
Citation: Song, B.; Wu, H.; Song, Y.;

Wang, X.; Jiang, G. Epidemic

Spreading on Weighted Co-Evolving

Multiplex Networks. Mathematics

2023, 11, 3109. https://doi.org/

10.3390/math11143109

Academic Editors: Lijuan Zha, Jian

Liu, Jinliang Liu and Alfonso Niño

Received: 24 May 2023

Revised: 5 July 2023

Accepted: 12 July 2023

Published: 14 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Epidemic Spreading on Weighted Co-Evolving Multiplex Networks
Bo Song 1 , Huiming Wu 2, Yurong Song 2,*, Xu Wang 3 and Guoping Jiang 2

1 School of Modern Posts, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
songbo@njupt.edu.cn

2 College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications,
Nanjing 210023, China; 1020051513@njupt.edu.cn (H.W.); jiangjp@njupt.edu.cn (G.J.)

3 GBDTC, University of Technology Sydney, Sydney, NSW 2007, Australia; xu.wang-1@uts.edu.au
* Correspondence: songyr@njupt.edu.cn; Tel.: +86-1395-1842-705

Abstract: The individual behaviors driven by information diffusion show an undeniable impact
on the process of epidemic spreading and have been continuously evolving with the dynamic
processes. In this paper, a novel weighted co-evolving multiplex network model is proposed to
describe the interaction between information diffusion in online social networks and epidemic
spreading in adaptive physical contact networks. Considering the difference in the connections
between individuals, the heterogeneous rewiring rate, which is proportional to the strength of the
connection, is introduced in our model. The simulation results show that the maximum infection
scale decreases as the information acceptance probability grows, and the final infection decreases
as the rewiring behaviors increase. Interestingly, an infection peak appears in our model due to the
interaction between information diffusion and epidemic spread.

Keywords: co-evolving multiplex networks; epidemic spread; information diffusion; nonlinear
differential systems

MSC: 65Q10

1. Introduction

Information diffusion, i.e., positive information (e.g., authoritative information, news)
and negative information (e.g., rumors and gossip) [1], is always accompanied by virus
spreading on social networks or cascading failures on transportation networks, power grids,
etc. To describe and analyze the coupling of information diffusion and virus spread/cascading
failures, the study on multiplex networks becomes increasingly important as a result of
the interactions among different real-world systems [2–5]. Both the difference in network
structures of real-world systems and the interactions among different dynamic spread
processes in real-world systems can be well described in the multiplex network model [6–10].

The impact of information diffusion on epidemic spread in multiplex networks has
been widely studied in recent years [1,2]. The emergence and changing of information-
related states enrich the whole epidemic spread process in social networks. First, the states
of nodes have become more diversified since a single node owns two states at the same
time; one is describing the physical state, and the other is describing the information-
related state. And the increase in the node’s states leads to the diversity of the propagation
process. Furthermore, information diffusion leads to adaptive behavioral changes among
individuals in response to epidemic outbreaks. When a public health event occurs on social
networks, e.g., Coronavirus-2019 [11], people who had the awareness of prevention or
received the relative information would actively take self-protective measures, such as
wearing masks and washing their hands frequently. Then, a multiplex network with static
network structures evolved into an adaptive multiplex network with a dynamic physical
layer [12].
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Although the interplay between information diffusion and biological infections has
been extensively investigated within the framework of multiplex networks, there are still
new challenges in the study of dynamic processes in multiplex networks. First, informa-
tion diffusion affects not only the epidemic spread, but also the physical contact network
structure. After accepting information, individuals are supposed to change their behavior
to avoid infection; as a result, the physical network structure changes. Since the relation-
ship between individuals is highly heterogeneous, individual behaviors are different in
physical contact networks [13]. Moreover, most of the existing studies were focused on
the impact of information diffusion on the epidemic spread, while epidemic spread also
affects information diffusion, which is often ignored. As a matter of fact, information
and epidemics are interacting and co-evolving. When the epidemic outbreaks, with the
increasing number of patients, the epidemic itself receives more and more attention, and the
relevant information spreads faster. That is to say, the probability of information diffusion
changes as the virus spreads.

A weighted co-evolving multiplex network model with multiple time-varying param-
eters can be used to describe and analyze the challenges above. A two-layer multiplex
network consisting of an information layer and a physical contact layer is introduced to
describe the dynamic interaction between an online social (or communication) network and
social contact network, where different dynamical processes can be supported. In online
social networks, individuals exchange information related to disease, and a time-varying
information acceptance rate is defined to describe the impact of the infection in social con-
tact networks. While in a social physical network, actors also exchange biological elements
that can carry on diseases. An aware and healthy individual can actively disconnect from
infected neighbors and reconnect with healthy ones. The reconnecting rate between aware
and unaware healthy nodes is time-varying due to the increase in aware ones. In addition,
the heterogeneity of individual relationships in social contact networks cannot be ignored;
therefore, both the infection rate and rewiring rate are closely related to the relationship,
e.g., intimacy, social distance.

This paper presents a new mean-field model to describe the interaction between
information dissemination and biological infections. Due to the new challenges, new
nonlinear equations are necessary to extend the Susceptible–Infected–Susceptible (SIS)
model and evaluate the impact of rewiring and weighted network links on the reliability of
the adaptive weighted networks:

1. A novel weighted co-evolving multiplex network model is proposed to describe the
interaction between information diffusion in online social networks and epidemic
spreading in adaptive physical contact networks.

2. Two co-evolutionary processes have been considered in our model, the co-evolving of
information diffusion and epidemic spreading between two layers and the co-evolving
of epidemic spreading and network structure in the physical contact network.

3. Considering the difference in the connections between individuals, the heterogeneous
rewiring rate, which is proportional to the strength of the connection, is introduced in
our model.

4. Monte Carlo simulations in weighted co-evolving multiplex network models are
carried out to describe and analyze the interaction between information diffusion and
epidemic spreading.

The rest of this paper is organized as follows. In Section 2, the related works are
reviewed. In Section 3, the structure of a weighted co-evolving multiplex network is
described. Simulations have been conducted in different network structures to analyze
and investigate the effect of network structure properties on propagation in weighted
co-evolving multiplex networks in Section 4, followed by conclusions in Section 5.

2. Related Work

Many real-world systems are composed of multiple interacting subsystems, which
can be described by multiplex networks, to provide an expressive model for modeling
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real-world complex networks [14], such as multi-layer social networks with multiple social
platforms interacting, and multi-layer transportation networks with multiple transportation
channels cooperating and coupling. Furthermore, the interplay or co-evolution of dynamics
between networks with different structures was simulated and analyzed by multiplex
network models [1–7]. Granell et al. [10] pioneered the analysis of the interrelation between
two processes accounting for the spreading of an epidemic, and the information awareness
to prevent its infection, on top of multiplex networks. Soriano-Paños et al. [8] proposed a
two-layer multiplex network to study the interplay between information spreading and
opinion formation in social systems. Velásquez-Rojas et al. [9] studied the dynamics of
the voter model for opinion formation intertwined with that of the contact process for
disease spreading in multiplex networks and found that the opinion dynamics has striking
consequences on the statistical properties of disease spreading. Xia et al. [15–17] proposed
a new coupled disease spreading model on a two-layered multiplex network, where one
layer denotes the underlying topology for the epidemics and the other one represents the
corresponding topology for the awareness spread and extended the multiplex network
model of awareness disease dynamics to a susceptible–infected–recovered (SIR) epidemic
process that results in permanent immunity after infection.

In recent years, the interaction between epidemic spreading and related information
diffusion on multiplex networks has received widespread attention, as it can help model,
predict, and control the spread of an epidemic. Clara et al. [10] presented an analysis
of the interrelation between two processes accounting for the spread of an epidemic,
and the information awareness to prevent its infection, on top of multiplex networks.
Zhou et al. [18] developed a set of nonlinear differential equations that have a linearly
growing state–space size to describe the epidemic spreading process in multilayer complex
networks, including the spreading of viruses and information in computer networks and
the spreading of multiple pathogens in a host population. Wang et al. [1] proposed a
novel epidemic model based on two-layered multiplex networks to explore the influence
of positive and negative preventive information on epidemic propagation. Wu et al. [19]
proposed an aware–susceptible–infected model (ASI) to explore the effect of information
literacy on the spreading process in multiplex networks by using the microscopic Markov
chain method.

So far, however, most of the existing research assumed that information diffusion
does not change the social network structure. In fact, as the information diffuses, some
individuals who have risk awareness often change their behavior to avoid being infected,
which leads to changes in the network structure. In single-layer networks, there has been
extensive research on the collaborative evolution of network structure and propagation.
Gross et al. [20] first proposed an adaptive network wherein susceptible nodes are able
to avoid contact with the infected by rewiring their network connections, and they found
that the interplay between dynamics and topology can have important consequences for
the spreading of infectious diseases and related applications. Subsequently, more research
has been conducted on adaptive networks. Adaptive (weighted) networks have become
increasingly important, as a result of the proliferation of cloud computing [21,22], vehicular
ad hoc networks (VANETs) [23], and social networks [24].

At present, based on the literature we have searched, there is relatively little research
on the information and epidemic spreading in multiplex adaptive networks. Peng et al. [12]
first developed a highly integrated effective degree approach to modeling epidemic and
awareness-spreading processes on multiplex networks coupled with awareness-dependent
adaptive rewiring. They derived a formula for the threshold condition of contagion
outbreak and provided a lower bound for the threshold parameter to indicate the effect
of adaptive rewiring. In this paper, based on the influence of information dissemination
on both epidemic transmission and physical contact network structure, the influence
of structural and propagation dynamics of physical contact networks on information
dissemination is further introduced into the weighted co-evolving multiplex network
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model, based on the consideration of the influence of information dissemination on both
epidemic transmission and physical contact network structure.

3. The Weighted Co-Evolving Multiplex Networks Model

Consider a two-layer network of N nodes connected by L1 and L2 links on each layer,
respectively. The upper network describes the information diffusion network, and the
lower network describes the individual contact network. Multiplex networks explicitly
incorporate multiple channels of connectivity in a system, and they provide a natural
description for systems in which entities have a different set of neighbors in each layer.
Here, we use the two-layer network to describe and study the co-evolving of two different
dynamical processes and the adaptive changing of the physical contact network structure.

3.1. Description of the Co-Evolving Processes in Multiplex Network

The coupling of multiplex networks brings rich co-evolutionary processes, as shown
in Figure 1. The first co-evolution is the interaction between information diffusion and
epidemic spreading. At the initial stage of epidemic spreading, the relevant information
is very little and unconcerned. With the explosion of virus transmission, there is more
and more information, from which people can obtain methods and strategies to address
epidemics. In this process, the epidemic spreading process promotes information diffusion,
which in turn can inhibit the epidemic spreading. The second co-evolution hidden inside
the physical contact network is the network structure and the epidemic spreading, which
is the so-called adaptive network in the single-layer network study. After accepting infor-
mation, individuals who awaken the risk awareness change their own behavior to protect
themselves, which means that the epidemic spread and network structure interact in the
physical contact layer. We introduce the two co-evolution processes in detail, including the
changing rules for the states of nodes and edges.

Figure 1. Interactions of inter-layer and inner-layer in multiplex network. Two co-evolutionary
processes are shown in Figure 1: the first one is the interaction between information diffusion and
epidemic spreading, and the second one hidden inside the physical contact network is the network
structure and the epidemic spreading.
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3.1.1. Co-Evolving of Information Diffusion and Epidemic Spreading between Two Layers

Consider a two-layer network of N nodes connected by L1 and L2 links on each layer,
respectively. The upper information layer describes the online social (or communication)
network, and the lower physical contact layer describes the social contact network, as
shown in Figure 2. In the information diffusion layer, the Unaware–Aware (UA) model,
where the node’s state is unaware (U) or aware (A) of the existence of the epidemics and
its prevention, is applied. In the UA model, U-state individuals do not have information
about how to prevent infection, while A-state individuals reduce their risk to be infected.
A U-state individual becomes aware with a probability α after communication with aware
neighbors. Here, we assume that the A-state individual would remain aware of the infection
due to the continuous spread of the epidemic.

Figure 2. Schematic diagram of network state transition. The upper layer in the figure is the informa-
tion layer (L1), a U-state individual becomes aware with a probability α(t) after communication with
an aware neighbor. The lower layer is the physical contact layer (L2). In L2, a healthy individual with
risk awareness would disconnect the links with the infected person in a certain probability rw = r(w).

Different from the existing research, we take the impact of epidemic spreading on
information diffusion into account. The probability of people acquiring information is not
immutable, i.e., it is closely related to the spreading processes and the states of neighbors
in the network. For example, when the scale of infected individuals becomes larger, people
show stronger awareness and obtain information from more channels, which leads to faster
information spreading. Therefore, we assume that a U-state individual becomes aware with
a time-vary probability α(t), which is proportional to the infection density, i.e., α(t) ∼ I(t).

3.1.2. Co-Evolving of Epidemic Spreading and Network Structure in the Physical
Contact Network

Here, we use the SIS epidemic model in physical contact networks to simulate the
epidemic spreading process [25–27]. There are three different states of node i: Susceptible
with awareness (SA), susceptible without awareness (SU), and infected (IA), who always
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have awareness. An SA-state node can be infected with probability β1 f (w) by an IA-state
neighbor, while the probability is β2 f (w) if it is a SU-state node. f (w) is a function positively
related to the weight of the link, and β1 < β2. IA-state ones return to SA-state with
probability γ. The change in node states is shown in Figure 2.

The awareness can not only decrease the probability to be infected, but also make
individual behaviors change to isolated from infected ones. A healthy individual with risk
awareness would disconnect their links with the infected person in a certain probability rw.
The higher the link weight, the harder it is to disconnect, i.e., rw ∼ 1/w. In order to ensure
the functional completion of the network, we assume that a healthy person in the network
who disconnected an edge has to find a healthy person to connect, as shown in Figure 2. For
example, healthy employees will transfer work tasks from infected employees to healthy
ones. In this way, a weighted co-evolving multiplex model is built, where information and
virus propagation interact.

Figure 3 presents the operations of a node in a weighted co-evolving multiplex net-
work. A healthy node without awareness can obtain information from its neighbor with
awareness. A healthy node is more likely to be infected by an infected neighbor it inter-
acts with frequently, i.e., the one with a larger link-weight, than by one it interacts with
infrequently. Once one of its neighbors is infected, the node can observe the misbehaviors
of the neighbor and rewire its link to bypass the infected neighbor, thereby preventing
the propagation of the attacks or failures. As a result, the topology of the network keeps
changing in response to the infection, quarantining infected individuals and counteracting
the vulnerability explorations.

Figure 3. The flowchart of a node regarding a w-weighted link.

3.2. Mathematical Description of the Weighted Co-Evolving Multiplex Networks Model

Every node i has a certain probability of being in one of the three states at time t,
denoted by [SA], [SU ], and [IA], respectively. We provide the definition of the notations
used in the model in Table 1, including node density, edge density in different states, and
relevant parameters in the model.
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Table 1. The notation used in the model formulation and analytical approximation.

Term Definition

[SA] Fraction of aware susceptible nodes
[SU ] Fraction of unaware susceptible nodes
[IA] Fraction of aware infected nodes

[SA IA]w
Fraction of links between an aware susceptible node and an aware infected node
with w-weight

[SU IA]w
Fraction of links between an unaware susceptible node and an aware infected
node with w-weight

[SASA]w Fraction of links between two aware susceptible nodes with w-weight
[SUSU ]w Fraction of links between two unaware susceptible nodes with w-weight

[SUSA]w
Fraction of links between an unaware susceptible node and an aware
susceptible node with w-weight

[IA IA]w Fraction of links between two aware infected nodes with w-weight

β1 f (w)
Rate that an unaware susceptible node infected by an infected neighbor though
a link with weight w

β2 f (w)
Rate that an aware susceptible node infected by an infected neighbor though a
link with weight w

α The rate that an unaware node accepts the information and becomes aware
rw The rewiring rate that is proportional to the link weight w

brw

The rate at which [SA IA]w link becomes [SASA]w link due to the rewiring, and b

is the scale parameter. Here, we set b = [SA ]
[SA ]+[SU ]

. Then, the rate at which SA IA

link becomes SUSA link due to the rewiring is (1− b)rw = [SU ]
[SA ]+[SU ]

rw.

• Change the process of node state over time:

d[SA]

dt
= γ[IA]−∑

w
β1 f (w)[SA IA]w + α ∑

w
([SU IA]w + [SUSA]w) (1)

d[SU ]

dt
= −∑

w
β2 f (w)[SU IA]w − α ∑

w
([SU IA]w + [SUSA]w) (2)

d[IA]

dt
= −γ[IA] + ∑

w
β1 f (w)[SA IA]w + ∑

w
β2 f (w)[SU IA]w (3)

We call the system of Equations (1)–(3) the node-state changing model. On the right-
hand side (RHS) of Equation (1), the first term accounts for the recovery of IA-state
node at rate γ. The second term indicates the infection process, where an SA-state
node is infected by an IA-state neighbor through the w-weighted link at rate β1 f (w).
The third term indicates the information transmission process, where the SU-state
individuals receive information from an A-state neighbor at rate α and change their
state to SA. Here, we assume that the probability of individuals accepting information
and being aware of risks increases with the spread of infection α ∼ p1 I(t), where
p1 ∈ [0, 1] is an adjustment parameter and α is proportional to I(t). On the RHS of
Equation (2), the first term and second term are the infection process and information
transmission process, respectively. A SU-state node is infected by an IA-state neighbor
through the w-weighted link at rate β2 f (w), where β2 > β1 indicates that people with-
out risk awareness are more likely to be infected. On the RHS of Equation (3), the first
term is the recovery process and the second and third terms are the infection process.

• Change the process of link state over time:

d[SA IA ]w
dt = −β1 f (w)[SA IA]w + ∑

w′
f (w′)(β1[SASA IA]ww′ + β2[SASU IA]ww′

− β1[IASA IA]w′w) + 2γ[IA IA]w − γ[SA IA]w + α[SU IA]w − rw[SA IA]w
(4)
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d[SU IA ]w
dt = ∑

w′
f (w′)(β1[SUSA IA]ww′ − β2[IASU IA]w′w + β2[SUSU IA]ww′)

− β2 f (w)[SU IA]w − γ[SU IA]w − α[SU IA]w
(5)

d[SASA ]w
dt = −β1 ∑

w′
f (w′)[SASA IA]ww′ + γ[SA IA]w + α[SUSA]w + brw[SA IA]w (6)

d[SU SU ]w
dt = −β2 ∑

w′
f (w′)[SUSU IA]ww′ (7)

d[SU SA ]w
dt = −∑

w′
f (w′)(β1[SUSA IA]ww′ + β2[IASUSA]w′w) + γ[SU IA]w

−α[SUSA]w + (1− b)rw[SA IA]w
(8)

d[IA IA ]w
dt = ∑

w′
f (w′)(β1[IASA IA]ww′ + β2[IASU IA]ww′) + β1 f (w)[SA IA]w

+β2 f (w)[SU IA]w − 2γ[IA IA]w
(9)

Equations (4)–(9) characterize the time-varying numbers of links weighted by different
weights and connecting nodes in different states. The reasons for the changes in
the states of the links can be broadly divided into three, the infection and recovery
process associated with the physical contact layer, the information diffusion process
associated with the dissemination of the information layer, and the rewiring process
of the physical contact layer. For example, Equation (4) captures the time-changing
number of the w-weighted links connecting an aware susceptible node and an aware
infected node. The first term on the RHS of Equation (4) results from the infection of
the susceptible ends of the links with the probability of β1 f (w). The second term is the
number of previous w-weighted SASA/SASU links which become SASA links due to
the infection at one end of the links through a w′ weighted link with the probability of
β1 f (w′)/β2 f (w′). [ABC]ww′ denotes the number of triplets A− B− C, with edge AB
weighted w and edge BC weighted w′, A, B, C ∈ {SU , SA, IA}. The third and fourth
term on the RHS of Equation (4) results from the recovery of the infected ends of the
links with the probability of γ. The fifth term on the RHS of Equation (4) results from
the information diffusion with the probability of α, and the last term results from
rewiring to bypass an infected node with the probability of rw.
Specifically, in the stable state, due to information dissemination, all nodes eventually
become risk-aware, so there are only two types of state left in the network, namely
[SA] and [IA]. In addition, all nodes and links in different states achieve dynamic

stability, i.e., ( d[SA ]
dt , d[IA ]

dt , d[SA IA ]
dt , d[SASA ]

dt , d[IA IA ]
dt ) = (0, 0, 0, 0, 0). The Equation of state

in the stable state satisfies

γ[IA]−∑
w

β1 f (w)[SA IA]w= 0 (10)

ζβ1
[SASA]w − [SA IA]w

SA ∑
w′

f (w′)[SA IA]w′ − (β1 f (w) + γ+rw)[SA IA]w + 2γ[IA IA]w = 0 (11)

−ζβ1
[SASA]w

SA ∑
w′

f (w′) + (γ + brw)[SA IA]w= 0 (12)

β1 f (w)[SA IA]w − 2γ[IA IA]w + ζβ1
[SA IA]w

SA ∑
w′

f (w′)[SA IA]w′ = 0 (13)

Based on the approximation in [13], [ABC]ww′ = ζ
[AB]w [BC]w′

B , A, B, C ∈ {SU , SA, IA},
b = 1.
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An interesting result is shown in Equations (10)–(13). In a stable state, all nodes
already have risk awareness, and we can see from the equations that the probability of
information acceptance shows no impact on the final stable state of the network. That
is, the result of our analysis is that the probability of information acceptance does not
affect the final infection scale. Due to the isolation effect of the rewiring process on the
infected nodes from susceptible ones, the rewiring rate shows an important impact on
the final infection of the network.
We can see from the equations that information diffusion has changed the rules of
epidemic spread and also changed the network structure. Conversely, the epidemic
spreading affects the probability of information acceptance, i.e., the rules of informa-
tion diffusion. Therefore, information diffusion, epidemic dynamics, and network
structure interact with each other. In the next section, we conduct simulation experi-
ments on the above processes through Monte Carlo methods to further explore the
relationships among them.

4. Simulation Results

In this section, simulations are applied to analyze the propagation dynamics processes
on the proposed multi-layer dynamic network model. Figures are plotted based on discrete-
time Monte Carlo simulations of 100 iterations. Therefore, each data point in the figures is
the average result of 100 independent runs. For each of the runs, a single infected node is
randomly chosen at t = 0, as the initial point of infection.

Firstly, we constructed a two-layer network of size N = 500, where the information
dissemination layer is a scale-free network [28], and the physical contact layer is a BBV-
weighted scale-free network [29]. First, we establish a fully connected network with n
initial nodes and assign each edge of the network the initial weight w0. In our simulation,
we set n = 3, w0 = 1. In each time interval, add a new node with m edges, which are
preferentially attached to existing nodes with a greater strength. Here, we set m = 3. The
strength preference probability can be defined as ∏new→i =

si
∑j sj

, where si represents the
strength of node i, which can be expressed by si = ∑j wij with wij representing the weight
of the edge between nodes i and j. When the new node j is linked to an existing node i, the
weights of the edge between node i and its existed neighbors, such as node j, evolve as
wij → wij + ∆wij, where ∆wij = δ

wij
si

and δ is a constant. The average degree of both layers
is 〈k〉 = 6 and the average weight of the physical contact layer is 〈w〉 = 6. The degree
distribution, node strength distribution, and weight distribution of the BBV network all
conform to the power-law distribution, and the degree and strength of the nodes have a
positive correlation, as shown in Figure 4.

We aim to investigate the interplay between propagation processes on the multi-layer
network. As described in the previous section, we use the UA model for information
diffusion and the SIS model to describe the epidemic spread. The acceptance of positive
epidemic-related information is closely related to the level of epidemic infection; here,
the information acceptance probability of an unaware node from an aware neighbor is
set as α(t) = p1 I(t), p1 ∈ [0, 1]. In the physical contact network, the rewiring rate is
set to r(w) = p2

1
w , p2 ∈ [0, 1]. Both p1 and p2 are the adjustment parameters of α(t)

and r(w), respectively. And the larger p1/p2 is, the higher the information acceptance
probability/rewiring rate. We explore the relationship between information dissemination
and epidemic transmission processes through the changes in p1 and p2.
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Figure 4. The distribution characteristics of the BBV network. The degree distribution, node strength
distribution, and weight distribution of the BBV network all conform to the power-law distribution,
and the degree and strength of the nodes have a positive correlation.

We first study the impact of information diffusion on the epidemic spread, as shown
in Figure 5. The curves show the changes in the number of infected individuals I(t) over
time t under different p1 in each subplot. We can see from each subplot that the maximum
infection scale, i.e., peaks of the curves, decreases with the increase in p1. When p1 grows,
the information acceptance probability becomes larger. Then, the number of SA-state nodes
that can be infected with a smaller probability increases, and infection velocity becomes
slower. However, we can see from each of the subplots that the probability of information
acceptance shows no impact on the final infection of the network, which is consistent with
our theoretical analysis result in Section 3.

Interestingly, each curve in Figure 5 shows an infection peak due to the fact that all
infected individuals are risk-aware, i.e., IA-states, and the IA-state nodes revert to the
SA-state with the recovery probability γ. Therefore, the SA-state nodes in the network are
increasing continuously, and the infection in the network is slowed down before reaching
stability. When the recovering process disappears, i.e., γ = 0, the peak disappears, as
shown in Figure 6 (the red curve).
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Figure 5. Theimpact of information diffusion on the epidemic spread under different parameter p2

in rewiring rate rw. Curves are the number of infected individuals I(t) over time t as p1 increases.
In each subplot, we can see that the final infection (I(t = 40)) is almost the same, which means that
the information diffusion has no impact on the final infection. But a high probability of receiving
information can reduce the speed of epidemic spread.

Figure 6. Comparison of infection processes with and without recovery process. Here, we set p1 = 0.8,
p2 = 0.
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We can also see from Figure 5 that, with the increase in the rewiring parameter p2,
the infection in the network has been greatly improved. We can see from Figure 5a–d
that, as p2 increases, the final infection (I(t = 40)) in the network significantly decreases.
When p2 = 0, the number of final infections is about 200; however, when p2 = 0.4/0.6,
the final infection disappears. Furthermore, we continue to study the impact of rewiring
behaviors on the epidemic spread process. Figure 7 shows the impact of rewiring behaviors
on the epidemic spread under different information acceptance parameters p1. Curves
are the number of infected individuals I(t) over time t as p2 increases. We can see from
each subgraph that as p2 increases, the scale of infections in the network decreases. The
rewiring behavior has effectively inhibited the prevalence of the virus as it blocks the path
of infection. Especially in the initial stage of infection, the higher the rewiring rate, the
easier it is for the infection to eventually die out.

Figure 7. Theimpact of rewiring behaviors on the epidemic spread under different parameters p1

in information acceptance rate. Curves are the number of infected individuals I(t) over time t as
p2 increases. We can see from each subplot that the final infection was greatly inhibited with the
increase in the rewiring parameter p2.

Compared to the impact of information dissemination on the infection process, the
rewiring behavior has a greater impact on the final infection scale, as shown in Figure 8.
When we increase the rewiring parameter p2, the final infection scale (t = 100) continuously
decreases. As shown in Figure 8, when p2 > 0.32, the final infection of the network
approaches 0.

Another ongoing collaborative evolution is the structure of physical contact networks:
both the degree distribution and weight distribution evolve along with the rewiring process.
Adaptive rewiring of high-risk links leads to the breakdown of edges that connect a
susceptible node with risk awareness and an infected one, and meanwhile, this gives
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rise to the formation of low-risk links connecting toward a randomly chosen susceptible
node. As demonstrated in Figure 9, the degree distribution of the physical contact network
exhibits time-varying scaling behaviors: In the initial stage without rewiring (Case of t = 0
in Figure 8), both the node degree and link weights follow a perfect power law, while
as the rewiring process unfolds, the degree/weight values become closer to the average
degree/weight, approximating a Poisson distribution.

Figure 8. Thefinal infection I(p2) under different rewiring parameters p2.

Figure 9. Theimpact of rewiring behaviors on network structure.
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5. Conclusions

Information diffusion is an inevitable influencing factor in the process of epidemic
spread, and in turn, epidemic spreading also affects information diffusion. This paper uses
a two-layer network model to describe and analyze the interaction between information
dissemination and epidemic transmission. Our model considers two co-evolutionary
processes: the co-evolving of information diffusion and epidemic spreading between two
layers and the co-evolving of epidemic spreading and network structure in the physical
contact network. Considering the difference in the connections between individuals, the
heterogeneous rewiring rate, which is proportional to the strength of the connection, is
introduced in our model. Simulation results show that the epidemics spreading is closely
related to the information diffusion and rewiring strategy. The maximum infection scale
decreases as the information acceptance probability grows, and the final infection decreases
as the rewiring behaviors increase. Interestingly, an infection peak appears in our model
due to the interaction between information diffusion and epidemic spread.

The weighted co-evolving multiplex network model we propose is used to describe
the dynamic interaction between information diffusion and epidemic spreading, which
is more diverse in real life. Therefore, we hope to have a more realistic model based
on our model to deepen the research on spreading dynamic interactions in real-world
systems. In fact, besides social networks, a significant number of real-world systems, e.g.,
communication networks, transportation networks, and power networks, own multiplex
network structures. For example, information diffusion can help drivers better understand
road conditions and avoid traffic congestion in transportation networks. The information
exchange in the communication network can help decision makers to appropriately load
redistribution in a timely manner, thereby avoiding cascading failures in the power grid.
The model we propose in this paper can be extended to more scenarios and will hopefully
be used to study problems of multiplex network coexistence and cooperative evolution in
these scenarios.
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