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Abstract: For this paper, we consider the almost sure exponential stability of uncertain stochastic
Hopfield neural networks based on subadditive measures. Firstly, we deduce two corollaries, us-
ing the Itô–Liu formula. Then, we introduce the concept of almost sure exponential stability for
uncertain stochastic Hopfield neural networks. Next, we investigate the almost sure exponential
stability of uncertain stochastic Hopfield neural networks, using the Lyapunov method, Liu inequal-
ity, the Liu lemma, and exponential martingale inequality. In addition, we prove two sufficient
conditions for almost sure exponential stability. Furthermore, we consider stabilization with linear
uncertain stochastic perturbation and present some exceptional examples. Finally, our paper provides
our conclusion.

Keywords: Hopfield neural networks; chance theory; almost sure exponential stability; Lyapunov
method
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1. Introduction

An artificial neural network (ANN) is a computational model inspired by the human
brain. ANNs comprise interconnected neurons that process and transmit information.
ANNs excel in parallel processing and handling complex, nonlinear problems. ANNs
learn from data, recognize patterns, and solve tasks like image recognition and natural
language processing. With different architectures such as feedforward, recurrent, and
convolutional networks, ANNs have become a crucial component of modern artificial
intelligence, enabling machines to learn, adapt, and perform tasks that have traditionally
required human intelligence. The Hopfield neural network, as a type of ANN [1], has
witnessed steady advancement and intensive investigation over the past few decades,
leading to a rich reservoir of research outcomes that have found widespread applications
across diverse domains, including combination optimization [2], signal processing [3],
pattern recognition [4], and robust control [5]; however, the successful application of neural
networks in these fields is closely linked to their dynamic behavior, and stochastic stability
is the most important property [6–13]. The above literature shows that the ability of a
neural network to maintain stochastic stability (exponential stability and instability [6],
exponential stability with time delay [7,8], global stability of stochastic high-order neural
networks [9], mean square exponential stability with time-varying delays [10], mean
square global asymptotic stability with distributed delays [11], and almost sure exponential
stability [12,13]) is crucial for its overall performance, especially when dealing with complex
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processes. Hence, significant efforts have been directed towards exploring and enhancing
the stability of neural networks.

It is well known that stability is the crucial property of stochastic neural networks,
which are often affected simultaneously by parameter uncertainties and random inter-
ference factors that can impact their stability due to reasons such as system modeling,
measurement errors, and system linearization, as documented in Refs. [14–17]. For exam-
ple, Huang et al. [14] examined the exponential stability analysis of uncertain stochastic
neural networks with multiple delays, and Wang et al. [15] studied the exponential sta-
bility of uncertain stochastic neural networks with mixed time delays. Chen et al. [16]
investigated the mean square exponential stability of uncertain stochastic delayed neural
networks, and Syed [17] surveyed the stochastic stability of uncertain recurrent neural
networks with Markovian jumping parameters. However, these studies [14–17] only fo-
cused on the robust stability and asymptotic stability of stochastic neural networks with
uncertain parameters, while the almost sure exponential stability of neural networks with
both uncertain and random disturbances remains unexplored.

As noted above, the stochastic differential equation is a good tool for describing the
stability of a stochastic neural network, and the dynamics of the stochastic differential
system may be influenced by many other unknown, uncertain, and random disturbances.
To address these, Itô [18] established the theory of stochastic analysis and stochastic dif-
ferential equations with the Wiener process based on additive measures. Over the past
70 years, stochastic differential equations have matured, both in theory and practice, and
they have become a vital tool in fields such as physics, systems science, management
science, finance, and space science, especially the development of stochastic stability, as
in [19–22]. An uncertain process, on the other hand, is a sequence of uncertain variables,
with subadditive measures, that change over time. Liu [23] introduced the concept of a
Liu process, which is the uncertain version of the Wiener process, in 2008. The Liu process
is a Lipschitz continuous process with independent and steady increase properties, and
its increments follow an uncertain normal distribution. Based on this process, Liu [24]
introduced the chain rule in the process of uncertainty analysis to study the differentials and
integrals of uncertain process functions, as well as a class of differential equations driven
by standard Liu processes called uncertain differential equations [25]. Consequently, the
stability of uncertain differential equations was discussed. When faced with a system that
exhibits both uncertainty and randomness simultaneously, the noise should be modeled
using the Wiener–Liu process, and the system evolution can be described through a hybrid
differential equation, leading to the development of uncertain stochastic hybrid neural
network systems [26]. In 2013, Liu [27] first introduced chance theory to investigate such
uncertain stochastic systems based on subadditive measures, and subsequent works by
Fei et al. [28,29] have further explored the use of the Wiener–Liu process and the Itô–Liu
formula in uncertain stochastic differential equations. Researchers have made progress
in studying various forms of the stability of stochastic neural networks based on additive
measures, but the analysis of indeterminate neural networks, including both random and
uncertain factors, requires chance theory’s subadditive measures. This paper will review
some research results based on chance theory, exploring the stability of uncertain stochastic
neural networks using the Itô–Liu formula and the Lyapunov method. The main contri-
butions of this paper are the extension of two corollaries of the Itô–Liu formula under
subadditive measures, the introduction of the concept of almost sure exponential stability
for uncertain stochastic Hopfield neural networks for the first time, and the consideration
of sufficient conditions for almost sure exponential stability and stabilization with linear
uncertain stochastic perturbation.

In Section 2, we recall some results about Hopfield neural networks and some concepts,
lemmas, theorems, and corollaries about chance theory, which are essential for our analysis.
In Section 3, we present our main results about the almost sure exponential stability of
uncertain stochastic neural networks. In Section 4, we present our conclusion.
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2. Preliminaries
2.1. The Explanation of Symbols

We add the table of momenclature so that we could relate to symbols used in the paper
easily (Table 1).

Table 1. The explanation of symbols related to this paper.

Numbers The Symbols of This Paper The Explanation of Symbols

1 ui(k) voltage on the input of the ith neuron
2 Fi input capacitance
3 Tij connection matrix element
4 fi(u) nondecreasing transfer function
5 ςi slope of fi(u) at u = 0
6 M uncertain measure
7 k time
8 Ck Liu process
9 Ch chance measure
10 P probability measure
11 Wk Wiener process
12 Zk uncertain process or uncertain stochastic process
13 sup supremum

2.2. The Basic Knowledge

A Hopfield neural network [1] can be described in the form of an ordinary differential
equation as follows:

Fiu̇i(k) = −
1
Ri

ui(k) +
m

∑
j=1

Tij f j(uj(k)), 1 ≤ i ≤ m, k ≥ 0, (1)

where ui(k) denotes the voltage on the input of the ith neuron, Fi denotes the input
capacitance, Tij is the connection matrix element, fi(u) is a nondecreasing transfer function,
see Table 1, and fi(0) = 0; the following ςi is the slope of fi(u) at u = 0, satisfying

u fi(u) ≥ 0, | fi(u)| ≤ 1∧ ςi|u|, −∞ < u < +∞. (2)

where 1∧ ςi|u| determines the upper bound of the function | fi(u)| and is denoted by

ei =
1

FiRi
, bij =

Tij

Fi
,

then,

u̇k = −Euk + B f (uk), k ≥ 0, (3)

where

uk = (u1k, · · · , umk)
T , E = diag.(e1, · · · , em), B = (bij)m×m, f (u) = ( f1(u1), · · · , fm(um))

T .

Furthermore,

ei =
m

∑
j=1
|bij|, 1 ≤ i ≤ m. (4)

Itis easy to know that for any given initial case u0 = z0 ∈ Rm, the equation has a
unique solution. In particular, the equation is unique equilibrium solution u0 = 0. In other
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words, the zero point is the equilibrium point of the neural network system. The aim of
this paper is to investigate the uncertain stochastic effects on the stability. The following
reviews chance theory including some concepts, lemmas, theorems, and corollaries which
are essential for our analysis.

Let Γ be a nonempty set, and L a σ-algebra over Γ. Each element Λ in L is called an
event andM{Λ} is the belief degree. The uncertain measure dealing with belief degree
satisfies the following axioms [23,25]:

Axiom 1 (Normality Axiom).M{Λ} = 1 for the universal set Γ.

Axiom 2 (Duality Axiom).M{Λ}+M{Λc} = 1 for any event Λ.

Axiom 3 (Subadditivity Axiom). For every countable sequence of events Λ1, Λ2, · · · ,

M
{

∞⋃
i=1

Λi

}
≤

∞

∑
i=1
Mk{Λi}

holds.
Axiom 4 (Product Axiom). Let (Γj,Lj,Mj) be uncertainty spaces for j = 1, 2, · · · . The
product uncertain measureM is an uncertain measure satisfying

M
{

∞

∏
j=1

Λj

}
=

∞∧
j=1

Mj{Λj}.

where Λj are arbitrary events chosen from Lj for j = 1, 2, · · · , respectively.

Remark 1. Axioms 1 and 2 are similar to probability theory, and axioms 3 and 4 are fundamentally
different from probability theory. In particular, axiom 3 embodies subadditivity, which is different
from the additivity of probability theory, and the product axiom of axiom 4 embodies the minimization
operation, which is different from the product axiom of probability theory. The detailed analysis can
be found in Refs. [23,25].

Definition 1 ([23]). An uncertain variable is a measurable function ξ from an uncertainty space
(Γ,L,M) to the set of real numbers, i.e., for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ|ξ(γ) ∈ B}

is an event.

Definition 2 ([23]). Let T be an index set and (Γ,L,M) an uncertainty space. An uncertain
process is a measurable function from T× (Γ,L,M) to the set of real numbers such that {Zk ∈ B}
is an event for any Borel set B for each time k.

Definition 3 ([23]). An uncertain process Ck is said to be a Liu process if
(i) C0 = 0 and almost all sample paths are Lipschitz continuous;
(ii) Ck has stationary and independent increments;
(iii) every increment Cr+k − Cr is a normal uncertain variable with expected value 0 and variance
k2, whose uncertainty distribution is

Φ(x) =
(

1 + exp
(
−πx√

3k

))−1
, x ∈ R.

Definition 4 ([23]). Let Zk be an uncertain process with respect to time k and Ck be a Liu process
with respect to time k. For any partition of closed interval [a, b] with a = k1 < k2 < · · · < k j+1 = b,
the mesh is written as

∆ = max
1≤i≤j

|ki+1 − ki|.
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Then, the uncertain integral of Zk with respect to Ck is

∫ b

a
ZkdCk = lim

∆→0

j

∑
i=1

Zki
· (Cki+1

− Cki
)

provided that the limit exists almost surely and is finite. In this case, the uncertain process Zk is
said to be integrable.

Lemma 1 ([25] (Liu inequality)). Let Ck be a Liu process on uncertainty space (Γ,L,M). Then,
there exists an uncertain variable K such that K(γ) is a Lipschitz constant of the sample path Ck(γ)
for each γ,

lim
x→+∞

M{γ ∈ Γ|K(γ) ≤ x} = 1

and
M{γ ∈ Γ|K(γ) ≤ x} ≥ 2Φ(x)− 1.

Lemma 2 ([26] (Liu lemma)). Suppose that Ck is a Liu process, and Zk is an integrable uncertain
process on [a, b] with respect to k. Then, the inequality

|
∫ b

a
Zk(γ)dCk| ≤ K(γ)

∫ b

a
|Zk(γ)|dk

holds, where K(γ) is the Lipschitz constant of the sample path Zk(γ).

Let (Ω,F , P) be a complete probability space with a filtration {Fk}k∈[0,T] satisfying
the usual conditions, that is, it is increasing and right continuous while F0 contains all
P-null sets.

Let (Γ,L,M) be an uncertainty space where normality, duality, subadditivity, and
product measure axioms are given. Let Ck be Liu Liu process defined on (Γ,L,M). The
Liu process filtration {Lk}k∈[0,T] is the sub-σ-field family (Lk, k ∈ [0, T]) of L satisfying the
usual conditions. It is generalized by σ(Cs : s ≤ k) andM-null sets of L, LT = L.

Liu [27] first introduced chance theory to investigate a hybrid system with both uncer-
tainty about belief degree and randomness. To investigate the uncertain stochastic differential
systems, Fei [29] extended a filtered chance space (Γ×Ω,L⊗F , (Lk ⊗Fk)k∈[0,T],M×P)
on which some concepts, theorems, are presented as follows.

Definition 5 ([29]). (i) Let B be a Borel set; an uncertain random variable is a measurable function
ξ ∈ Rp (or Rp×m) from a chance space

(Γ×Ω,L⊗F ,M× P)

to Rp (or Rp×m), that is, ∀B ∈ Rp (or Rp×m), so the set

{ξ ∈ B} = {(γ, ω) ∈ Γ×Ω : ξ(γ, ω) ∈ B} ∈ L⊗F .

(ii) ∀B, {ξ ∈ B} is an uncertain random event with chance measure

Ch{ξ ∈ B} =
∫ 1

0
P{ω ∈ Ω |M{γ ∈ Γ | ξ(γ, ω) ∈ B} ≥ x}dx.

Definition 6 ([29]). (a) An uncertain stochastic process is essentially a sequence of uncertain
variables indexed by time. For each time k ∈ [0, T], if Zk is an uncertain random variable, then we
call Zk an uncertain stochastic process (or hybrid process). If the sample paths of Zk are continuous
functions of k for almost all (γ, ω) ∈ Γ×Ω, then we call it continuous.

(b) If Z(k, γ) is Fk-measurable for all k ∈ [0, T], γ ∈ Γ, then we call it Fk-adapted. Further,
if Z(k) is Lk ⊗Fk-measurable for all k ∈ [0, T], then we call it Lk ⊗Fk-adapted (or adapted).
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(c) If the uncertain stochastic process is measurable related to the σ-algebra

=(Lk ⊗Fk)

={A ∈ B([0, T])⊗L⊗F : A ∩ ([0, k]× Γ×Ω) ∈ B([0, k])⊗Lk ⊗Fk}.

then we call it progressively measurable.
Further, if the uncertain stochastic process Z(k) : Γ×Ω→ Rp (or Z(k) : Γ×Ω→ Rp×m is

progressively measurable and satisfies ∀k ∈ [0, T], E[
∫ T

0 |Zk|2dk], then we call it L2-progressively
measurable, where L2(0, T; Rp) (or L2(0, T; Rp×m)) denotes the set of L2-progressively measurable
uncertain random processes.

Definition 7 ([28]). Let Wk be a Wiener process and Ck a Liu process. Then, Hk = (Wk, Ck) is
called a Wiener–Liu process. The Wiener–Liu process is said to be standard if both Wk and Ck are
standard.

Definition 8 ([28]). Let Zk = (Ẑk, Z̃k), where Ẑk and Z̃k are scalar uncertain stochastic processes,
and let Hk = (Wk, Ck) be a standard Wiener–Liu process. For any partition of a closed interval
[a, b] with a = k1 < k2 < · · · < kN+1 = b, the mesh is written as

∆ = max
1≤i≤N

|ki+1 − ki|.

Then, the uncertain stochastic integral of Zk with respect toHk is

∫ b

a
ZkdHk = lim

∆→0

N

∑
i=1

(Ẑki
· (Wki+1

−Wki
) + Z̃ki

· (Cki+1
− Cki

))

provided that the limit exists almost surely and is finite. In this case, the uncertain stochastic process
Zk is said to be integrable.

Remark 2. The uncertain stochastic integral may also be written as follows:

∫ b

a
ZkdHk =

∫ b

a
(ẐkdWk + Z̃kdCk). (5)

The following theorem results in the Itô–Liu formula of the one-dimensional case.

Theorem 1 ([28] (Itô–Liu formula)). LetHk be a Wiener–Liu process given by

Hk = (Zk, Z̄k) = (µ1k + σ1Wk, µ2k + σ2Ck).

Let Wk be a Wiener process and Ck a Liu process, and g(k, z, z̄) a twice continuously differen-
tiable function. Define Gk = g(k, Zk, Z̄k). Then, we have the following chain rule:

dGk =
∂g
∂k

(k, Zk, Z̄k)dk +
∂g
∂z

(k, Zk, Z̄k)dWk +
∂g
∂z̄

(k, Zk, Z̄k)dCk

+
1
2

∂2g
∂z2 (k, Zk, Z̄k)dk.

Using Theorem 1, we can easily obtain the following two corollaries.

Corollary 1. The infinitesimal increments dWk and dCk may be replaced with the derived Wiener–
Liu process,

Zk =
∫ k

0
µudu +

∫ k

0
αudWu +

∫ k

0
βudCu,
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where µk and βk are absolutely integrable uncertain stochastic processes, and αk is a square integrable
uncertain stochastic process; then, ∀Φ ∈ C2(<) (C2 means second-order continuous differentiable),
thus producing

Φ(Zk) =Φ(Z0) +
∫ k

0
Φ′(Zu)µudu +

∫ k

0
Φ′(Zu)αudWu

+
∫ k

0
Φ′(Zu)βudCu +

1
2

∫ k

0
Φ′′(Zu)α

2
udu.

Let Wk = (W1k, W2k, · · · , Wpk) and Ck = (C1k, C2k, · · · , Cqk) be a p-dimensional
standard Wiener process and a q-dimensional standard Liu process, respectively. If ri
and vij are absolute integrable hybrid processes, and wij are square integrable hybrid
processes, for i = 1, 2, · · · , m, j = 1, 2, · · · , q, then the m-dimensional hybrid process
Zk = (Z1k, Z2k, · · · , Zmk) is given by

dZ1k = r1dk +
p
∑

j=1
w1jdWjk +

q
∑

j=1
v1jdCjk

...
...

...

dZmk = rmdk +
p
∑

j=1
wmjdWjk +

q
∑

j=1
vmjdCjk,

or, in matrix notation, simply

dZk = rdk + wdWk + vdCk,

where

r =

 r1
...

rm

, w =

 w11 · · ·w1p
...

...
wm1 · · ·wmp

, v =

 v11 · · · v1q
...

...
vm1 · · · vmq

, dWk =

 dW1k
...

dWpk

, dCk =

 dC1k
...

dCqk

.

Corollary 2. Assume m-dimensional hybrid process Zk is given by

dZk = rdk + wdWk + vdCk,

Let g(k, z1, · · · , zm) be a multivariate continuously differentiable function. Define
Gk = g(k, Z1k, · · · , Zmk). Then,

dGk =
∂g
∂k

(k, Z1k, · · · , Zmk)dk +
m

∑
i=1

∂g
∂zi

(k, Z1k, · · · , Zmk)dZik

+
1
2

m

∑
i=1

m

∑
j=1

∂2g
∂zi∂zj

(k, Z1k, · · · , Zmk)dZikdZjk,

where dWikdWjk = δijdk, dWikdk = dkdWik = dCıkdCk = dkdCık = dWikdCık = 0, for
i, j = 1, 2, · · · , p, ı,  = 1, 2, · · · , q. And

δij =

{
0, i 6= j
1, i = j

(6)

In other words, it can be expressed as

dGk =
∂g
∂k

(k, Z1k, · · · , Zmk)dk +
p

∑
i=1

∂g
∂zi

(k, W1k, · · · , Wpk, C1k, · · · , Cqk)dWik
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+
q

∑
j=1

∂g
∂zm+j

(k, W1k, · · · , Wpk, C1k, · · · , Cqk)dCjk

+
1
2

p

∑
i=1

∂2g
∂z2

i
(k, W1k, · · · , Wpk, C1k, · · · , Cqk)dk.

Definition 9 ([28]). Suppose Wk is a standard , Ck is a standard process, and f , g, and h are some
given functions. Then,

dZk = f (k, Zk)dk + g(k, Zk)dWk + h(k, Zk)dCk (7)

is called an uncertain stochastic differential equation.

3. Main Results

Let us consider a hypothetical scenario in which an uncertain stochastic perturbation
is introduced to the neural network, and as a result, the perturbed network can be modeled
using an uncertain stochastic differential equation.{

dz(k) = [−Ez(k) + B f (z(k))]dk + g(z(k))dW(k) + h(z(k))dC(k), k ≥ 0,

z(0) = z0 ∈ Rm,
(8)

where W(k) = (W1(k), . . . , Wn(k))T denotes an n-dimensional Wiener process and f :
Rm → Rm×n (i.e. f (z) = ( fij(z))m×n. Additionally, let C(k) = (C1(k), . . . , Cn(k))T and
h : Rm → Rm×n i.e., h(z) = (hij(z))m×n. In addition, g(z) and h(z) satisfy the Lipschitz
continuous and satisfy the linear growth condition. Consequently, we can deduce from
Refs. [28,29] that for k ≥ 0, Equation (8) possesses a unique global solution z(k, z0), as-
suming g(0) = h(0) = 0 for the sake of stability in this paper. As a result, Equation (8)
possesses an equilibrium solution z(k, 0) = 0. Additionally, when z0 6= 0, the uniqueness
exists with chance measure one, that is, z(k, z0) 6= 0 for all k ≥ 0 almost surely.

In contrast to Equation (3), Equation (8) represents a system with an uncertain stochas-
tic perturbation. It is intriguing to explore the influence of uncertain stochastic perturbation
on the stability characteristics of the neural network. In the next section, we will delve into
these issues in great depth.

3.1. Almost Sure Exponential Stability

Definition 10. Firstly, we assume that Equation (8) has a solution z0 = 0. Further, we assume
that there exist two measure sets, M{Γε1} and P{Ωε2}, such that for any ε1, ε2 > 0 and for
all ∀γ ∈ Γ \ Γε1 and ∀ω ∈ Ω \Ωε2 , the nonzero solution z(k, z0) of Equation (8) when z0 6= 0
satisfies the following condition:

lim sup
k→∞

1
k

ln(|z(k, z0)|) < 0, (9)

then, we call the uncertain stochastic neural network (8) almost surely exponentially stable, simply
denoted as

lim sup
k→∞

1
k

ln(|z(k, z0)|) < 0, a.s. (10)

Theorem 2. Assume there exists a symmetric positive definite matrix P = (pij)m×m and some
constants µ ∈ R and ρ1, ρ2, H > 0 such that

2zT P[−Ez + B f (z)] + tr[gT(z)Pg(z)] ≤ µzT Pz, (11)
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zT Pg(x)gT(z)Pz ≥ ρ1(zT Pz)2, (12)

|zT Ph(x)| ≤ ρ2

n
zT Pz (13)

for all z ∈ Rm. Then, the solution of Equation (8) satisfies

lim sup
k→∞

1
k

ln(|z(k, z0)|) ≤ −(ρ1 − Hρ2 −
µ

2
) a.s. (14)

whenever z0 6= 0. Especially, if ρ1 − Hρ2 > µ/2, then the stochastic neural network (8) is almost
surely exponentially stable.

Proof. Take the Lyapunov function

V(z, k) = zT Pz.

Choose any nonzero value of z0 and define z(k, z0) as zk. It follows from the fact that
there is only one possible solution that z(k) will almost surely be nonzero for all k > 0. The
Itô–Liu formula implies that

d(ln[zT
k Pzk])

=
1

zT
k Pzk

(2zT
k P[−Ezk + B f (zk)] + tr[gT(zk)Pg(zk)])dk

− 2
[zT

k Pzk]2
(zT

k Pg(zk)gT(zk)Pzk)dk

+
2

[zT
k Pzk]

zT
k Pg(zk)dWk

+
2

[zT
k Pzk]

zT
k Ph(zk)dCk.

Considering condition (11), we obtain

ln[zT
k Pzk] ≤ ln[zT

0 Pz0] + µk− 2〈Mk〉+ 2Mk + 2Nk, a.s. (15)

where

Nk =
∫ k

0

1
[zT

s Pzs]
zT

s Ph(zs)dCs

for all k > 0, where Nk is an uncertain process and N0 = 0, and

Mk =
∫ k

0

1
[zT

s Pzs]
zT

s Pg(zs)dWs,

which is a continuous martingale that disappears when k = 0. This martingale’s quadratic
variation is denoted by 〈Mk〉. That is,

〈Mk〉 =
∫ k

0

1
[zT

s Pzs]2
(zT

s Pg(zs)gT(zs)Pzs)ds.

By condition (12), we obtain

〈Mk〉 ≥ ρ1k. (16)
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Let l = 1, 2 · · · . and ε ∈ (0, l) be arbitrary. The exponential martingale inequality
implies

P(ω : sup
0≤k≤l

[Mk − ε〈Mk〉] >
1
2ε

ln l) ≤ 1
l

.

Therefore, according to the Borel–Cantelli lemma, it follows that there exists a random
integer l0(ω) for almost every ω ∈ Ω, such that for all l ≥ l0, the following holds:

sup
0≤k≤l

[Mk − ε〈Mk〉] ≤
1
2ε

ln l,

that is,

Mk ≤ ε〈Mk〉+
1
2ε

ln l, 0 ≤ k ≤ l.

By condition (13), for any event γ ∈ Γ, we have

Nk(γ) ≤ |Nk(γ)| ≤ n · K(γ)
∫ k

0

1
[zT

s Pzs]
zT

s Ph(zs)ds

≤ n · K(γ)ρ2

n
k

= K(γ)ρ2k,

where K(γ) = max
i

Ki(γ), Ki(γ) is a Lipschitz constant of Cik. By Lemma 1, for ∀ε > 0,

there exists positive H = H(γ), such that

M{γ ∈ Γ|K(γ) ≤ H} > 1− ε,

namely, ∀ε > 0, ∃Γε, such that

γ ∈ Γ \ Γε, Nk(γ) ≤ Hρ2k.

Substituting this into (15) yields

ln[zT
k Pzk] ≤ ln[zT

0 Pz0] + µk− (2− ε)〈Mk〉 − 2Hρ2k +
1
ε

ln l

for all 0 ≤ k ≤ l and l ≥ l0, almost surely. By (16), we can obtain that

ln[zT
k Pzk] ≤ ln[zT

0 Pz0] + µk− (2− ε)ρ1k− 2Hρ2k +
1
ε

ln l

for all 0 ≤ k ≤ l and l ≥ l0, almost surely. So, for almost all ω ∈ Ω, γ ∈ Γ if l − 1 ≤ k ≤ l
and l ≥ l0, then

1
k

ln[zT
k Pzk] ≤ −[(2− ε)ρ1 − 2Hρ2 − µ] +

1
l − 1

(ln[zT
0 Pz0] +

1
ε

ln l).

Letting ε→ 0, we obtain

lim sup
k→∞

1
k

ln[zT
k Pzk] ≤ −[2ρ1 − 2Hρ2 − µ].

Because P is a symmetric positive definite matrix, the minimum eigenvalue λmin > 0,
and then

λmin|z|2 ≤ zT Pz, z ∈ Rm.
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Thus

lim sup
k→∞

1
k

ln[zT
k Pzk] ≥ lim sup

k→∞

1
k

ln(λmin|zk|2)

= lim sup
k→∞

1
k
(ln λmin + 2 ln |zk|)

=2 lim sup
k→∞

1
k

ln |zk|.

Thus

lim sup
k→∞

1
k

ln(|zk|) ≤ −(ρ1 − Hρ2 −
µ

2
).

We complete the proof.

By Theorem 2, the following two sufficient conclusions can be obtained.

Theorem 3. Suppose (2) is satisfied, and there exists a diagonal matrix P = diag(p1, p2, · · · , pm)
where pi > 0 for all i. Let µ > 0, ρ1, ρ2 be real numbers, and let the constant H > 0 such that

tr[gT(z)Pg(z)] ≤ µzT Pz,

zT Pg(z)gT(z)Pz ≥ ρ1(zT Pz)2,

|zT Ph(z)| ≤ ρ2

n
zT Pz

for all z ∈ Rm. Denote by λmax(Q) the largest eigenvalue of the symmetric matrix Q = (qij)m×m,
where qij is defined as follows:

qij =

{
2pi[−ei + (0∨ bii)ςi], f or i = j,

pi|bij|ς j + pj|bji|ςi, f or i 6= j.
(17)

Then, the solution of Equation (8) satisfies
(i) if λmax(Q) ≥ 0

lim sup
k→∞

1
k

ln(|z(k, z0)|) ≤ (
1
2
[µ +

λmax(Q)

min
1≤i≤m

pi
] + Hρ2 − ρ1), a.s. (18)

(ii) if λmax(Q) < 0

lim sup
k→∞

1
k

ln(|z(k, z0)|) ≤ (
1
2
[µ +

λmax(Q)

min
1≤i≤m

pi
] + Hρ2 − ρ1), a.s. (19)

whenever z0 6= 0.

Proof. It holds from (2) that

2zT PA f (x) =2
m

∑
i,j=1

zi pibij f j(zj)

≤2 ∑
i

pi(0∨ bii)zi fi(zi) + 2 ∑
i 6=j
|zi|pi|bij|ς j|zj|
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≤2 ∑
i

pi(0∨ bii)ςiz2
i + ∑

i 6=j
|zi|(pi|bij|ς j + pj|bji|ςi)|zj|.

Thus, when λmax(Q) ≥ 0,

2zT P[−Ez + B f (z)] ≤(|z1|, · · · , |zm|)Q(|z1|, · · · , |zm|)T

≤λmax(Q)|z|2 ≤ λmax(Q)

min
1≤i≤m

pi
zT Pz.

We can easily arrive at conclusion (18) by applying Theorem 2. Additionally, when
λmax(Q) < 0,

2zT P[−Ez + B f (z)] ≤(|z1|, · · · , |zm|)Q(|z1|, · · · , |zm|)T

≤λmax(Q)|z|2 ≤ λmax(Q)

min
1≤i≤m

pi
zT Pz.

By utilizing Theorem 2 once more, we can arrive at conclusion (19). Hence, we
complete the proof.

Theorem 4. Suppose both (2) and (4) are satisfied, where δij is defined the same as (6). Additionally,
assume that there exist m positive numbers p1, p2, · · · , pm such that

ς2
j

m

∑
i=1

pi[0∨ sign(bii)]
δij |bij| ≤ pjej, 1 ≤ j ≤ m,

and

tr[gT(z)Pg(z)] ≤ µzT Pz,

zT Pg(z)gT(z) ≥ ρ1(zT Pz)2,

|zT Ph(z)| ≤ ρ2

n
zT Pz,

where P = diag.(pl , p2, · · · , pm) and the real numbers µ > 0, ρ1, ρ2, H > 0. Then for all z ∈ Rm,
the solution of Equation (8) satisfies

lim sup
k→∞

1
k

ln(|z(k, z0)|) ≤ −(ρ1 − Hρ2 −
µ

2
) a.s. (20)

Proof. By condition, we can obtain that

2zT PA f (x) =2
m

∑
i,j=1

zi pibij f j(zj)

≤2
m

∑
i,j=1
|zi|pi[0∨ sign(bii)]

δij |bij|ς j|zj|

≤
m

∑
i,j=1

pi[0∨ sign(bii)]
δij |bij|(z2

i + ς2
j z2

j )

≤
m

∑
i=1

pi(
m

∑
j=1
|bij|)z2

i +
m

∑
j=1

(ς2
j

m

∑
i=1

pj[0∨ sign(bii)]
δij |bij|)z2

j



Mathematics 2023, 11, 3110 13 of 19

≤
m

∑
i=1

pieiz2
i +

m

∑
j=1

pjejz2
j = 2zT PEz.

Hence

2zT P[−Ez + B f (z)] + tr[gT(z)Pg(z)] ≤ µzT Pz. (21)

So, by Theorem 2 again, we complete the proof.

Theorem 5. Suppose both (2) and (4) are satisfied. We assume that the network is symmetric,
meaning that

|bij| = |bji|, ∀1 ≤ i, j ≤ m.

Moreover, assume

tr[gT(z)Pg(z)] ≤ µ|z|2,

zT Pg(z)gT(z) ≥ ρ1|z|4,

|zTh(z)| ≤ ρ2|z|2

hold for all z ∈ Rm, where µ > 0 and ρ1, ρ2, H > 0 are constants. Then, the solution to Equation (8)
holds that

lim sup
k→∞

1
k

ln(|z(k, z0)|) ≤ −(ρ1 − Hρ2 + ê(1− ς̌)− µ

2
) a.s. (22)

1 ≥ ς̌, or

lim sup
k→∞

1
k

ln(|z(k, z0)|) ≤ −(ρ1 − Hρ2 − ě(ς̌− 1)− µ

2
) a.s. (23)

1 < ς̌, whenever z0 6= 0, where

ς̂ = max
1≤i≤m

ςi, ě = max
1≤i≤m

ei, ê = min
1≤i≤m

ei.

Proof. By condition, we can obtain that

2zT A f (x) =2
m

∑
i,j=1

zibij f j(zj)

≤2
m

∑
i,j=1
|zi|bij|ς j|zj| ≤ ς̌

m

∑
i,j=1
|bij|(z2

i + z2
j )

=ς̌[
m

∑
i=1

(
m

∑
j=1
|bij|)z2

i +
m

∑
j=1

(
m

∑
i=1
|bji|)z2

j ]

=ς̌[
m

∑
i=1

eiz2
i +

m

∑
j=1

ejz2
j ] = 2ς̌zTEz,

and

2zT [−Ez + B f (z)] + tr[gT(z)Pg(z)] ≤ −2(1− ς̌)zTEz. (24)
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Therefore, in the case 1 ≥ ς̌,

2zT [−Ez + B f (z)] + tr[gT(z)Pg(z)] ≤ [−2ê(1− ς̌) + µ]|z|2. (25)

When 1 ≥ ς̌, applying Theorem 2 with P being the identity matrix, we can deduce that

lim sup
k→∞

1
k

ln(|z(k, z0)|) ≤ −(ρ1 − Hρ2 + ê(1− ς̌)− µ

2
) a.s. (26)

When 1 < ς̌,

2zT [−Ez + B f (z)] + tr[gT(z)Pg(z)] ≤ [−2ê(1− ς̌) + µ]|z|2. (27)

It follows from Theorem 2 again that

lim sup
k→∞

1
k

ln(|z(k, z0)|) ≤ −(ρ1 − Hρ2 − ě(ς̌− 1)− µ

2
) a.s. (28)

We complete the proof.

3.2. Stabilization by Linear Uncertain Stochastic Perturbation

We are aware that neural network

u̇k = −Euk + B f (uk)

can sometimes be unstable. It may be assumed that subjecting an unstable neural network
to an uncertain stochastic perturbation would cause it to behave even worse, or become
more unstable. However, this is not always the case. Uncertain stochastic perturbation can
actually make an unstable neural network more stable. In this section, we will demonstrate
that any neural network of the form (3) can be stabilized by uncertain stochastic perturba-
tion. For practical purposes, we will only consider linear uncertain stochastic perturbations.
This means that we will only focus on perturbations of the form:

g(z(k))dWk =
n

∑
l=1

Glz(k)dWl(k), h(z(k))dCk =
n

∑
l=1

Hlz(k)dCl(k)

i.e., g(z) = (G1z, G2z, · · · , Gnz), h(z) = (H1z, H2z, · · · , Hnz), where Gl , Hl , 1 ≤ l ≤ n are
all m×m matrices. In this case, the uncertain stochastic perturbed network (8) becomesdz(k) = [−Ez(k) + B f (z(k))]dk +

n

∑
l=1

Glz(k)dWl(k) +
n

∑
l=1

Hlz(k)dCl(k), k ≥ 0

z(0) = z0 ∈ Rm.

(29)

Note that

tr[gT(z)Pg(z)] =
n

∑
l=1

zTGT
l PGlz, tr[hT(x)Ph(z)] =

n

∑
l=1

zT HT
l PHlz,

zT Pg(z)gT(z)Pz = tr[gT(z)PzzT Pg(z)]

=
n

∑
l=1

zTGT
l PzT PGlz =

n

∑
l=1

(zT PGlz)2,

and

zT Ph(z)hT(x)Pz = tr[hT(z)PzzT Ph(z)]
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=
n

∑
l=1

zT HT
l PzT PHlz =

n

∑
l=1

(zT PHlz)2.

The proof can be obtained easily by Theorem 2, which we omit here.

Theorem 6. Assume there exists a symmetric positive definite matrix P = (pij)m×n and some
constants µ ∈ R and ρ1, ρ2, H ≥ 0 such that

2zT [−Ez + B f (z)] +
n

∑
l=1

zTGT
l PGlz ≤ µzT Pz (30)

and

n

∑
l=1

(zT PGlz)2 ≥ ρ1(zT Pz)2,

√
n

∑
l=1

(zT PHlz)2 ≤ ρ2

n
zT Pz

for all z ∈ Rm. Then, the solution of Equation (8) satisfies

lim sup
k→∞

1
k

ln(|z(k, z0)|) ≤ −(ρ1 − Hρ2 −
µ

2
) a.s. (31)

whenever z0 6= 0. Especially, if ρ1 − Hρ2 > µ/2, then the stochastic neural network (8) is almost
surely exponentially stable.

3.3. Some Examples

Example 1. Let

Gl = ζl I, Hl = ϑl I, 1 ≤ l ≤ n,

where ζl , ϑl , 1 ≤ l ≤ n are all real numbers and I is the identity matrix. Then, Equation (29)
becomes

dz(k) = [−Ez(k) + B f (z(k))]dk +
n

∑
l=1

ζlz(k)dWl(k) +
n

∑
l=1

ϑkz(k)dCl(k). (32)

The parameters ζl , ϑl , 1 ≤ l ≤ n denote the strength of the stochastic and uncertain perturba-
tions, respectively. By selecting the identity matrix as the value of P, we observe that

n

∑
l=1

zTGT
l PGlz =

n

∑
l=1
|Glz|2 =

n

∑
l=1

ζ2
l |z|

2 (33)

and

n

∑
l=1

(zT PGlz)2 =
n

∑
l=1

(zTζlz)2 =
n

∑
l=1

ζ2
l |z|

4. (34)

Similarly, we have√
n

∑
l=1

(zT PHlz)2 =

√
n

∑
l=1

ϑ2
k |z|4 =

√
n

∑
l=1

ϑ2
k |z|

2. (35)
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Moreover, by (2), we have

2zT PA f (z) ≤ 2|z|‖A‖‖ f (z)‖ ≤ 2ς̌‖A‖|z|2,

where ς̌ = max1≤l≤m ςl and ‖A‖ = sup{|Az| : z ∈ Rm, |z| = 1}. Hence,

2zT P[−Ez + B f (z)] ≤ 2(ς̌− ê)|z|2, (36)

where ê = min1≤l≤m el . By combining Equations (33)–(36) and utilizing Theorem 6, we can
conclude that the solution to Equation (32) meets

lim sup
k→∞

1
k

ln(|z(k, z0)|) ≤ −(
n

∑
l=1

ζ2
l − nH

√
n

∑
l=1

ϑ2
k − (ς̌‖A‖ − ê)), a.s.

whenever z0 6= 0. Especially, if

n

∑
l=1

ζ2
l − nH

√
n

∑
l=1

ϑ2
k > ς̌‖A‖ − ê

hold, then the uncertain stochastic neural network (32) is almost surely exponentially stable.

Remark 3. If we set ζl = 0 for 2 ≤ l ≤ n, then Equation (32) simplifies even further to

dz(k) = [−Ez(k) + B f (z(k))]dk + ζ1z(k)dW1(k) + ϑ1z(k)dC1(k),

here, we just rely on a Wiener–Liu process scalar as the origin of the uncertain stochastic perturbation.
This uncertain stochastic network is almost surely exponentially stable provided

ζ2
1 − Hϑ > ς̌‖A‖ − ê.

The neural network described by u̇k = −Euk + B f (uk) can be stabilized by incorporating a
sufficiently strong and uncertain stochastic perturbation in a particular way. In other words, we
can draw the corollary that this simple example illustrates.

Corollary 3. If (2) is satisfied, a Wiener–Liu process can stabilize any neural network with the
given form

u̇k = −Euk + B f (uk).

Notably, it is also feasible to utilize a single scalar Wiener–Liu process for this purpose.

Example 2. For each l, choose a positive definite m×m matrix Ul and Vl such that

zTUlz ≥
√

3
2
‖Ul‖|z|2, zTVlz ≤

1
2
‖Vl‖|z|2.

There are numerous matrices that meet the criteria or characteristics being discussed. Let ζ be a
real number and define Gl = ζUl . Let ϑ be a real number and define Hl = ϑVl . Then, Equation (29)
becomes

dz(k) = [−Ez(k) + B f (z(k))]dk + ζ
n

∑
l=1

Ulz(k)dWl(k) + ϑ
n

∑
l=1

Vlz(k)dCl(k). (37)

And let P be the identity matrix, noting that

n

∑
l=1

zTGT
k PGkz =

n

∑
l=1
|ζUlz|2 ≤ ζ2

n

∑
l=1
‖Ul‖2|z|2,
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n

∑
l=1

(zT PGkz)2 = ζ2
n

∑
l=1

(zTUlz)2 ≥ 3ζ2

4

n

∑
l=1
‖Ul‖2|z|4

and √
n

∑
l=1

(zT PHlz)2 =

√
ϑ2

n

∑
l=1

(zTVlz)2 ≤ ϑ

2

√
n

∑
l=1
‖Vl‖2|z|2.

By merging (36) with the above and then utilizing Theorem 6, we can deduce that the solution
to (37) satisfies

lim sup
k→∞

1
k

log(|z(k, z0)|) ≤ −(
3ζ2

4

n

∑
l=1
‖Ul‖2 − 1

2
nHϑ

√
n

∑
l=1
‖Vl‖2 − (ς̌‖A‖ − ê)) a.s. (38)

whenever z0 6= 0. So, if

3ζ2

4

n

∑
l=1
‖Ul‖2 − 1

2
nHϑ

√
n

∑
l=1
‖Vl‖2 ≥ (ς̌‖A‖ − ê),

then the uncertain stochastic neural network (37) is almost surely exponentially stable.

Example 3. We examine the scenario where the network’s dimension, denoted as m, is an even
number, specifically m = 2q(q ≥ 1). Suppose we set n to 1, meaning we select a scalar Wiener–Liu
process (W1(k), C1(k)). Additionally, let ζ be a real number and P the identity matrix again; then,
we define that

G1 =


0 ζ 0
−ζ 0

. . .
0 ζ

0 −ζ 0

, H1 =


0 ϑ 0
−ϑ 0

. . .
0 ϑ

0 −ϑ 0

.

Then, Equation (29) becomes

dz(k) = [−Ez(k) + B f (z(k))]dk + ζ


z2(k)
−z1(k)

...
z2q(k)
−z2q−1(k)

dW1(k) + ϑ


z2(k)
−z1(k)

...
z2q(k)
−z2q−1(k)

dC1(k).

(39)

Note that

zTGT
1 PG1z = ζ2|z|2, (zT PG1z)2 = 0 (40)

and

2zT P[−Ez + B f (z)] ≤ 2(ς̌‖A‖ − ê)|z|2. (41)

By integrating (40) with (41), and subsequently utilizing Theorem 6, we can derive that the
solution to (39) meets:

lim sup
k→∞

1
k

ln(|z(k, z0)|) ≤ −(
1
2

ζ2
k − (ς̌‖A‖ − ê)), a.s.
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whenever z0 6= 0. So, the uncertain stochastic neural network (39) is almost surely exponentially
stable if ζ2

k > 2(ς̌− ê‖A‖).

Remark 4. Different from the almost sure exponential stability of stochastic Hopfield neural
networks based on the probability theory of additive measures [6,12], uncertain stochastic Hopfield
neural networks are more complex in terms of handling conditions and processes of almost sure
exponential stability, such as the conditions of Theorems 2–6. In addition, we use the Itô–Liu
formula, Liu inequality (Lemma 1), the Liu lemma (Lemma 2), etc, and these conclusions are all
obtained using subadditive measures.

Remark 5. The practical significance of almost sure exponential stability in uncertain stochastic
Hopfield neural networks is that it ensures robust and reliable performance in real-world applications,
such as image or speech recognition, financial analysis, or control systems. Almost sure exponential
stability enables the network to reliably handle uncertainties and variations in the input data. It
improves the neural network’s ability to generalize and make accurate predictions, even when faced
with Liu noises and Wiener noises. This stability increases the neural network’s practical usefulness
and applicability in real-world scenarios.

4. Conclusions

The main focus of this paper is the stability of Hopfield neural network dynamical
systems with uncertain stochastic perturbations. The paper presents a theorem for judging
the stability of such systems, along with two conclusions of sufficient conditions for stabil-
ity. The stability of neural network systems with linear uncertain stochastic perturbations
is studied in order to facilitate the discussion. We note that uncertain stochastic neural
networks can be divided into two types: one is uncertain stochastic neuron activation
functions, such as the Boltzman machine model, and the other is neural networks with un-
certain stochastic weighted connections. Therefore, when considering uncertain stochastic
neural networks, both of these cases should be considered. The uncertain stochastic neural
network model studied in the paper is the second type, which involves neural networks
with uncertain stochastic weighted connections. Overall, this paper provides a valuable
contribution to the field of neural networks by considering the effects of both stochastic and
uncertain elements on network stability and proposing methods for analyzing such systems.
This work can also extend to the two-layer cellular neural network,impulsive model, or the
reaction diffusion model, as in Refs [30–32]. There is currently no corresponding research
result for neural networks using uncertain stochastic neuron activation functions, uncertain
stochastic two-layer cellular neural network, the uncertain stochastic impulsive model, or
the reaction diffusion model, and researchers can develop these areas in the near future.
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