a cantilever design model from [11]. The limited operational space among
stations in single-machine, multiple-workstation stamping systems, and the relatively large
size of cantilever beams make it particularly essential to select materials reasonably and
design a size that is rational. In addition, the length of the cantilever beam is dictated
by the requirements and constraints of practical situations. Thus, the U-shaped section
dimensions of the cantilever beam, as shown in Figure 11, can be optimized. The primary
variables include the cantilever width B (in meters), height H (in meters), thickness d (in
meters), and length L (in meters) of the cantilever beam. Additionally, auxiliary variables
such as h, e1, e2, and b are introduced for the convenience of subsequent computation. In
this context, s represents the section center of gravity, whereas x denotes the x-axis location
of the center of gravity.

Figure 11. U-shaped section of a cantilever beam.
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The objective function represents the desired objective to be achieved during the
design process and is expressed as a functional relationship between the design variables.
Considering the cross-sectional parameters of the cantilever beam, the design variables are
determined as follows:

X = [x1, x2, x3] = [B, H, d] (18)

Based on the structural design requirements of the cantilever beam, the optimization
objective is to minimize the mass of the U-shaped cantilever beam while satisfying the
relevant requirements. Therefore, the objective function is (19). In the given context, f (·)
represents the mass of the cantilever beam measured in kg, with the material density
denoted by ρ in (kg·m−3).

min f (x1, x2, x3) = ρ× [x1x2 − (x2 − x3)(x1 − 2x3)]× L (19)

4.2. Constraint Condition

1. The performance constraint function
Firstly, to ensure satisfactory performance, a constraint function is proposed. The

maximum deflection f v of the cantilever beam is determined by the design requirements
of the gripping structure of the cantilever beam in this paper and is obtained by combining
the mechanics of materials using the flexure formula as follows:

fv =
PgL3

3EIv
6 [ f ] (20)

P = 2m1 + m2 + m3

Ix =
Be3

1 − bh3 + 2de3
2

3

e1 =
2dH2 + bd2

2(2dH + bd)
e2 = H − e1

(21)

In Equations (20) and (21), P is the mass of the workpiece in kilograms; b represents
the inner width of the U-shaped cantilever beam; E is the elastic modulus of the material;
[ f ] denotes the maximum allowable displacement under actual working conditions, which
is set at 5× 10−3 m; Ix is the moment of inertia of the U-shaped cantilever beam along
the x-axis; h is the height from the center of the U-shaped cantilever beam’s gravity to
the ground in meters; e1 and e2 represent the distances in meters from the center of the
U-shaped cantilever beam’s gravity to the edges; and g is the gravitational acceleration,
which is set at 10 m/s2. The cantilever beam is 0.5 m long, and the masses of the suction
cup and its support, the sensor and its support, and the workpiece are 0.03 kg, 0.05 kg, and
0.2 kg, respectively.

2. The boundary constraint function
The boundary constraint function restricts the dimensions of the cantilever beam’s

cross-section, as shown in Equation (22), with units of meters, to prevent interference with
the mold due to spatial limitations between the actual working conditions and workstations.

3.5× 10−2 6 x1 6 5× 10−2

6× 10−3 6 x2 6 1× 10−2

1.5× 10−3 6 x3 6 4× 10−3
(22)

Based on real-world conditions and operational constraints, we analyzed three com-
monly used materials for cantilever beam materials, namely 45 steel, rolled bronze, and
hard alloy aluminum. The material properties are presented in Table 6.
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Table 6. Four material-related parameters.

Material Density (kg/m³) Modulus of Elasticity (Pa)

45 steel 7800 2.1× 1011

Rolled bronze 8700 1.03× 1011

Hard alloy aluminum 2700 7.0× 1010

4.3. Solving the Cantilever Beam Design Mathematical Model Using the Joint Optimization
Algorithm Based on the G-RBF Surrogate Model

Based on the above objective function, constraints, and relevant data, the mathemat-
ical model for optimizing the mass of the cantilever beam is derived and is shown in
Equation (23). 

min f (x) = f (x1, x2, x3) = ρ× [x1x2−
(x2 − x3)(x1 − 2x3)]× L

g1(x) = fv = PgL3/(3EIx)− [ f ] 6 0
g2(x) = −x1 + 3.5× 10−2 6 0
g3(x) = x1 − 5× 10−2 6 0
g4(x) = −x2 + 6× 10−3 6 0
g5(x) = x2 − 1× 10−2 6 0
g6(x) = −x3 + 1.5× 10−3 6 0
g7(x) = x3 − 4× 10−3 6 0

(23)

In order to fulfill the requirements of a lightweight design, three different materials
(as shown in Table 6) were chosen for the objective optimization of the cross-sectional
dimensions of a single cantilever beam using the joint optimization algorithm detailed in
Section 3.2. The optimal shape parameter of the G-RBF surrogate model selected using
Equation (10) in Section 2.3.1 is copt = 2.135, with an accuracy threshold RMSE = 1× 10−6.
The global optimization was performed using the genetic algorithm, whereas the local opti-
mization was performed using the direct search method. The genetic algorithm parameters
used were as follows: population size (NP) = 20, migration probability (F) = 0.4, crossover
probability (CF) = 0.8, default fitness function value deviation of 1× 10−6, genetic iteration
number (N) = 100, and the remaining parameters were maintained at their default values.
Table 7 presents a comparative analysis of the final optimization results obtained using the
joint optimization algorithm for three materials, namely 45 steel, rolled bronze, and hard
aluminum alloy.

Table 7. Results of joint optimization.

Design Variable 45 Steel Rolled Bronze Hard Alloy

x1/m 0.0342 0.0342 0.0342

x2/m 0.0101 0.0101 0.0101

x3/m 0.0018 0.0039 0.0032

f (x)/kg 0.3251 0.7605 0.1943

It is evident that under the constraints of nonlinear conditions, the optimal solutions
for different materials vary. Under the requirement of bending deformation, the maximum
mass of a cantilever beam was achieved using rolled bronze at 0.7605 kg. In contrast, the
lightest mass was obtained using hard aluminum alloy at 0.1943 kg. The comparative results
in Table 7 indicate that when the material for the cantilever beam was hard aluminum alloy,
the weight of the automatic feeding device was at its lightest.

This study employed a genetic algorithm as the global optimization algorithm and a
direct search method as the local optimization algorithm. The direct search method is a
derivative-free optimization algorithm that seeks to minimize an objective function without
using gradient information. The algorithm iteratively searches the vicinity of the current
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solution by evaluating the objective function at a set of candidate points and updates the
current solution based on the best candidate point found. The algorithm terminates when
a stopping criterion, such as a desired level of convergence or a maximum number of
iterations, is met.

The results of the experiments indicated that both the genetic algorithm and the
proposed joint optimization method achieved convergence to the optimal solution, whereas
the direct search method fell short. The performance of the three optimization algorithms
when running the G-RBF proxy model during various material optimization processes is
presented in Table 8. The results demonstrate that the joint optimization algorithm exhibits
heightened performance.

Table 8. Comparison of the times of running the G-RBF surrogate model (T).

Material Genetic Direct Search Joint Optimization

45 steel 689 126 63

Rolled bronze 391 78 26

Hard alloy 372 85 24

Based on the joint optimization algorithm process, the optimal solutions for 45 steel,
rolled bronze, and hard aluminum alloy were obtained, as depicted in Figures 12–14.
It can be observed that given the global algorithm provided good initial values for the
joint optimization method, all materials converged to the optimal solution at a lower
computational cost.

Figure 12. Optimization results of 45 steel.

Figure 13. Optimization results of rolled bronze.
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Figure 14. Optimization results of hard alloy.

According to Table 7, hard aluminum alloy was the lightest material for the cantilever
beam, with a weight of 0.1943 kg. To confirm that the hard aluminum alloy cantilever
beam was suitable for its intended working conditions, the grasping structure of a single
cantilever beam was analyzed using ANSYS 2021 R2 finite element analysis software. The
cantilever beam was modeled using solid186 elements with a mesh size of 2 mm. The
solid186 element is a 3D 20-node solid element with reduced integration and hourglass
control, which is commonly used for structural analysis in ANSYS. The material properties
of the hard aluminum alloy were defined in the material properties section of the ANSYS
model, including Young’s modulus, Poisson’s ratio, and the yield strength of the hard
aluminum alloy. Young’s modulus and Poisson’s ratio were obtained from the literature,
and the yield strength was set to 195 MPa, which is the yield limit of hard aluminum
alloy. The cantilever beam was fixed at one end and subjected to a concentrated load of
100 N at the free end. The analysis was performed using ANSYS’s static structural module,
which utilized the finite element method to solve the equations governing the structural
behavior of the cantilever beam. The convergence criterion for the simulation was set to a
maximum displacement change of 0.01 mm per iteration. The test results indicated that the
maximum displacement of the cantilever beam was approximately 0.0011 m, which is far
below the deflection requirement of 0.005 m. Additionally, the maximum stress experienced
by the cantilever beam was 9.7 MPa, which is significantly less than the yield limit of hard
aluminum alloy, which is 195 MPa. The safety factor of the optimized cantilever beam
was found to be more than 20, indicating a large margin of safety. Therefore, it can be
inferred that a lightweight cantilever beam made from hard aluminum alloy fulfills its
design requirements for yield strength and deflection.

5. Potential Extension and Improvement of the Algorithm

In this section, we discuss potential extensions and improvements to our proposed
joint optimization algorithm.

First, we suggest examining the algorithm’s applicability to more complex optimiza-
tion problems, such as those involving multi-objective optimization or nonlinear constraints.
For example, our algorithm could be applied to the optimization of complex structures
or systems with multiple design objectives, such as weight reduction, cost minimization,
and performance improvement, while satisfying multiple constraints. This will extend the
applicability of the algorithm to a broader range of engineering design problems.

Furthermore, we propose exploring the integration of multiple surrogate models or
optimization methods to further improve the algorithm’s performance and applicability to
various engineering design problems. For instance, the combination of global and local
surrogate models could be employed to achieve a better balance between accuracy and
efficiency, while hybrid optimization algorithms could be used to leverage the strengths of
different optimization techniques. These extensions will enhance the algorithm’s robustness
and efficiency and enable it to tackle more challenging optimization problems.

We believe that these future research directions will help advance the field of surrogate-
assisted optimization and further enhance the practical applicability of our proposed
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algorithm. By considering these extensions and improvements, the algorithm can be
further developed to meet the ever-increasing demands of modern engineering design.

6. Conclusions

Our joint optimization algorithm combines global and local optimization techniques
with the Gaussian radial basis function surrogate model’s approximation capabilities,
achieving superior optimization results with reduced computation time. By optimizing
the cross-sectional size parameters of a U-shaped cantilever beam for different materials
in an automatic feeding device of a single-machine multi-station stamping system, we
demonstrated the algorithm’s practical applicability, achieving a weight reduction while
satisfying the yield strength and deflection constraints. The optimized cantilever beam
weighed only 0.1943 kg, demonstrating the effectiveness of our joint optimization algorithm
based on the surrogate model in real-world applications. Our study provides a useful
reference for optimizing structural designs under complex operational conditions.
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