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Abstract: With progress on both the theoretical and the computational fronts, the use of Hermite
interpolation for mathematical modeling has become an established tool in applied science. This
article aims to provide an overview of the most widely used Hermite interpolating polynomials and
their implementation in various algorithms to solve different types of differential equations, which
have important applications in different areas of science and engineering. The Hermite interpolating
polynomials, their generalization, properties, and applications are provided in this article.
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1. Introduction

Special functions are solutions to a large class of equations having physical and math-
ematical applications. These functions, with a long history, and having a wide range of
literature, are immensely popular both within and outside of mathematics. More precisely,
such functions appear in probability theory, electro-optics, quantum mechanics, electro-
magnetic theory, communication systems, and nonlinear wave propagation, etc. Special
functions are a crucial part of the formalisation of mathematical physics and serve as
one-of-a-kind tools for developing models of real-life problems that are both straightfor-
ward and accurate. The theory of these functions, developed by classical authors such as
Euler, Chebyshev, Gauss, Hardy, Hermite, Legendre, Ramanujan, and others, has been
an extensive area of study in mathematics. Particularly, orthogonal polynomials [1] have
significant applications in applied sciences that fall under the analytical and computational
areas, with applications in quantum and electro-dynamics [2,3]. The polynomial structure
reveals analytical features [4], but it lacks the computational robustness required for higher
orders. By employing the Gram–Schmidt orthogonalization technique and starting with
1, x, x2, . . . , orthogonal polynomials can be generated. Among the Hermite, Laguerre,
Legendre, Chebyshev, etc., polynomials, a vast literature is available on the Hermite in-
terpolation of polynomials. A summary of the properties, error bounds, and solutions of
differential equations using Hermite interpolating polynomials is reviewed in this article.

Piecewise Hermite polynomials have been used for solving differential equations.
Wide ranging numerical application of these polynomials is found in the Lagrangian or
action integral of the analysis of discrete elements that require continuity of derivatives
of functions. Different types of Hermite polynomials may be produced to ensure C(n)

continuity over elements. The several forms that guarantee C(n) continuity over an element
of a certain dimension vary in terms of the quantity of nodes present in each element, the
kind of data evaluated on every node, and the order of the derivative of the polynomials.
The properties of these approximation sets have an impact on the computing effectiveness.
An element with nodes only at its vertices makes a mesh’s adjacency matrix simpler, thus
reducing the bandwidth of matrices used in finite element calculations and potentially
impacting the computational cost of a problem.

Mathematics 2023, 11, 3157. https://doi.org/10.3390/math11143157 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143157
https://doi.org/10.3390/math11143157
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11143157
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143157?type=check_update&version=1


Mathematics 2023, 11, 3157 2 of 28

A French mathematician by the name of Charles Hermite [5] performed research
on algebra, orthogonal polynomials, quadratic forms, elliptic functions, invariant theory,
number theory, and quadratic forms. Several mathematical structures bear his name, in-
cluding Hermite normal form, Hermite polynomials, Hermitian operators, and Hermite
cubic splines. These polynomials have applications in areas such as quantum simple
harmonic oscillators [6], brain signal analysis for the detection of epileptic seizures [7],
image contraction [8], image processing (identification and expression of image specifi-
cations) [9,10], sound contraction [11,12], computer algebra [13], effective colour–texture
image segmentation [14], scanning electron microscope images [15] etc.

The interpolation of functions with various variables plays an important role in solving
both theoretical and applied problems. It is often used, in particular, for approximating the
representation and computation of functions, numerical integration, numerical differentia-
tion, and the development of approximation techniques for solving different kinds of linear
and nonlinear problems. The problem of function interpolation is significantly extended by
operator interpolation, which serves as the basis for the establishment of approximation
techniques and algorithms for tackling real-world problems. It is one of the parts of applied
functional analysis and the general theory of approximate methods. Hermite interpolation
is a technique that permits the consideration of both the data themselves and specified
derivatives at data points. It is closely related to the Newton divided difference method.
The approximation will produce a polynomial with a degree that is less than or equal to
the number and derivatives of these data points.

This survey article gives a comprehensive analysis of the Hermite interpolating poly-
nomials and its use in different algorithms like collocation method, orthogonal collocation
on finite element, Galerkin method, finite element method, etc. to solve various types
of differential and integral equations. The development of the cubic, quintic and septic
Hermite interpolation polynomials are discussed in this article. The type of error bounds,
generalization, properties and applications of the Hermite interpolating polynomials are
also reviewed. The Hermite basis functions are of class Cd, d = 1, 2, 3. Because of the
continuity condition, the double calculation at mesh locations is avoided. As a result, the
computational time is drastically reduced. The paper is organized as: in Section 2, the
formation of Hermite interpolation polynomial is given. Literature review on Hermite
polynomial is presented in Section 3. Application of Hermite as a basis function is discussed
in Section 4. Author’s contribution, conclusion and future application/advancements are
discussed in Sections 5, 6 and 7.

2. Hermite Interpolation Polynomials

In this section, a detailed introduction about the cubic, quintic, and septic Hermite
interpolation polynomials is given [16–18]. Through a discrete set of points and their
derivative sets, piecewise Hermite interpolation is a widely used technique for finding a
continuously differentiable curve. The Hermite polynomial is a generalisation of both the
Taylor and Lagrange polynomials, and, therefore, it is also referred to as an “osculating
polynomial”. Let a = x0, x1, . . . , xn = b be the discretization of a given domain [a, b].
Let {UIe

2d+1, d = 1, 2, 3} be the element-specific Ie(= [xe−1, xe]) collection of all algebraic
expressions having a degree not exceeding n and B2d+1 denotes the collection of the basis
functions expressed as:

B2d+1 = {v ∈ Cd(a, b) : v |Ie∈ UIe
d+1, e = 1, 2, . . . , n}, (1)

which contains (d + 1)(n + 1) functions, where B2d+1 represents the polynomial vector
space of degree ≤ 2d + 1. On Ie, find the basis function for B2d+1. Assume that the value of
f (x) and its first d derivatives are known at n nodes, such that:

fk = f (xk), f ′k = f ′(xk), . . . , f (d)k = f (d)(xk), d = 1, 2, 3, k = 0, 1, . . . , n.

It is necessary to seek an interpolating polynomial H2d+1(x) which interpolates f (x) such that
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H2d+1(xk) = f (xk), H′2d+1(xk) = f ′(xk), . . . , H(d)
2d+1(xk) = f (d)(xk), k = 0, 1, . . . , n. (2)

The above-mentioned (d + 1)(n + 1) conditions are known as the interpolatory conditions.

2.1. Cubic Hermite Polynomial

In terms of 2(n + 1) coefficients, the cubic Hermite polynomial H3(x) may be defined
as follows for d = 1:

H3(x) =
n

∑
k=0

[pk(x) f (xk) + qk(x) f ′(xk)]. (3)

The functions pk and qk are evaluated by applying interpolatory conditions (2) and La-
grange interpolation polynomials. Four of these functions are used to interpolate the
function and its first derivative at each end point of the elements [xe−1, xe]. For the eth

element, basis functions in terms of cubic Hermite polynomials are defined as follows:

pe(x) =



(
x− xe−1

he

)2(
3− 2(x− xe−1)

he

)
; x ∈ [xe−1, xe](

1− x− xe

he

)2(
1− 2(x− xe)

he

)
; x ∈ [xe, xe+1]

0; Otherwise

qe(x) =



−he

(
x− xe−1

he

)2(
1− (x− xe−1)

he

)
; x ∈ [xe−1, xe]

he

(
1− x− xe

he

)2(
x− xe

he

)
; x ∈ [xe, xe+1]

0; Otherwise

having pk(xk) = 1, q′k(xk) = 1 for all k = 0, 1, . . . , n and he = xe − xe−1. The values of pe(x)
and qe(x) and their first derivatives at the remaining points are zero. These functions are
C1 continuous and

B3 = span{pe−1, qe−1, pe, qe, e = 1, . . . , n}, (4)

forms a basis. For more details and graphical representations the reader can refer to [16,19].

2.2. Quintic Hermite Polynomial

For the value of d = 2, the unique quintic Hermite interpolation polynomial in the
form of 3(n + 1) parameters is given as follows:

H5(x) =
n

∑
k=0

[pk(x) f (xk) + qk(x) f ′(xk) + rk(x) f ′′(xk)], (5)

and undetermined functions pk, qk, and rk are computed by Equation (2) and Lagrange
polynomials. The quintic Hermite basis function at the eth element is written as follows:

pe(x) =


6 (x−xe−1)

5

h5
e
− 15 (x−xe−1)

4

h4
e

+ 10 (x−xe−1)
3

h3
e

; xe−1 ≤ x ≤ xe

6 (xe+1−x)5

h5
e
− 15 (xe+1−x)4

h4
e

+ 10 (xe+1−x)3

h3
e

; xe ≤ x ≤ xe+1

0; Otherwise

qe(x) =


−3 (x−xe−1)

5

h4
e

+ 7 (x−xe−1)
4

h3
e
− 4 (x−xe−1)

3

h2
e

; xe−1 ≤ x ≤ xe

3 (xe+1−x)5

h4
e
− 7 (xe+1−x)4

h3
e

+ 4 (xe+1−x)3

h2
e

; xe ≤ x ≤ xe+1

0; Otherwise
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re(x) =


1
2
(x−xe−1)

5

h3
e
− (x−xe−1)

4

h2
e

+ 1
2
(x−xe−1)

3

he
; xe−1 ≤ x ≤ xe

1
2
(xe+1−x)5

h3
e
− (xe+1−x)4

h2
e

+ 1
2
(xe+1−x)3

he
; xe ≤ x ≤ xe+1

0; Otherwise

with

pe(xk) = δek, p′e(xk) = 0, p′′e (xk) = 0,

qe(xk) = 0, q′e(xk) = δek, q′′e (xk) = 0,

re(xk) = 0, r′e(xk) = 0, r′′e (xk) = δek.

The above-mentioned functions are known as quintic Hermite basis functions, and the
reader can refer to [17] for further details.

2.3. Septic Hermite Polynomial

The unique septic Hermite interpolating polynomial, i.e., for d = 3, is defined
as below:

H7(x) =
n

∑
k=0

[pk(x) f (xk) + qk(x) f ′(xk) + rk(x) f ′′(xk) + sk(x) f ′′′(xk)]. (6)

Similarly, the Lagrange polynomials and Equation (2) are used to calculate the un-
known functions pe(xk), qe(xk), re(xk), and se(xk) in Equation (6). For the eth element, the
basis function is defined as follows:

pe(x) =


35 (x−xe−1)

4

h4
e
− 84 (x−xe−1)

5

h5
e

+ 70 (x−xe−1)
6

h6
e
− 20 (x−xe−1)

7

h7
e

; xe−1 ≤ x ≤ xe

35 (xe+1−x)4

h4
e
− 84 (xe+1−x)5

h5
e

+ 70 (xe+1−x)6

h6
e
− 20 (xe+1−x)7

h7
e

; xe ≤ x ≤ xe+1

0; Otherwise

qe(x) =


−15 (x−xe−1)

4

h3
e

+ 39 (x−xe−1)
5

h4
e
− 34 (x−xe−1)

6

h5
e

+ 10 (x−xe−1)
7

h6
e

; xe−1 ≤ x ≤ xe

−15 (xe+1−x)4

h3
e

+ 39 (xe+1−x)5

h4
e
− 34 (xe+1−x)6

h5
e

+ 10 (xe+1−x)7

h6
e

; xe ≤ x ≤ xe+1

0; Otherwise

re(x) =


5
2
(x−xe−1)

4

h2
e
− 7 (x−xe−1)

5

h3
e

+ 13
2

(x−xe−1)
6

h4
e
− 2 (x−xe−1)

7

h5
e

; xe−1 ≤ x ≤ xe

5
2
(xe+1−x)4

h2
e
− 7 (xe+1−x)5

h3
e

+ 13
2

(xe+1−x)6

h4
e
− 2 (xe+1−x)7

h5
e

; xe ≤ x ≤ xe+1

0; Otherwise

se(x) =


− 1

6
(x−xe−1)

4

he
+ 1

2
(x−xe−1)

5

h2
e
− 1

2
(x−xe−1)

6

h3
e

+ 1
6
(x−xe−1)

7

h4
e

; xe−1 ≤ x ≤ xe

− 1
6
(xe+1−x)4

he
+ 1

2
(xe+1−x)5

h2
e
− 1

2
(xe+1−x)6

h3
e

+ 1
6
(xe+1−x)7

h4
e

; xe ≤ x ≤ xe+1

0; Otherwise

provided pk(xk) = 1, q′k(xk) = 1, r′′k (xk) = 1, s′′′k (xk) = 1, ∀ k = 0, 1, . . . , n. The values of
pe, qe, re, and se and their first three derivatives are zero at the rest of the points. These
basis functions are C3 continuous and

B7 = span{pe−1, qe−1, re−1, se−1, pe, qe, re, se, e = 1, . . . , n}, (7)

forms a basis. The septic Hermite and its graphical representation is discussed in detail in [18].
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3. Literature Review on Hermite Polynomials

In the literature, Hermite interpolation polynomials have been studied from various
points of view. This section contains an extensive review of their properties, error bounds,
formula generalisation, etc.

Varma and Prasad [20] studied the mean convergence of H2n+1, which is based on the
roots of the Chebyshev polynomials. It is shown that the rate at which H2n+1 converges to
f (x) ∈ C1 in weighted LP norms is E2n+1. At the interpolating nodes, the Hermite–Fejer
interpolating polynomial, which has a degree of no more than (2n + 1), coincides with f (x)
and its first-order derivative vanishes. It resembles the Hermite interpolating polynomial
in certain aspects. The weighted mean convergence of the Hermite–Fejer interpolating
polynomial was investigated by Nevai and Vertesi [21,22]. For the Hermite interpolation,
Nevai and Yuan [23] interpolated the specified function and its first-order derivative at
the n roots of the modified Chebyshev polynomials by using the algebraic polynomials
with a degree not exceeding 2n− 1. For weighted LP norms, a convergence study of the
polynomials and their first-order derivatives was performed.

Al-Khaled and Khalil [24,25] worked with the interpolation of Hermite types and
presented norm estimates for different interpolating operators on the space of continuous
functions whose derivatives were also continuous on I. Agarwal [26] provided outcomes
of extended Hermite approximation derivatives on the roots of the Chebyshev polynomial
in the case of weighted LP convergence. Agarwal and Wong [27] obtained the piecewise
Hermite interpolates’ explicit error bounds in L2 norm. These bounds were improvements
of the results given by Schultz [28]. The results obtained by the authors were a supplement
of the explicit bounds for ‖Dp( f − Hn)‖∞ given in [26,29,30]. In terms of ‖Dn+j f ‖q, sharp
upper bounds for ‖Dp( f − Hn)‖∞ were also estimated.

Al-Khaled and Alquran [24,31] investigated the simultaneous interpolation of function
f (x) and its derivative f ′(x) by using the Chebyshev-polynomial-based Hermite interpola-
tion operator H2n+1. In the case of Hermite interpolation, a theorem on extreme nodes was
established by the authors that agreed with Pottinger’s results [32] and was an improve-
ment of the results obtained in [25]. Pottinger [33] used the Chebyshev nodes to prove that
the convergence condition depends on the norms of H2n+1. The author also proved that
the growth of the operator norms is of nth order:

‖Hn(x)− f (x)‖ = O(n)E2n( f ′),

where En( f ) is the best approximation of the function f (x). Szabados and Varma [34]
presented a norm for higher-order derivatives of Hermite interpolation polynomials as:

‖H(p)
n ‖ = sup{‖H(p)

n f (x)‖ : | f (m)(xk)| ≤ nm(1− x2
k)

p−m/2, k = 1, 2, . . . , n, m = 0, 1}.

The authors [34] showed that for any system of nodes:

‖H(p)
n ‖ ≥ Cpnp ln(n), Cp > 0.

Further, they obtained the operator norm as follows:

‖Hn(x)− f (x)‖ = O(np ln(n)),

for the matrix nodes

ω(x) = P(α,α)
n−2t+1(x)

t

∏
i=1

(
x2 − cos2 (i− 1)π

3t(n− 2t + 1)

)
,
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where t =
[

p + 3
4

]
, α = 2t− p + 1

2
, and P(α,α)

n−2t+1(x) is the ultra-spherical Jacobi polynomial

of degree (n− 2t). Therefore, the error bounds for the nodes of a matrix are represented as:

‖H(p)
n (x)− f (p)(x)‖ = O(ln(n))ω( f (p), 1/n).

The derivatives of quasi-Hermite interpolation were used by Min [35] for simultaneous
approximation of the derivatives of f (x) in which the roots of (1− x2)pn(x), (pn(x) is a
Legendre polynomial) are considered. The author showed that zero of (1 − x2)pn(x)
are almost optimal and the corresponding simultaneous approximation is more accurate
than that of the roots of the first kind of Chebyshev polynomial, i.e., based on Hermite
interpolation. The approximation is defined by the below-mentioned theorems:

Theorem 1. If f ∈ C1[−1, 1], then

‖R′n( f , x)− f ′(x)‖ = O(log n)E2n( f ′).

Theorem 2. If f ∈ Cp[−1, 1], then

‖R′n( f , x)− f ′(x)‖ = O(log n)E2n( f ′) = O(log n/n)E2n−1( f ′′),

‖
√

1− x2(R′′n( f , x)− f ′′(x))‖ = O(log n)E2n−1( f ′′),

and
‖R(j)

n ( f , x)− f (j)(x)‖[−σ,σ] = O(log n)E2n−j+1( f (j)), j = 2, 3, . . . , p,

where 0 < σ < 1. The corresponding degrees of approximation are provided that show that the
obtained nodal matrix is almost optimal. In Berriochoa et al. [36], a few applications of the Hermite
interpolation are reported.

Refs. [29,30,37,38] developed results on norm estimation, the convergence of Hermite
polynomials, and many more techniques for the interpolation of several variables. An
extensive review on error estimates in Hermite interpolation is discussed below.

Ciarlet et al. [39] estimated the point to point error e(x) = f − H2d+1 and computed
the derivatives in the form of V = maxa≤x≤b | f (2d+2)(x)| as follows:

∣∣∣e(p)(x)
∣∣∣ ≤ Vhp

p!(2(d + 1)− 2p)!

[
(x− a)(b− x)

](d+1)−p

, 0 ≤ p ≤ d + 1. (8)

From Equation (8), the upper bound on the error is given as follows:

max
a≤x≤b

∣∣∣e(p)(x)
∣∣∣ ≤ Vh2(d+1)−p

4(d+1)−p p!(2(d + 1)− 2p)!
. (9)

For the cubic and quintic Hermite interpolations, as well as their derivatives, Birkhoff
and Priver [40] determined the optimum error bounds. The authors’ study made the
assumption that Equations (8) and (9) are the best constraints for p = 0. However, for p > 0,
Equations (8) and (9) are not the best ones. Error estimation on e(p)(x) was performed for
values of p > 0 using Peano’s Green function approach and e(x) can be expressed in terms
of the Green’s function given by the explicit formula as follows:

e(p)(x) =
∫ b

a
G(x, s) f (2d+2)(s)ds, (10)

where G(x, s) is the Green’s function, and for the cubic and quintic Hermite interpolation,
the error bounds are listed in Table 1.
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Table 1. Error bounds maxa≤x≤b e(p) for cubic, quintic, and septic Hermite polynomials.

p 1 2 3 4 5 6 7
Cubic V

√
3/216 V/12 V/2 - - - -

Quintic V
√

5/30, 000 V/1920 V/120 V/10 V/2 - -

Septic 3V/3, 073, 280
√

7 V/493,920
(3
√

5+5
√

6)
√

1
7 (15−2

√
30)V

588,000 V/1680 V/84 3V/28 V/2

The authors also observed that it is easy to compute optimal error bounds for d = 1
and 2 from the above expression but it is unlikely that the same procedure can be followed
for d > 2. Kumari and Kukreja [18] estimated the optimal error bounds of Hermite
interpolation for d = 3. For septic Hermite interpolation and their derivatives, the error
bounds are listed in Table 1.

At the Chebyshev nodes cos((2j + 1)π/2n)N−1
j=1 ,−1 ≤ x ≤ 1, Riess [41] estimated the

error bounds for Hermite interpolation of function f (x) of different orders of continuity.
For quintic and cubic Hermite interpolating polynomials, Hall [42] computed the explicit
error bounds and proposed the following theorems:

Theorem 3. For f ∈ C4[a, b],

‖H(p)
3 − s(p)‖ ≤ γp‖ f (4)‖h̄4−p, p = 0, 1, 2, 3,

where h̄ = max{he}, γ0 = 1/96, γ1 = 1/24, γ2 = β/4, and γ3 = β2/2.

Theorem 4. For f ∈ C6[a, b],

‖H(p)
5 − s(p)‖ ≤ γp‖ f (6)‖h̄6−p, p = 0, 1, . . . , 5,

where h̄ = max{he}, γ0 = 1/23, 040, γ1 =
√

3/12, 960, γ2 = 1/720, γ3 = β/60,
γ4 = β2/12, and γ5 = β3/6. Chen and Wong [43] proposed one and two independent-variable-
based discrete Hermite interpolation. Furthermore, the authors provided the explicit error estimate
in L∞ for the quintic and biquintic discrete Hermite interpolation by using the discrete Peano
kernel theorem [44]. The convergence of weighted Lp space for the Hermite interpolation and their
derivatives was performed by Criscuolo et al. [45] on the roots of Jacobi polynomials.

Cirillo and Hormann [46] presented an iterative method for solving problems based on
the Hermite interpolation starting with the Lagrange interpolant and m corrective terms are
incrementally added to interpolate the data up to the mth derivative. The authors focused
on the Floater–Hormann interpolants, a family of barycentric rational interpolants, which
are constructed by combining local polynomials of degree d interpolants. The authors
further demonstrated that the rational Hermite interpolants converge at a rate of order
O(h(m+1)(d+1)) for m = 1, 2. Their numerical findings indicate that for m > 2, the rate
remains the same. Cirillo et al. [47] generalised this convergence rate for any value of
m ≥ 1. Varma and Katsifarakis [48] gave the optimal error bounds for the Hermite cubic
interpolating polynomial, i.e., the supplement of the bounds estimated by Birkhoff and
Priver [49]. The uniform error bounds for u(x) ∈ C3[0, 1] were given as:

|H(p)
3 − u(p)| ≤ αpL, (11)

where L = max0≤x,t≤1 | f ′′′(t)− f ′′′(x) |, α0 =
1

96
, α1 =

13
√

13− 46
27

, α2 =
8

27
, α3 = 2

and for u(x) ∈ C2[0, 1]:
|H(p)

3 − u(p)| ≤ βp M, (12)

where M = max0≤x,t≤1 |u′′(t)− u′′(x)|, β0 =
1

16
, β1 = 0.251497657, β2 =

5
3

, β3 = 2.
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Wong and Agarwal [50] used the Peano kernel theorem to obtain the explicit error
bounds in the norm between the quintic Hermite and f (x) ∈ C(n)[a, b], n = 2, 3, . . . , 6 as:

‖Dp(H5 − f )‖ ≤ an,phn−p‖Dp f ‖, 0 ≤ p ≤ n− 1, (13)

where an,p is given in [50]. Varma and Howell [51] estimated the error bounds for deriva-
tives in two-point Birkhoff interpolation equations as:

| u(p)(x)− H(p)
2n−1(x) |≤ uh2n−p max

0≤x≤h
| f (p)(x) |, 0 ≤ p ≤ 2n− 1, (14)

where u = max0≤x≤h | u(2n)(x) | and f (x) =
xn(h− x)n

2n!
. Birkhoff et al. [49] developed

the upper bounds for the Hermite interpolation errors in one and two variables with
applications to partial differential equations. For this, the authors used the Peano kernel
theorem and obtained the global error bounds for Hermite interpolation polynomials H(p)

and f (x) ∈ Kt,r(I), t ≥ p ≥ 1 in one variable as follows:

‖Dj( f − fp,π)‖Lq ≤ cj,p,s,r,qhn−pπ̄s−j−1/r+1/q‖Ds f ‖Lr , (15)

where s = min(t, 2p), q ≥ r, 0 ≤ j ≤ p− 1. For j = p if t > p or q = r and

‖Dj( f − fp,π)‖Lq ≤ cj,p,s,r,rhn−pπ̄s−j(b− a)(r−q)/rq‖Ds f ‖Lr (16)

where 1 ≤ q ≤ r, 0 ≤ j ≤ p, π is the partition of [a, b] and fp,π is the H(p) interpolate of
f (x). The authors used the higher-dimension Peano kernel theorem [52] and obtained the
upper bounds for the error in the Hermite interpolation H(p)(Ri = [ai, bi]× [ci, di]) and
f (x) ∈ Kt,r(I), t ≥ 2p in two variables as:

‖Dh,l( f − fp,π)‖Lr ≤ M(v)2m−h−l , ∀π ∈ C, (17)

where C is the collection of partitions of Ri, 0 ≤ h, l ≤ p with 0 ≤ h + l ≤ 2p − 1 and
1 ≤ i ≤ k. In order to derive a sharp explicit estimation for the envelope of Hermite poly-
nomials that represents the oscillatory area |x|(2k− 3/2)1/2, Foster and Krasikov [53] em-
ployed a positive quadratic-forms-based technique on polynomial inequalities. Cohn [54]
demonstrated the convergence in the distribution of appropriately normalised Wick powers
and developed sharp asymptotes corresponding to the Lp norm of Hermite polynomial
functions. To analyse an extremal problem involving Wiener chaos, the results were
utilised along with numerical integration. By using piecewise Hermite interpolation with
equally spaced nodes, Xu et al. [55] established the precise constants for simultaneous L2
approximation of Sobolev classes.

Todorov [56] developed a theory for extended Hermite polynomials and also studied
various formulae for the derivatives of the function f (xp) of nth order. Several interpolation
schemes using PH curves, such as Hermite interpolation of spatial data [57–61], Hermite
interpolation in the plane [62–65], Hermite interpolation by speed reparametrization [66],
and Hermite interpolation in Minkowski space [67–69]. A degree-by-degree recursive
relation of Hermite interpolants H2n−1 ∈ Cn−1 was constructed by Han [70]. For x ∈
[xk, xk+1], the author computed the formulas for H2n and H2n+1 as follows:

H2n(x) = H2n−1(x) +
1

n!2

n

∑
j=1

(2n− j− 1)!
(j− 1)!(n− j)!

hj
k[ f (j)

k − (−1)j f (j)
k+1]

x− xk
hk

, (18)

H2n+1(x) = H2n(x) +
1

n!2

n

∑
j=0

(2n− j)!
(j)!(n− j)!

hj
k[ f (j)

k − (−1)j f (j)
k+1](1− v)nvn(1− 2v), (19)
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where k = 1, 2, . . . , n, v = (x− xk)/hk. A few interesting properties were also discussed in
that paper and it was shown that the interpolation conditions satisfied by the polynomials
H2n and H2n−1 are the same. They are an optimal estimation of the interpolant H2n+1.
A parametric cubic spline interpolation approach was presented by Boor et al. [71] and
is an extension of Hermite interpolation. It is based on the Sabin concept for generating
C1 bicubic parametric spline surfaces. At each knot, the curvature is specified along
with the position and tangent. This guarantees that the resultant interpolating piecewise
cubic curve exhibits convexity, is sixth-order accurate, and belongs to the C2 class with
respect to arc length. Borzov [72] presented a new method for obtaining generalised
Hermite polynomials and Chand and Viswanathan [73] presented a fractal form of the
cubic Hermite function. Holvorcem [74] developed a numerical method involving the
Hermite functions χm = (2mm!

√
π)

−1
2 e−x2/2Hm(x) for the evaluation of slowly convergent

or even divergent series having forms such as:

F(x) =
∞

∑
m=0

cmχm(x/
√

2),

where cm decays algebraically as m→ ∞, F(x) is known as a Fourier–Hermite series, and

G(x, y) =
∞

∑
m=0

cmχm(x/
√

2)χm(y/
√

2).

The Green’s functions for problems whose eigenfunctions comprise the Hermite functions
are represented by this series. Following a considerable number of terms in this series, the
author established rapid convergent asymptotic expansions for the remaining terms by
using a method based on Poisson summation. The series can thereafter be calculated as a
partial sum plus an approximation based on asymptotic theory for the remaining part. The
author also showed that the remaining terms of G(x, y) reveal the nature of the singular
behaviour near x = y. Carlitz [75] and Kashpur [76] gave a bilinear generating function
for Hermite polynomials in several variables. Glasser and Shawagfeh [77] provided a
new integral representation of the Hermite polynomials. They also studied the asymptotic
behaviour of these functions. Szeliski and Ito [78] investigated the subject of creating a
smooth two-dimensional curve from a collocation of collocation points, this procedure can
be used in curve coding for transmission and curve design.

For usage in CAGD, Casciola and Romani [79] described and analysed the piecewise
quintic Hermite interpolation which can accurately represent any conic arc of arbitrary
length by utilising just one segment. Additionally, these polynomials provided a range of
local/global shape parameters for intuitively creating free-form curves without violating
the C2 continuity that was a feature of the original layout. Xia and Lu [80] used quintic
Hermite interpolation polynomials to study new beam elements for second-order effect
analysis of beam structures. Ivan [81] provided a note on the Hermite interpolation
polynomial for rational functions. The author gave a proof and generalised the formula
of Claude Brezinski involving the Hermite interpolation polynomial. Messaoudi et al. [82]
presented a matrix recursive polynomial interpolation algorithm for computing the Hermite
interpolation polynomial. By using Chebyshev polynomials, Rizk [83] derived explicit
expansions of the Hermite interpolation polynomials. The author assumed that the nodes
are either roots of the Chebyshev polynomial of (n + 1)th order or extremum points of the
Chebyshev polynomial of order n. A review on various properties of Hermite polynomials
is reported below.

Witschel [84] discussed the integral properties of the Hermite polynomials using operator
methods. Stevens [85] studied the congruence properties of Hermite polynomials. Mathur
and Sharma [86] discussed some interpolatory properties, and Dette and Studden [87] gave
its new asymptotic properties. Asymptotic analysis on the expansion of Hermite polynomi-
als and their uses in Gauss quadrature was reported by Xiang [88]. The Hermite matrix
polynomial expansions of a few relevant matrix functions that emerge in the solutions
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of differential systems were discussed by Defez and Jodar [89]. Extremal interpolants, a
unique class of PH quintic interpolating curves developed by Han et al. [90], were shown
to preserve planarity, i.e., planar data represents planar curves. Using modified quintic
Hermite curves and applications, Millham and Meyer [91] examined point files contain-
ing curvature–tangency information. They demonstrated that the quintic curve may be
produced by simply applying a few of the points and tangents in the interval. The quintic
curve then passes through the rest of the points in the way indicated, is examined for
goodness of fit, and, if required, is substituted with a “shorter” sector.

Cramer [92] presented Hermite interpolation polynomials and distributions of ordered
data. They discussed that a certain Hermite interpolation polynomial that is determined at
the origin can be used to understand cumulative distribution functions. Kassebaum et al. [93]
discussed the application of group representation theory to Hermite interpolation polyno-
mials of lower orders which assures that triangle element boundaries in two dimensions
have C(n) continuity but cannot be easily extended to higher dimensions. Manh et al. [94]
studied the Hermite interpolation on irreducible algebraic curves in C2 and then they
showed that the Hermite interpolation polynomials are well-defined in neighbourhoods
of Taylorian points and continuous with respect to the interpolation point. They also pro-
vided some applications to the study of a continuity property of certain bivariate Hermite
projectors. Various other properties such as Hermite polynomials and their squares and
generating functions, the rate of convergence of Hermite function series, the asymptotic co-
efficients of Hermite series, and summability methods for Hermite functions are discussed
in [95–98].

4. Application of Hermite as a Basis Function

Due to the ease of implementation and high-order accuracy, the Hermite as a basis
function has been extensively used in many methods for the numerical study of ODEs
and PDEs. Dyksen et al. [99] analysed the effectiveness of the Galerkin and collocation
techniques in which Hermite bicubic polynomials are used to approximate the solution.
The authors showed that the collocation method requires less computer time than the
Galerkin method. They also observed that in terms of computer time and error, collocation
performs better than the Galerkin method because the Galerkin program uses twice as
much memory as required by the collocation program. Houstis [100] used the collocation
method based on cubic Hermite interpolation polynomials on rectangular domains to solve
linear elliptic problems involving Neumann and Dirichlet boundary conditions:

aD2
xu + 2bDxDyu + cD2

yu + dDxu + eDyu + f u = g, in Ω = [0, 1]× [0, 1],

having the boundary condition as:

α
∂u
∂x

+ βu = 0 on ∂Ω.

Prenter and Russell [101] used fourth-order orthogonal collocation with a bicubic Hermite
polynomial for an elliptic-type PDE:

−Dx[p(x, y)Dxu(x, y)]− Dy[q(x, y)Dyu(x, y)] + c(x, y)u = f (x, y), in Ω = [0, 1]× [0, 1],

and the adaptive Hermite element collocation approach was used in combination with
these adaptive families by Bhuiyan et al. [102]. For the 2D transportation of a solute in an
incompressible fluid field, it generates a matrix having a bandwidth greater than utilising
cubic Hermite elements throughout the space domain as follows:

∂

∂x
(Dx

∂u
∂x

) +
∂

∂y
(Dy

∂u
∂y

)− ∂

∂x
(uVx)−

∂

∂y
(uVy) = −

∂u
∂t

, in Ω = [a, b]× [c, d].
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Chawla et al. [103] solved nonlinear transient 1D heat conduction models by using a
method based on collocation in which Hermite cubic splines were taken as basis functions.
Dyksen [104] employed the collocation method using Hermite bicubic polynomials for the
study of an elliptic problem of the form:

Dxu + Dyu = f , in Ω = [0, 1]× [0, 1], u = 0 on ∂Ω, (20)

where

Dxu = −c2(x)uxx + c1(x)ux + c0(x)u, c2 > 0,

Dyu = −d2(x)uyy + d1(x)uy + d0(x)u, d2 > 0,
(21)

and then to solve the Hermite bicubic collocation equations’ tensor product a generalised
ADI iterative method was applied. The author showed that the method with Hermite
bicubic collocation method was reliable, numerically stable, and converged fast. Duarte
and Portugal [105] developed a moving FEM with cubic Hermite polynomials to solve
front causticizing reaction models of the form:

∂COH−

∂t
=

1
ε

De
∂2COH−

∂τ2 +
2De

τε

∂COH−

∂τ
,

∂CCO2−
3

∂t
=

1
ε

De

∂2CCO2−
3

∂τ2 +
2De

τε

∂CCO2−
3

∂τ
,

where 0 < τ < zI(t) and zI(t) < τ < 1. The value of zI(t), and the initial and boundary
conditions are given in [105]. The derivatives of the solutions with respect to time on
the nodes and nodal velocities are determined when the square norm of the discretized
residuals over the domain is minimised. For the discretization of the spatial domain, a
moving FEM using Hermite polynomials is implemented which forms an ODE system,
can be degenerated whenever singularities arise, and is solved by implicit integration. The
result obtained by the proposed algorithm is in close agreement with results computed by
the orthogonal collocation in finite elements. This work demonstrates the application of
the moving finite element technique in solving front reaction models. For space discretiza-
tion, Leao and Rodrigues [106] used the orthogonal collocation method in which cubic
Hermite polynomials are used as a basis function and backward differentiation for the time
integrator to solve transient and steady-state models for simulated moving bed processes.
Bialecki [107–110] discussed Fourier analysis cyclic reduction and cyclic reduction schemes
to solve the system of linear equations arising when the Hermite bicubic with orthogonal
spline collocation method is implemented in the Dirichlet-type Poisson’s equation:

−∆u = f (x, y) in Ω = (0, 1)× (0, 1), u = 0 on ðΩ, (22)

on a rectangular domain. The preconditioned Richardson and preconditioned minimum
residual iterative approaches were employed by the authors to solve the linear equations
after discretization. Two distinct pseudospectral methods were developed by Schumer and
Holloway [111] using Hermite polynomials and weight functions for nonlinear Vlasov–
Poisson problems in 1D of the following type:

∂ f (x, u, t)
∂t

+ u
∂ f
∂x

+
qe

me
E(x, t)

∂ f
∂u

= 0,

∂E(x, t)
∂x

=
qe

m0

∫ ∞

−∞
[ f (x, u, t)− fi(u, 0)]du,

(23)

where f (x, u, t) is the electron distribution, x ∈ [−L/2, L/2], u ∈ (−∞, ∞) is the velocity,
fi(u, 0) =

∫
f (x, u, 0)dx, and me, qe, and m0 are the mass, electron charge, and permittivity

of free space. The authors demonstrated that the asymmetrically weighted Hermite ap-
proach is numerically unstable and fails to preserve the square integral of the distribution.
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They applied the symmetrically weighted Hermite scheme for the first time for the numeri-
cal solution of the Vlasov system, showing the conservation of particles, momentum (for
Nu odd), or energy (for Nu even) for ∆t→ 0, where the largest Hermite mode number is
denoted by Nu and conserves the square integral of the distribution with velocity scaling.
It is suitable for kinetic computations of warm plasmas and is numerically stable. To
predict the frequencies of warm plasma phenomena and growth/damping rates, the above
two Hermite techniques on proper scaling were shown to be more precise than unscaled
Hermite algorithms and better than particle-in-cell-based methods.

Sun [112] applied the Hermite bicubic collocation approximation for the numerical
solution of a rectangular domain, and its discretization form in terms of the tensor product
can be expressed as:

(Ax ⊗ By + Bx ⊗ Ay) = RHS,

and then the FFT method was applied to solve this system. Tse and Chasnov [113] ap-
plied the Fourier–Hermite pseudospectral technique for the numerical study of a 3D
penetrative-convection-based problem in a vertical direction with an infinite domain under
the Boussinesq approximation:

∂ξ

∂t
= −F +∇2

hν +
√

σ/R∇2ξ,

∂µ

∂t
= −G +

√
σ/R∇2µ,

∂ν

∂t
= −H − u2(3x2

2 − 1) + 1/
√

σ/R∇2ν,

(24)

where F and G represent −x2.∇ × ∇ × (u.∇)u, and x2.∇ × (u.∇)u, ∇2
h =

∂2

∂x2
1
+

∂2

∂x2
3

R =
gαBd4

νκ
is the Rayleigh number, and σ =

ν

κ
is the Prandtl number. In the vertical direc-

tion, and in the absence of motion, an S-shaped temperature profile was used and variables
were expressed in the form of Fourier–Hermite basis functions. The scaling of Hermite
functions was performed for the adjustment of the length of the domain in the vertical as-
pect. In this paper, semi-implicit algorithms such as Adam–Bashforth, and Crank–Nicolson
were used for time discretization, and the Fourier pseudospectral technique with Hermite
as a basis function was applied for space discretization. To demonstrate the efficacy of the
algorithm, heat fluxes, variances, and their budgets were studied for various values of R.

Dijkstra [114] presented the pseudospectral collocation method for a first-order differ-
ential equation in which the point of departure was taken to be a Hermite interpolation.
The method gives the (2N + 1) degree of precision over a knot of (N + 1) points when
implemented to a first-order differential equation. Every grid point in this approach counts
for two, which simultaneously collocates the differential and the differentiated differential
equations. The accuracy of the solution produced by the double collocation is better than
the precision achieved using the traditional technique. Additionally, compared to the pseu-
dospectral collocation approach using Lagrange interpolation, the suggested algorithm’s
condition number rises at a rate of N3 rather than N2. Edoh et al. [115] used a higher-order
Hermite collocation method with cubic Hermite as a basis function for solving nonlinear
first-order PDEs with periodic boundary conditions arising on investigation of invariant
tori for dynamical systems:

ẋ = F(x, λ), x ∈ Rn λ ∈ R1,

where x := (x1, x2, . . . , xn). The stability and convergence of the algorithm were discussed
in this paper and it was established that the technique was stable and had fourth-order
convergence. A smooth shape of the torus is necessary for the method to achieve high-
order convergence. The method has the potential for computing invariant tori with mixed
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interactivity and provides better findings as compared to the leap-frog scheme. Gheri and
Marzulli [116] solved the nonlinear IVP

y′ = f (x, y), y(x0) = y0, x0 ≤ x ≤ X,

using Hermite interpolation polynomials with the collocation technique. They provided
sufficient conditions for the guaranteed convergence of the proposed algorithm for the non-
linear collocation system. Luo et al. [117] used the discontinuous Galerkin method (RDG)
algorithm based on a Hermite weighted essentially non-oscillatory (WENO) reconstruction
to study compressible Euler equations of the form:

∂u(x, t)
∂t

+
∂Fj(u(x, t))

∂xj
= 0,

here, u denotes the conservative vector and F is the vector of inviscid flux, given below:

U =

 ρ
ρui
ρe

, Fj =

 ρuj
ρuiuj + pδij
uj(ρe + p)

, (25)

where e represents the density, p indicates the pressure, and ρ denotes the specific total
energy of the fluid. On tetrahedral knots, the authors used HENO along with the RDG
technique. The two drawbacks of the DGM were successfully addressed with the help of this
strategy, which also ensured the stability of the reconstructed DG technique. They created
it to prevent the spurious oscillations close to strong discontinuities as well as to reduce the
high computational costs of the DGM. On tetrahedral nodes, the RDG scheme was applied
to solve several flow equations to show its reliability and effectiveness. The numerical
outcomes showed that the RDG approach involving Hermite WENO reconstruction was
capable of attaining the desired third-order precision, which was one order more precise
than the DG technique. As a result, its accuracy was significantly increased without a
corresponding increase in computing costs or memory requirements.

In order to solve 1D and 2D nonlinear hyperbolic conservation law systems,
Zhao et al. [118] presented a family of Hermite polynomials based on weighted essen-
tially non-oscillatory (WENO) strategies called HWENO techniques. Finite difference,
nonlinearly stable Runge–Kutta, and Hermite interpolation algorithms are the foundations
upon which HWENO schemes are constructed. The compactness of HWENO systems in
the re-establishing is one of their main features. For a fifth-order WENO reconstruction,
for instance, five nodes in the stencil are required, but only three nodes are necessary for a
fifth-order HWENO (HWENO5) redevelopment. Under the same nodes, in test situations,
HWENO5 schemes’ numerical errors are found to be less than those of WENO5 strategies.
A drawback of HWENO in comparison to the classic WENO technique is that it uses nearly
twice as much computer memory and CPU time when employing the identical number of
node points.

For both the Dirichlet and Neumann problems, Dyksen [119] provided the explicit
closed-form equations using cubic Hermite interpolation for the eigenvectors and eigen-
values of the Laplace operator. In addition, the author demonstrated that for the Dirichlet
condition, Gauss points for the collocation points provide the best approximations and for
the verification of the theoretical findings, the author solved some numerical examples.
Soliman [120] used the Hermite collocation method for an isothermal tubular reactor with
an axial dispersion model:

1
Pe

d2u
dx2 +

du
dx

= Da R(u),

having boundary conditions as:

1
Pe

du
dx
|x=0 = u(0)− 1,

du
dx
|x=1 = 0.
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Heping et al. [121] used the Petrov–Galerkin Hermite spectral method for the convection–
diffusion equations on unbounded domains:

∂u
∂t
− ν

∂2u
∂x2 = f (x, t), x ∈ R, t > 0,

with the initial condition as:
u(x, 0) = U0(x), x ∈ R.

The stability and spectral convergence of this approach were also discussed. Some experi-
ments were performed to support the theoretical stability and convergence results. Hermite
polynomials were utilised as basis functions in the development of the spectral-finite
difference technique for the Fokker–Planck equation [122], which has the form:

∂u
∂t

+ ν
∂u
∂x
− β

∂(νu)
∂ν

+ F(x)
∂u
∂ν
− βµ

∂2u
∂ν2 = 0, |x| < Y, |ν| < ∞, t > 0,

u(−Y, ν, t) = bL(ν, t), ν ≥ 0, t > 0,

u(Y, ν, t) = bR(ν, t), ν ≤ 0, t > 0,

u(ν, x, t) = w(x, ν), |x| ≤ Y, |ν| < ∞.

It was shown that the spectral algorithms based on Hermite polynomials converge with
spectral precision in weighted Sobolev space. It was shown that adding a velocity scaling
parameter to the Hermite basis improves the accuracy and effectiveness of the Hermite
spectral technique without adding any extra work. The Hermite spectral method was used
by Luo and Stephen [123] for the 1D forward Kolmogorov equation. This paper provided
helpful guidance for selecting the scaling factor of the generalised Hermite functions.
Tang [124] also utilised spectral methods based on Hermite polynomials for functions of a
Gaussian type. Nevenka [125] applied modified Hermite polynomials, as an orthogonal
basis in spectral approximation, for the numerical solution of boundary layer problems
that had the following form:

εu′′(x) + f (x)u′(x) + g(x)u(x) = h(x), x ∈ [0, 1],

(u(0), u(1)) = (A, B).

In order to demonstrate the efficacy of the presented approach, the paper includes a few nu-
merical problems as well as an upper bound for the error function. Guo et al. [126] proposed
spectral and pseudospectral algorithms using Hermite functions for the Dirac equation:

∂tΦ1(x, t) + ∂xΦ2(x, t) + imΦ1(x, t) + 2λQ1(Φ(x, t)) = f1(x, t),

∂tΦ2(x, t) + ∂xΦ1(x, t) + imΦ2(x, t) + 2λQ2(Φ(x, t)) = f2(x, t), x ∈ ω, 0 ≤ t ≤ T,

lim
|x|→∞

Φ(x, t) = 0, 0 ≤ t ≤ T,

Φ(x, t) = Φ0(x), x ∈ ω,

The authors first established basic fundamental approximation findings for the projections
and interpolations in the spaces defined by Hermite functions. Then, they took as an exper-
iment of application spectral and pseudospectral algorithms using Hermite functions of the
Dirac equation. The proposed algorithm preserved the essential conservation property of
the Dirac equation. Guo and Xu [127] used the Hermite pseudospectral scheme for solving
Burgers’ equation. Additionally, the proposed method’s stability and convergence analysis
were established. Guo [128] estimated the error bounds of the Hermite spectral method
for nonlinear PDEs. For modified Ginzburg–Landau equations for population problems,
Xiang and Wang [129] provided some fundamental results on extended Hermite orthogonal
approximations, which are essential in spectral methods. Iqbal et al. [130] presented cubic
Hermite polynomials based on Galerkin’s finite element scheme for the approximation of
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a third-order BVPs system associated with obstruction, unilateral, and contact problems,
having the following form:

u′′′(x) =


f (x); x ∈ [a, c]
g(x)u(x) + f (x) + r; x ∈ [c, d]
f (x); x ∈ [d, b],

with the boundary conditions as:

u(a) = a0, u′(a) = a1, u′(b) = a2.

The findings were found to have a higher degree of accuracy when compared to approaches
using quartic B-splines and quartic non-polynomial, quartic, cubic, finite difference, and
quintic splines. A technique for categorising and analytically computing high-order Her-
mite interpolating polynomials of the simplex was presented by Gusev et al. [131]. They
provided a standard illustration of a triangular element that might be constructed using
a high-accuracy finite element technique. Yarasca et al. [132] studied a static analysis of
functionally graded single and sandwich beams by applying a seven degrees-of-freedom
quasi-3D hybrid-type theory and then a finite element method was applied to solve the
governing equations. In this case, the vertical deflection variables were interpolated us-
ing C1 cubic Hermite interpolation, whereas the remaining kinematics variables were
computed using C0 linear interpolation. Convergence analysis was presented to validate
the finite element algorithm. Chang et al. [133] adapted the method based on Hermite
polynomials for the particular solution approximations of convection–diffusion–reaction
problems depending on time, having the form:

∂u
∂t

= D(u, x, t)∇2u + U(u, x, t).∇U + k(u, x, t)u + s(x, t) in Ω.

The authors used either the Crank–Nicolson or the Adams–Moulton approach to transform
the given equation into time-independent convection–diffusion–reaction problems for sub-
sequent time steps. The traditional Hermite method to approximate the particular solutions
(MAPS) and Hermite radial basis function collocation method (RBFCM) were used in solv-
ing the resulting equation. They gave the comparison between RBFCM and Hermite MAPS
and demonstrated that the results obtained by Hermite MAPS were more accurate and
stable for the shape parameter. Karamollahi et al. [134] and Maleknejad and Yousefi [135]
approximated the solution of the following nonlinear Fredholm integral equations:

u(x) = f (x) + λ
∫ b

a
k(x, t, u(t))dt, x ∈ [a, b], (26)

by using the Hermite interpolation method. Convergence analysis and error estimation
were also presented for the proposed technique. The numerical experiments confirmed that
the technique is quite easy to implement and gives accurate approximations in reasonable
computational times. Pandey et al. [136] presented a Hermite finite element approach for
solving Maxwell’s equations in complex geometries. The tables and figures demonstrate
that the proposed approach is efficient in addressing scalar–vector coupled field problems,
such as those involving the modeling of quantum well cavity plasmonics and lasers,
while permitting multi-scale practical computations. In order to solve the steady-state
convection–diffusion equations, a double boundary collocation Hermitian method was
presented by [137]. The proposed method was based on the meshless radial basis Hermite
interpolation polynomial. Black and Geddes [138] examined the governing equations for
an actively mode-locked laser model:
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TM
∂u
∂t

= ε
∂2u
∂x2 + p

∂u
∂x

+ (g(t)− l − µx2)u(t, x),

∂g(t)
∂t

= α− τg(t)− βg(t)
∫ ∞

−∞
|u(t, x)|2dx,

by using the combination of a spectral technique and Hermite interpolation polynomials.
The spatial approximation using Hermite polynomials was found to be more robust than
the spatial approximation based on the finite difference scheme. Orsini et al. [139] solved the
multi-zone problems using the control volume method with the Hermite radial as a basis
function. They implemented the proposed algorithm on one-, two-, and three-dimensional
domains. Adzic [140] obtained the recurrence relation for the Hermite series coefficients
and solved polynomial-coefficients-based linear differential equations of the type:

r

∑
m=0

pm(x)u(m)(x) = g(x).

Mathelin et al. [141] utilised Hermite polynomials as the basis function in the Galerkin
approximation in order to study the uncertainty quantification in CFD simulations. The
numerical results show that the approach is significantly more effective than the polynomial
chaos and Galerkin approach. Peirce [142] proposed the cubic Hermite collocation method
for solving the coupled integral–partial differential problems directing the propagation
of a hydraulic fracture in a condition of planar strain. Ganaie et al. [143–146] applied the
collocation method with a cubic Hermite for solving the following PDEs:

• Kuramoto–Sivashinsky equation:

∂u
∂t

= ε
∂4u
∂x4 +

∂2u
∂x2 + u

∂u
∂x

, x ∈ [a, b], t > 0,

• One-dimensional convection–diffusion equation:

∂u
∂t

= ε
∂2u
∂x2 − u

∂u
∂x

, x ∈ [a, b] t > 0, (27)

• Washing of packed bed of porous particles model:

∂2Q
∂η2 +

1
η

∂Q
∂η

=
∂Q
∂τ

+
1− ε

ε
N1

∂N
∂τ

,

∂N
∂τ

= P1(C1Q(1− N)− k∗N),

∂C
∂τ

=
φBi
Pe

∂2C
∂ξ2 − φBi

∂C
∂ξ
− θBi(C−Q|η=1).

(28)

In these papers, several experiments were conducted to show the efficacy of the pro-
posed algorithm. In order to approximate the aerodynamics, Rabbath and Corriveau [147]
presented the cubic Hermite interpolating polynomial and evaluated its performance in
comparison to a set of standards or metrics as well as to cubic splines and to other piecewise
linear functions. Pullan and Bradley [148] calculated the potential distribution across a
human torso as a function of the electrical activity of the heart by using cubic Hermite poly-
nomials in the finite element/boundary method. The authors reported findings in two and
three dimensions, demonstrating the effectiveness and accuracy of this coupled approach.
Shallal et al. [149] solved Equation (27) by a cubic Hermite finite element method. By using
the von Neumann algorithm, it was demonstrated that the scheme is unconditionally stable
and to evaluate the effectiveness of the approach, the proposed algorithm was applied to a
few test problems. The heat conduction problem in 1D:
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α2 ∂2u
∂x2 −

∂u
∂t

= 0, a ≤ x ≤ b, t > 0

was solved by Kutluay et al. [150] by utilising a collocation method based on the Her-
mite cubic B-spline finite elements. The Fourier stability technique was used to study the
stability of the method. A comparison of the approximate and exact solutions was also
given to demonstrate the effectiveness and correctness of the presented method. Cubic
Hermite polynomials were utilised by Arora et al. [151] as a basis function in the colloca-
tion approach to solve the nonlinear advection–diffusion model, including Peclet number
and intraparticle coefficient of diffusion (28). The effect of bed porosity, the intraparticle
diffusion coefficient, and Peclet number, were investigated theoretically and graphically.
Surface plots were used to discuss the impact of the displacement ratio, exit, and average
solute concentrations. Applying model-estimated values, an industrial parameter like the
displacement ratio was also determined. Rekatsinas and Saravanos [152] employed the
Hermite spline layerwise temporal spectral finite element technique to approximate the
solution of waves and transient problems arising in laminated composite and sandwich
plates. The fitted finite difference approach and the Runge–Kutta method involving cu-
bic Hermite approximation coupled with piecewise equispaced mesh were proposed by
Subburayan and Mahendran [153] for solving singularly perturbed problems involving
convection–diffusion phenomena in delay differential equations of third order having the
following form:

εu′′′(x) + a1(x)u′′(x) + b1(x)u′(x) + c1(x)u(x) + d1(x)u′(x− 1) = f (x), x ∈ Ω,

u(x) = φ(x), u′(2) = l, φ(x) ∈ C1[−1, 0],

They used the supremum norm to derive the error bounds, and it was found that the
approach was first-order convergent. Wu [154] suggested a cubic Hermite-polynomials-
based Eulerian–Lagrangian single-node collocation technique for computing unsteady-state
advection–diffusion transport models having the following representation:

α(x, t)
∂u
∂t

+ v(x, t)
∂u
∂x
− ∂

∂x

(
s(x, t)

∂u
∂x

)
= f (x, t), a ≤ x ≤ b, t > 0,

u(a, t) = g1(t), u(b, t) = g2(t), u(x, 0) = u0(x).

Here, α(x, t) is a retardation coefficient, v(x, t) is the fluid velocity, s(x, t) is a diffusion
coefficient, f (x, t) is a given source or sink function, and u(x, t) represents the concentration
of the dissolved substance in the subsurface flow. u0(x), g1(t), and g2(t) are the initial
and boundary data that are needed to close the system. The number of unknowns was
significantly reduced by using the above technique and produced precise numerical solu-
tions, even for very large time steps. Zhao and Wu [155] applied the cubic Hermite spline
collocation technique to study the variable-order nonlinear fractional differential equation:

α2u(x)− Dβ(x)u(x) = f (x), a ≤ x ≤ b, u(a) = u(b) = 0.

The convergence is of order O(hmin(4−β,p)), where the approximating polynomial belongs
to Cp(p ≥ 1). The bicubic Hermite orthogonal collocation algorithm of two-dimensional
integral differential equations in square domains and the wave-Petrovsky system with
memory were investigated by Xu in [156,157], respectively. Ashpazzadeh et al. [158] solved
the second kind of singular Abel’s equation having the following form:

u(x)−
∫ x

0
(x− s)−αK(x, s, u(s))ds = f (x), 0 < s < 1, 0 < α < 1,

by using the Galerkin method along with biorthogonal Hermite cubic spline multi-wavelets
as a basis function, where K : [0, 1] × R → R is considered as a known function and
f : [0, 1] → R is a sufficiently smooth function with respect to u. Furthermore, the



Mathematics 2023, 11, 3157 18 of 28

convergence analysis of the algorithm is studied in this paper. An unconditionally stable
4th-order method based on Hermite cubic interpolation is proposed by Luo and Du [159]
for the simulation of telegraph equations:

∂2u
∂t2 + 2v

∂u
∂t

+ β2u =
∂2u
∂x2 + f (x, t), a ≤ x ≤ b, t > 0,

u(a, t) = g1(t), u(b, t) = g2(t), u(x, 0) = u0(x),
∂u(x, 0)

∂t
= u1(x),

In this paper, the proposed algorithm is of order O(∆t4 + h4). Vincent et al. [160] proposed
the Hermite-style cubic serendipity interpolation method for a finite element simulation of
the cardiac monodomain problem of the form:

ξ

(
Cm

∂u
∂t

+ Iionic(u)
)
= ∇.σ∇u,

where σ indicates the conductivity tensor, Cm represent the specific capacitance of the cell
membrane, u denotes the transmembrane potential, Iionic is the current that arises as a
result of the flow of ions across cell membrane channels, and ξ corresponds to the surface
area to volume ratio. Jebreen and Dassios [161] proposed a biorthogonal Hermite cubic
spline Galerkin algorithm for the fractional Riccati equation:

Dβ
0 u(x) = f (x) + g(x)u(x) + h(x)u2(x), a ≤ x ≤ b,

u(η)(0) = gη , η = 0, 1, . . . , n− 1,

and then Newton’s iterative method was used to solve the resulting algebraic system. The
linear Black–Scholes equation of the type:

∂u
∂t

+
1
2

σ2x2 ∂2u
∂x2 + rx

∂u
∂x
− ru = 0, x > 0, t ∈ (0, T),

was solved by Chihaluca [162] by using the cubic Hermite finite element method. The
cubic Hermite finite element continuation approach with a predictor–corrector solver was
proposed by Chien and Shih [163] for the computational analysis of von Karman equations
of the following type:

∆2v− 1/2[u, u] = 0,

∆2u + λuxx − [u, v] = 0, in Ω = [0, l]× [0, 1].

Mohammadzadeh et al. [164] solved the Lane–Emden equation using a cubic Hermite-
splines-based collocation method. The Lane–Emden equation solution was converted into
a system of algebraic equations using the Hermite splines’ properties. Piecewise cubic
Hermite polynomials were used by researchers in various algorithms; for more details,
readers can refer to [165–189].

Ricciardi and Brill [190] used the optimal quintic Hermite collocation algorithm with
an adaptive hybrid optimisation algorithm in order to solve a one-dimensional convection–
diffusion model involving transport of contaminants dissolved in groundwater. In order to
determine the appropriate refinement of the mesh for a variety of models characterised
by velocity fields, a hybrid approach combining an adaptive genetic method and a hill-
climbing strategy was used. As compared to mesh refinements produced using direct
search techniques, optimum mesh refinements determined using this hybrid approach
are either significantly better or equally as good. Arora et al. [17,191–194] developed the
Hermite collocation approach by using quintic Hermite polynomials as the basis function
for solving various types of PDEs of the following forms:
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• Linear convection–diffusion problem:

∂u
∂t

= ε
∂2u
∂x2 − p(x)

∂u
∂x
− q(x), a < x < b, t > 0,

• Benjamin–Bona–Mahony–Burgers problem:

∂u
∂t
− ∂3u

∂x2∂t
= α

∂2u
∂x2 − β

∂u
∂x
− u

∂u
∂x

, a < x < b, t > 0.

and Equations (27) and (28). In addition, they studied the presented algorithm’s stability
and convergence analysis. Kaur et al. [195] utilised quintic Hermite polynomials as the
basis function in orthogonal collocation on the finite element technique to study the impact
of interstitial velocity, Peclet number, and cake thickness on the nonlinear and linear
diffusion–dispersion problems of a pulp washing model:

a1
∂2u
∂x2 = a2

∂u
∂x

+ a3
∂u
∂t

, 0 < x < 1, t > 0,

m1u + m2
∂u
∂x

= k1 at x = 0,

m3u + m4
∂u
∂x

= k2, at x = 1,

u(x, 0) = u0(x).

The Peclet number was the major determining factor in the pulp washing procedure,
while the cake thickness and interstitial velocity had a less significant influence. The
time-marching approach for linear systems provided by Kolsti and Kunz [196] depends
on Hermite quintic polynomial interpolation, a fully implicit one-step collocation scheme
that imposes acceleration and jerk restrictions at a point in time selected by the user. The
method converges at a rate of 4 and it was demonstrated that the suggested algorithm is
unconditionally stable, even for events involving a harmonic external force and viscous
damping. Marasi and Derakhshan [197] developed the approximate technique involving
finite difference and Hermite quintic collocation algorithms for a variable-order time
fractional mobile–immobile advection–dispersion model:

γ1
∂u
∂t

+ γ2Dα(x,t)
t u = −ρ

∂u
∂x

+ ρ1
∂2u
∂x2 + f (x, t), 0 < x < L, t > 0.

A method with Hermite polynomials is implemented on the spatial derivative and the
temporal derivative is discretized using a weighted finite difference method. In contrast
to various other schemes that are available in the literature, the results obtained by the
collocation method on using quintic Hermite spline polynomials as the basis function show
that the presented algorithm is very efficient. Zhou and Wu [198] solved the KdV equation:

∂u
∂t

+ up ∂u
∂x

+ ε
∂2u
∂x2 = 0, 0 < x < L, t > 0.

using the periodic boundary conditions provided by the Hermite quintic collocation tech-
nique that involves moving meshes produced on solving moving mesh PDEs. Numerical
examples were used to support the study and demonstrate the effectiveness of the approach.
Quintero et al. [199] constructed techniques that can efficiently command the actuators
of an articulated robot. For this, the cubic and quintic Hermite finite elements were used
for the time discretization method. The proposed control optimisation entailed using a
conjugate-gradient-type method to directly minimise the chosen criterion. The Hermite
method’s superconvergence was demonstrated using a general example.

Kvitsinsky and Hu [200] used the Faddeev-components-based Hermite tri-quintic
expansion for the solution of the 3D Faddeev equations for three-body Coulomb bound
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states. In order to handle the strain measurement across any arbitrary area of interest in
digital picture correlation, Zhao et al. [201] provided the enhanced Hermite finite element
smoothing technique. This approach is based on the Tikhonov regularisation and Hermite
interpolation on finite elements. Sestini et al. [202] used the quintic Hermite interpolation to
dicretize the space derivatives and for adjusting the two free angular parameters that define
the set of probable solutions, Pythagorean-hodograph analysis of the so-called CC criterion
is carried out that is presented in [203]. Singh [204] studied traveling waves behaviour,
which is a part of the KdV equation, by using orthogonal collocation on finite elements
(OCFEs) with a quintic Hermite spline. A robust high-order superconvergent approach is
produced by collocation using Gauss points and quintic polynomials. OCFE utilising the
quintic Hermite basis is more precise than the B-splines basis and computationally more
effective than collocation techniques employing piecewise polynomials. Brill [205] found
the analytical solution of the self-adjoint ordinary differential Equation (29) by the Hermite
collocation method.

Mkhize et al. [206] presented a collocation method on finite elements by utilising the
heptic (septic) Hermite polynomials as basis functions. The illustration of the superconver-
gence phenomenon is achieved at the nodes. The results produced by Carl R. de Boor in
1973 are significantly supported by the global and nodal rates of convergence.

The authors have tried to include as many papers as possible on the Hermite interpo-
lation polynomials and their properties and applications. It is possible that some papers
might be unintentionally left out of this review article. Now, the overall conclusions are
summarised below.

5. Author’s Contribution

There is no doubting that singularly perturbed linear and nonlinear differential prob-
lems are harder to solve since the convective coefficient’s sign changes, and this is especially
true when the solutions involve boundary layers. Due to the abrupt changes in the solutions,
particularly in the layer region where the perturbation parameter tends to zero, these prob-
lems are not easy to solve using a conventional method. Although sophisticated schemes are
available for handling numerical problems outside layer boundaries, methods for tackling
such problems inside layer boundaries are still limited. The authors [18,207–212] proposed
the orthogonal collocation method based on the finite element method in which septic
Hermite polynomials are utilised as basis functions to carry out the study of different types
of singularly perturbed linear and nonlinear ordinary and partial differential equations:

• Singularly perturbed differential problem:

εu′′ + c(x)u′ + d(x)u = m(x), x ∈ (a, b), (29)

• Modified Burgers’ equation:

∂u
∂t

= ε
∂2u
∂x2 − up ∂u

∂x
, a < x < b, t > 0,

• Modified regularised long wave equation:

∂u
∂t
− µ

∂3u
∂2x∂t

+ αu
∂u
∂x
− β

∂u
∂x

+ γu2 ∂u
∂x

, a < x < b, t > 0.

• Hodgkin–Huxley equation:

∂u
∂t
− ε

∂2u
∂x2 = β(1− up)(up − γ), a < x < b, t > 0.

For the temporal and spatial domains, respectively, the septic Hermite collocation tech-
nique and Crank–Nicolson scheme are utilised in this paper. The stability and convergence
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analysis are investigated by the authors. The scheme has sixth-order convergence and is
proven to be unconditionally stable. The method is implemented on different test equations
to show the efficacy and robustness of the proposed algorithm. The septic Hermite interpo-
lating polynomials have the property that not only is the solution continuous but also all of
its first three derivatives are continuous over the entire domain. An explicit expression for
e(x) in terms of the Green’s function provided by Peano’s theorem is used to calculate the
error bounds for septic Hermite interpolation that are given in Table 1. For more detail, the
reader can refer to [18].

6. Conclusions

This review provides a comprehensive analysis of state-of-the art Hermite interpo-
lating polynomials that are used as a basis function in a variety of techniques such as
the collocation method, orthogonal collocation on finite elements, the Galerkin method,
the finite element method, etc., to solve real-life phenomena occurring in the fields of
science and engineering. An introduction of cubic, quintic and septic Hermite interpolation
polynomials and their formation is presented. The various type of error bounds, gener-
alization, properties and applications of the Hermite interpolating polynomials are also
reviewed in this survey paper. These basis functions are of class Cd, d = 1, 2, 3. Because the
dependent variable and its first d derivatives are continuous in the Hermite interpolating
polynomials over the entire solution space, there are fewer equations to be solved. The
principle of continuity is also used to avoid double calculations at mesh locations. As a
result, the computational time is drastically reduced. The technique for solving nonlinear
equations is straightforward, conservative, and easy to implement. The combination of
Hermite polynomials and splines as basis functions with different algorithms provides
better accuracy and stability than those produced by other conventional methods.

When compared to quartic, cubic, quartic non-polynomial, quintic spline, finite dif-
ference, and quartic B-spline schemes, Hermite polynomials’ results have demonstrated
that they are more accurate in some cases. The Hermite polynomials are adopted as basis
functions in different methods for solving higher-order partial differential equations and
many other types of nonlinear coupled systems of partial differential equations. These
basis functions can be utilised to solve various elliptic and hyperbolic equations. Addi-
tionally, these functions can also be extended to solve fractional differential equations that
play a vital role in different fields such as economics, science, engineering, control theory,
aerodynamics, etc. The Hermite polynomials can be used to solve integral equation of
different kinds. The authors believe that this review study will be significantly helpful
to researchers working in this field as they develop novel numerical methods for solving
various differential equations from both theoretical and numerical perspectives, for higher
order Hermite polynomials (d > 3) and the estimation of their error bounds.

7. Future Applications/Advancements

Further applications of the septic Hermite collocation method include higher-dimensional
differential equations and numerous other kinds of nonlinear, coupled systems of ordinary
and partial differential equations. The method can be used to solve various types of PDEs
and higher-order equations with certain transformations or substitutions. The work can be
extended to solve fractional differential equations, that have many applications in diverse
areas of science such as biology, physics, chemistry, visco-elasticity, heat and mass transfer,
signal and image processing, etc.
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125. Adžić, N. Modified Hermite polynomials in the spectral approximation for boundary layer problems. Bull. Aust. Math. Soc. 1992,

45, 267–276. [CrossRef]
126. Guo, B.; Shen, J.; Xu, C.L. Spectral and pseudospectral approximations using Hermite functions: Application to the Dirac equation.

Adv. Comput. Math. 2003, 19, 35–55. [CrossRef]
127. Guo, B.Y.; Xu, C.L. Hermite pseudospectral method for nonlinear partial differential equations. ESAIM Math. Model. Numer. Anal.

2000, 34, 859–872. [CrossRef]
128. Guo, B.Y. Error estimation of Hermite spectral method for nonlinear partial differential equations. Math. Comput. 1999, 68, 1067–1078.

[CrossRef]
129. Xiang, X.M.; Wang, Z.Q. Generalized Hermite spectral method and its applications to problems in unbounded domains. SIAM J.

Numer. Anal. 2010, 48, 1231–1253. [CrossRef]
130. Iqbal, S.; Alkhalaf, S.; Al-Marashi, A.A. Galerkin’s finite element formulation using Hermite polynomials for the solution of a

system of third-order obstacle problems. Sci. Int. 2014, 26, 1887–1890.
131. Gusev, A.; Vinitsky, S.; Chuluunbaatar, O.; Chuluunbaatar, G.; Gerdt, V.; Derbov, V.; Góźdź, A.; Krassovitskiy, P. Interpolation
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