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Abstract: The long-term prediction of the degradation of key computer parameters improves mainte-
nance performance. Traditional prediction methods may suffer from cumulative errors in iterative
prediction, which affect the model’s long-term prediction accuracy. Our network adopts curriculum
learning and transfer learning methods, which can effectively solve this problem. The training net-
work uses a dual-branch Siamese network. One branch intermixes the predicted and annotated data
as input and uses curriculum learning to train. The other branch uses the original annotated data for
training. To further align the hidden distributions of the two branches, the transfer learning method
calculates the covariance matrices of the time series of the two branches by correlation alignment
loss. A single branch is used in the test for prediction without increasing the inference computation.
Compared with the current mainstream networks, our method can effectively improve the accuracy
of long-term prediction with the improvements above.

Keywords: long-term prediction; time series; curriculum learning; transfer learning

MSC: 62P30

1. Introduction

In recent decades, embedded computers in aviation and aerospace systems have
become more integrated and intelligent. Because of their complex structures, embedded
computer systems’ development, production and maintenance costs are increasing. The
functions of computers in working and storage conditions are subject to gradual degra-
dation under the prolonged effects of stress factors such as heat, humidity, and vibration,
which may eventually cause functional failure. During the maintenance of embedded com-
puters, predicting the degradation trend of these critical functional parameters is desirable.
In this way, maintenance personnel can monitor the health status of the products in real
time and perform timely maintenance before a failure occurs, thereby reducing downtime
and maintenance costs. Hence, the degradation analysis of electronic systems based on
critical parameters has emerged as a research hotspot for scholars.

The reliability of computers and circuits deployed on aerospace equipment should
be the most important factor in maintenance work. It is necessary to predict long-term
computer degradation. Algorithms should predict computer failure due to occur within a
few weeks or longer to facilitate early component replacement. Therefore, the long-term
monitoring and prediction of key parameters of aerospace computers and their circuits
can improve product reliability more effectively. For example, the flight control computers
equipped in unmanned aerial vehicles (UAV) are subject to accelerated degradation in
humid and hot climates and eventually fail to function. The power consumption and resis-
tance of the entire computer rise significantly before its failure, which shows a noticeable
degradation process. The timely repair and replacement of electronic components can
improve the UAVs’ operational capability.
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The theoretical research and application of computer degradation are in the exploratory
stage. In the research process, scholars identify the key parameters that influence the
computer’s function by analyzing the weak part of the computer. They perform failure
mode and mechanism analyses based on these parameters. So, the reliability of the entire
electronic system is simplified by studying the degradation of several key characterization
parameters. Many studies have conducted various explorations in this direction following
this idea. Mao et al. [1] collected data on the key parameters of embedded computers during
temperature-accelerated aging and evaluated real-time input data at normal working
temperatures. They used the real input data under storage to update the acceleration factor
and reasonably estimate its current degradation trend.

The current mainstream research methods mainly include physical-failure-model-
based, mathematical–statistical-model-based, and machine learning-based approaches. A
brief description of the methods and their advantages and disadvantages is presented
in Table 1. With the development of deep learning networks, data-driven methods have
become a hot research topic. These methods can handle complex prediction problems that
are difficult to describe with physical or statistical models.

Table 1. Mainstream electronics product degradation prediction methods.

Method Characteristics Advantages Disadvantages

Approaches based on a
physical model [2–7]

Applicable to equipment with a
clear degradation mechanism and
weak generalization ability.

The accuracy is higher because
of the precise description of
degradation mechanisms and
impact factors.

• Requires significant expertise
and experience.

• Poor generalization for specific
devices.

• Difficult to obtain models for
some overly complex scenar-
ios.

Statistics approaches
[8–13]

Build a statistical model based on
empirical knowledge and present
the degradation predictions as a
probability density function based
on the statistical results.

Not dependent on specific
failure physics, a variety of more
mature models are available

• Real data with a large num-
ber of degraded samples are re-
quired.

• Scenarios that are too complex
remain challenging to process.

Machine learning
approaches
[14–21]

A data-driven approach to learning
mechanical degradation patterns
from existing observational data
rather than building physical or
statistical models.

Strong model expression, with
excellent prediction for complex
models.

• Need to collect a large number
of samples.

• Poor interpretability of predic-
tion results.

Essentially, the long-term degradation data of key computer parameters are time series
data. Time series data analysis has extensive applications in finance, meteorology, agri-
culture, industry, and medicine [22]. Particularly in recent years, with the advancements
in sensor and network technology, maintenance personnel can more easily collect key
computer parameters automatically at regular intervals. It means that a significant amount
of time series data of key parameters are available now. Computer parameter degradation
should be a long-term time series prediction problem. Researchers can adopt time series
methods to deal with it. These time series methods can extract patterns from past degra-
dation trend data and forecast future development trends. A critical computer parameter
degradation method based on time series analysis will offer guidance for maintenance
work and has high academic significance.

Predicting computer parameter degradation is challenging, and differs significantly
from traditional time series forecasting methods. Standard time series prediction focuses
on the correspondence between the annotated inputs and the expected outputs. It opti-
mizes the model by minimizing the difference between the model’s output values and the
annotated values. However, long-term computer degradation prediction needs existing
data to forecast future trends iteratively. The prediction model uses the predicted value y
at time t as input for the next time t + 1 during the test. In this way, the iterative inputs
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result in the prediction of more steps in the future. This iterative approach theoretically
transforms a single-step model into a multi-step prediction model. However, there is
inevitably some error in the predicted values at each step. The prediction model uses
these previous predictions as input for the next step, which can lead to an accumulation of
errors over long iterations. Therefore, excessively long prediction steps can lead to a poor
prediction accuracy of the model, which should be appropriately addressed.

The network employs a Siamese architecture network, where one branch is trained
with annotated values and the other with a curriculum learning approach. This curriculum
learning method combines ground-truth and predicted values as next-step inputs to train
the model, gradually increasing the proportion of predicted values as inputs to reduce
error accumulation. The distance between the covariance matrices of the output prediction
sequences from the two branches is compared during training. This transfer learning
approach can reduce errors between iterative and ground-truth training.

This paper proposes the curriculum and transfer learning methods to address the
challenges of long-term computer parameter degradation prediction. Our contributions
are as follows:

• The network employs a Siamese architecture network, where one branch is trained
with annotated data and the other with a curriculum learning approach. The curricu-
lum learning branch combines annotated data and predicted output as the next-step
inputs to train the model. The proportion of predicted values in the inputs gradually
increases during the training process to avoid accumulative prediction error.

• During the training phase, the network output trained with the ground-truth data
is regarded as the source domain, while the network is trained iteratively with the
predicted value as the target domain. Correlation alignment (CORAL) loss can fa-
cilitate time series features to align the covariance between domains. Our network
incorporates CORAL loss within deep networks to learn a nonlinear transformation
to align source and target domain distributions within feature space.

These improvements enable higher accuracy in the long-term iterative prediction of
key computer parameters, providing more time for subsequent maintenance work. Our
paper is organized as follows: The related works are discussed in Section 2. We propose our
method of long-term computer parameter degradation estimation in Section 3. Section 4
presents the experiments with our datasets. We conclude with a summary in Section 5.

2. Related Works

This section discusses the existing electronic product degradation prediction methods,
time series forecasting, and analysis methods.

2.1. Methods in Electronic Product Degradation Prediction

Physical-failure-based models describe the degradation mechanism of electronic sys-
tems. The degradation parameters of the physical model are related to the material
properties and stress levels. They are identified by comparative experiments or finite
element analysis.

The University of Maryland CALCE Center proposed the life consumption monitoring
(LCM) methodology for electronic devices [3]. The LCM method combines the monitoring
of environmental and operational stresses with the physical model of failure in electronic
devices to calculate the cumulative damage and predict the product prediction. Renwick[4]
obtained the condition degradation pattern of capacitor devices by monitoring the electrical
stress and performed failure prediction analysis. Rana [5] developed physical failure
models for different electronic components and completed a life prediction study. Liu [6]
proposed a reliability assessment based on integrating highly accelerated life testing and
accelerated degradation testing. Rockwell [7] used early warning circuits embedded in
the product for early fault diagnosis for welded and corroded parts with low cycle fatigue
characteristics.
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Statistical-model-based methods, also known as empirical-model-based methods,
present degradation predictions as probability density functions by building statistical
models based on empirical knowledge and presenting the probability density functions
based on statistical results. Many kinds of statistical models are commonly used, such as the
auto-regressive model, the Wiener process model, the Weibull process model, the Gaussian
process model, the Markov model, etc. Kim [8] proposed a state-of-health prediction for
lithium-ion batteries with the Seasonal ARIMA (SARIMA) and auto-regressive integrated
moving average with exogenous variables (ARIMAX) models. Li [9] addressed the degrada-
tion prediction of electronic products based on the Wiener degradation process model and
Bayesian posterior estimation to realize real-time updates of parameters. Wei [10] applied
the Weibull distribution to model the distribution of each key component in a complex
electronic system. It dynamically depicted the reliability changes in the entire system under
the stress impacts. Wan [11] proposed a stochastic model of thermal reliability analysis
and prediction for a whole electronic system based on the Markov process to estimate the
thermal reliability of an electronic system. Wang [12] proposed a generalized Gaussian
process to construct a one-stage maximum-likelihood method for parameter estimation for
degradation procedures. Shi [13] proposed a method for forecasting the remaining life of a
multi-component computer based on Copula theory. Each component’s degradation distri-
bution function was deduced from kernel density estimation and generated the remaining
life prediction model with their correlation.

Data-driven approaches use artificial intelligence techniques to learn patterns of elec-
tronic degradation from existing data rather than building physical or statistical models.
They can handle complex prediction problems that are difficult to describe with physical
or statistical models. With the continuous development of deep learning, data-driven ap-
proaches are receiving more and more attention in electronic device degradation prediction.
Fan [14] utilized the existing constant-stress accelerated test data in storage conditions to as-
sess the computer degradation trend using the support vector machine method. Jiang [15]
proposed a reliable cycling aging prediction based on a data-driven model to address
the urgent issue of the adaptive and early prediction of lithium-ion batteries’ remaining
useful life. Li [16] introduced a deep learning-based battery health prognostics approach to
predict the future degradation trajectory in one shot without iteration or feature extraction.
Zhao [17] constructed a probabilistic degradation prediction framework to estimate the
probability density of target outputs based on parametric and non-parametric approaches.
The method can naturally provide a confidence interval for the target prediction. Deng
[18] adopts a new multi-scale dilation convolution fusion unit with different dilated factors
for remaining useful life (RUL) prediction. Liu [19] proposed a novel fault diagnostic
application of the Gaussian–Bernoulli deep belief network (GB-DBN) for electronics-rich
analog systems, which can more effectively capture high-order semantic features from the
raw output signals.

2.2. The Forecasting and Analysis Methods of Time Series

This paper employs a time series approach to address the degradation of crucial com-
puter parameters and focuses on predictive analysis methods for time series. Traditional
methods determine the time series parameter model and solve model parameters to com-
plete the prediction. Typical methods include ARIMA (Auto-Regressive Integrated Moving
Averages) [23] and the Holt–Winters method. While traditional time series models can
solve simple prediction problems, they may only suffice if the time series contains fewer
variables and dimensions or if the change patterns are overly complex.

Time series decomposition is a valuable method in time series analysis. This approach
assumes that a time series is the result of the superposition or coupling of long-term trends
(Secular trend, T), seasonal variations (Seasonal Variation, S), cyclical fluctuations (Cyclical
Variation, C), and irregular fluctuations (Irregular Variation, I). A typical method in this
approach is Prophet [24].
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Time series data prediction is closely related to regression analysis in machine learning.
Support Vector Regression (SVR) applies SVM to time series function regression by mapping
x to a high-dimensional feature space using a nonlinear transformation and estimating the
time series. Gradient Boosting Regression Tree (GBRT) introduces gradient descent [25]
to solve regression problems by calculating the negative gradient of the loss function to
minimize it and ultimately obtain the optimal model.

With the tremendous achievements of deep learning methods in computer vision and
natural language processing, deep learning approaches have gradually been introduced
into time series prediction applications. By constructing various network architectures,
deep neural networks can better represent high-dimensional data, avoiding manual feature
engineering and model design. Deep learning facilitates end-to-end training by optimizing
a predefined loss function.

Convolutional neural networks (CNNs) extract local features in the time dimension
and gradually aggregate them through multiple layers to obtain hidden information from
past time sequences. Borovykh [26]constructed a stacked structure of dilated convolu-
tions in the network to aggregate more historical records for future time series prediction.
Chen [27] proposes a temporal convolutional network (TCN) that treats the sequence as a
one-dimensional input and captures long-term relationships through iterative multi-layer
convolution. The TCN uses causal dilated convolutions [28] and residual convolution skip
connections to provide an extensive temporal receptive field for modeling.

Recurrent neural networks (RNNs) learn the hidden states within all time series before
prediction, serving as feature representations of past information. Combined with current
inputs, they provide the next step prediction. Long Short-Term Memory (LSTM) [29] and its
variant Gate Recurrent Unit (GRU) [30] are essential for RNN-based time series prediction.
The DeepAR network [31] employs an LSTM model to solve time series prediction problems.
Its previous expected output is used as input to replace the input of the next moment in the
prediction phase. Rangapuram [32] propose an RNN-based deep state space model that
considers the current state to be related only to the last moment. Wen [33] used an encoder–
encoder structure to forecast the multi-horizon time steps in the future simultaneously.

Self-attention networks, originating in natural language processing, can be quickly
applied to time series prediction due to the similarity of these tasks. RNNs must sequen-
tially aggregate all the hidden information from t-n to t when processing and analyzing
time series. The connection between each time step usually needs to be improved. RNNs
are less efficient because of their sequential processing procedure. The model based on the
attention mechanism can realize the association between any units in the input time series.
Association weighting provides representations in the lower layer features to the upper
layer. The self-attention mechanism can better realize the contextual information interaction
in time series. Wu [34] tried the time series prediction task using the Transformer architec-
ture with good results. The Transformer model has great potential to improve prediction
performance. However, Transformer also has limitations such as high computational effort,
high memory footprint, and an encoder–decoder architecture, which prevent it from being
applied to more prolonged time series prediction problems. The Informer [35] selects
O(logL)-dominant queries based on query–key similarity, achieving a similar improvement
in computational complexity to LogTrans. Researchers have explored frequency-domain
self-attention mechanisms in time series modeling. Autoformer [36] designs a short-term
trend decomposition architecture with an autocorrelation mechanism as an attention mod-
ule. It measures the delay similarity between input signals and aggregates the top k similar
subsequences to produce an output with O(N logN) complexity. FEDformer [37] applied
the attention mechanism in the frequency domain using the Fourier transform and wavelet
transform. It achieved linear complexity by randomly selecting a subset of fixed-size fre-
quencies. Li [38] proposed a combination of CNN and Transformer to enhance contextual
information extraction. Lim [39] used LSTM to model the input sequence as a preprocessing
step and fed it into the upper transformer to compensate for the sequence information
using attention.
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For all neural networks, the self-attention method currently performs the best in time
series prediction because it can pay more attention to the historical context of time series
on a larger scale. Although the algorithms above have improved prediction accuracy for
public time series datasets, reducing iterative error is more critical for long-term prediction
in real applications. From another perspective, the application of time-series-based time
networks is also limited by the limitations of large-scale data. For scenarios with limited
sample data, this can also affect performance.

3. Our Approach
3.1. Overview of Our Network Architecture

Our network employs a dual-branch structure during training, as shown in Figure 1.
yi is the real output at i step in the collected dataset, which is annotated in the training
process. ŷi is the prediction output at i step, which may be regarded as an iterative input
at i + 1 step. One branch uses the curriculum learning training method and combines
annotated and predicted values as inputs to train the model. The proportion of predicted
value inputs gradually increases during the training process. The other branch always uses
annotated data for training to preserve the real data distribution. To ensure better fits of the
actual data distribution in the curriculum learning training, a transfer learning approach
compares the distance between the covariance matrices of the output sequences from the
two branches. Deep transfer learning confuses the distribution between the hidden layers
of the two branches to make the data distribution using prediction from real values as
similar as possible to that when using a prediction from the predicted value.

During the end-to-end optimization process, the Mean Squared Error (MSE) loss
function compares the output time series from each branch to their respective annotated
data. In addition, the correlation alignment (CORAL) loss between the two branches is
evaluated based on the covariance distance between their output sequences.

We adopted the dual-branch network architecture just during the training. During
testing, the data are fed into a single trained network branch. The output from the previous
step should be regarded as input for the subsequent step.

During the loss function statistics, the time series of the outputs from the two branches
are optimized with the ground truth as the loss functions, respectively. In addition, the
correlation alignment (CORAL) loss between the two branches is evaluated in terms of the
covariance distance according to the corresponding two output time sequences.

It should be noted that this network architecture is only used for the training process.
During the testing process, only one network branch works appropriately. One step’s
output should be used as input for the next step in the testing process.

The LSTNET [40] structure is the backbone of our Siamese network architecture due to
its effectiveness in accounting for the accumulation of linear trends and periodic fluctuations
in time series data. Its hypothesis is consistent with the changing trends required in the
current degradation process of key computer parameters. We chose the LSTNET structure
for the network architecture because it can better account for the accumulation of linear
and periodic fluctuations in the degradation trend.
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Figure 1. Overall network architecture.

3.2. Curriculum Learning Iterative Training in Degradation Prediction

The iterative training methodology employed in the curriculum learning branch in-
troduces an exposure bias into time series forecasting. During training, the time series
forecasting network can predict future steps based on currently available data. The pre-
dicted outputs from the network are compared with their respective annotated data. The
network parameters are updated accordingly based on the difference between them. How-
ever, during subsequent training iterations, the predicted outputs from previous steps are
utilized as input data in the following steps. This iterative forecasting approach can result
in the accumulation of errors.

The traditional deep learning-based time series methodologies exhibited limited pre-
dictive capabilities during the initial stages of training. Generating consistently accurate
forecasts has yet to be achieved. When a significant deviation occurs at a particular step,
the biased output value as input data will exacerbate subsequent forecast inaccuracies. It
can result in insufficient network convergence and poor forecast accuracy during training.

Curriculum learning adopts a structured learning methodology, just like the human
learning process. Initially, an instructor imparts knowledge onto the student and waits
until the student has acquired a foundational understanding before allowing them to
engage in independent learning. The curriculum learning branch’s input data combines
the previously predicted output and annotated data. As illustrated in Figure 2, during
the training phase, the network ceases to rely solely on predicted outputs as network
inputs for subsequent steps. Instead, it selects its initial steps output with probability p
and the annotated input with probability 1− p as its input for the next steps. Throughout
this scheduled sampling process, the value of p fluctuates between 0 and 1. When the
network needs still more development at the beginning of training, a smaller value of p is
optimal, resulting in a higher proportion of annotated data being utilized in input samples
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to train the network. As training progresses and the model matures, p should incrementally
increase to maximize the use of the model’s own predicted output as the iterative input
during training. This gradual learning approach enables the model to adapt to training
with expected outputs as cyclic inputs while maintaining prediction accuracy.

Figure 2. Curriculum learning iteration training.

During the training phase, the predicted output is selected with probability p while
the annotated data are selected with probability (1− p). The value of p ranges from 0 to
1. As the number of training iterations increases, p incrementally increases from 0 to 1.
p should be set to 1 at the end of training.

3.3. Domain Adaptation between Two Branches

The iterative errors will inevitably be cumulated when training the network with
predicted values. During iterative training, there is a discrepancy between the distributions
of predicted data and the distribution of annotated data. More alignment of their feature
spaces is essential to diminish this discrepancy. Domain transfer learning can accomplish
this goal.

During the training phase, the network output trained with the ground-truth data is
regarded as the source domain, while the network is iteratively trained with the predicted
value as the target domain. Throughout the learning process, synchronizing the output
of both sub-networks to the corresponding time series keeps their sequence alterations
consistent in the time dimension. The similarity between both branches is determined
by measuring the distance between their output sequence covariances to evaluate two
time series.

Covariance quantifies how each dimension deviates from its mean value. The covari-
ance matrix can effectively measure the sequence correlation over time dimensions for time
series data. The covariance matrix assesses the correlation of changes across the periods
within the time series and serves as a representation of internal correlation. Comparing the
correlation of two time series can evaluate their relationship to learn their joint distribution.

Our network adopts the CORAL loss function to measure the distance between two
distributions. CORAL loss can facilitate feature transformation to align the covariance
between different domains. Our network incorporates CORAL as a loss function within
deep networks to learn a nonlinear transformation to align source and target domain
distributions within feature space. The covariance matrices for the source and target
domains are calculated as shown in Formulas (1)–(3). The covariances for the source and
target domains are represented as Cs and Ct. Here, Ds and Dt are the feature presentation
of source and target data, respectively. The covariance of the source domain and target
domain are indicated as Cs and Ct, which are calculated with the equations below. Ns and
Nt represent the sequence length in the source and target domains, respectively.

Cs =
1

Ns − 1
(D>s Ds −

1
Ns

(1>Ds)
>(1>Ds)) (1)
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Ct =
1

Nt − 1
(D>t Dt −

1
Nt

(1>Dt)
>(1>Dt)) (2)

Losscoral =
1

4d2 ‖Cs − Ct‖2
F (3)

In our method, the distance calculation in the covariance matrix differs from the tradi-
tional method. In computer vision tasks, the samples in a batch are usually normalized,
and then CORAL loss is used to minimize the discrepancy between the source and target
domains. However, for the time-varying sequence of critical parameters, the covariance
matrix mainly reflects the autocorrelation of different time series at each time step. There-
fore, the output features should be normalized by the time dimension rather than by the
samples in the batch, as shown in Figure 3. Normalization can reduce the noise impact
from data samples. The two predicted sequence matrices are compared along the time
dimension.

Figure 3. Two branches of prediction transpose and normalization in the time dimension. The
different colours represent time series from different devices.

In the implementation, we feed the predicted values of two sub-networks into two
fixed-length queues. In these two queues, a first-in-first-out strategy is used to store the par-
allel outputs of the two networks separately. The latest predicted values are continuously
fed to replace previous values during training. By measuring the two networks’ predicted
output to calculate the covariance matrix’s distance and minimizing the discrepancy be-
tween the source and target domains through the above-mentioned distance optimization,
the two branches can learn to form the same distribution.

4. Experiments
4.1. Datasets

The key parameters of embedded computer degradation can scientifically represent
the reliability requirements under various scenarios and reasonably reflect the degradation
trend of flight control computers as much as possible. These key parameters should be
easily measured and statistically analyzed, and effectively compared and contrasted so that
they can demonstrate the degradation trend of flight control embedded computers.

The simplified flight control computer system mainly consists of DSP, FPGA, in-
put/output, a storage and clock circuit, etc., as shown in Figure 4. The components are
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connected by bus. The AD input and DA output accuracy significantly impact the flight
control embedded computers. During the flight, the analog signal of the rotation angle
of the servo is input to the computer through A/D conversion. The computer calculates
and transfers the following rotation action to the servo through D/A conversion. If this
part of the component degrades, it will significantly impact flight accuracy. Therefore, this
function belongs to the key of the flight control computer and needs more attention.

Figure 4. The simplified embedded computer architecture diagram.

From the data analysis of the natural storage environment, accelerated experiment,
and the long-term power-on test of the computer, it is found that the parameters of the
computer’s A/D- and D/A-related circuits degrade more obviously with increased serving
time. Therefore, their degradation mode greatly influences the degradation of computer
function. The changes in the critical parameters of the embedded computer were statistically
analyzed by day. We collected the data in this way and constructed the time series datasets.

The aircraft’s flight state is controlled with the airfoil servos adjustment. There is a
constant data exchange between the flight control computer and the vehicle’s servos. The
flight control computer is constantly monitoring the changes in the analog model of the
control Totoro and simultaneously converting the adjusted digital quantities into analog
outputs for the Totoro. Therefore the degradation of A/D and D/A in the computer affects
the accuracy of the vehicle.

4.2. Implementation Details

The hardware platform for the experiment was Nvidia Tesla V100 GPU. The software
platform uses PyTorch 3.7 for training and testing. In the experiment, the LSTNET network
was used as the backbone network. In the process of training, the collected data above
were used. The network adopts the Siamese structure. The two branches share the network
weight. The ground truth was used in training to input and calculate the loss function.
The other branch used the curriculum learning method to learn. Excellent performance
can be achieved by gradually increasing the proportion of predicted output as the iterative
input. The batch size was 256 in training. The gradient descent algorithm adopts the Adam
algorithm. The learning rate of the network decreases from 10−3 to 10−5 according to the
number of iterations. The number of iterations was 5000.

4.3. Experiment Metric

For time series forecasting, the difference between the predicted and annotated values
is mainly measured by MSE (Mean Squared Error) and MAE (Mean Absolute Error). The
equations are shown below, where N is the steps of the prediction, yi is the ground truth,
and ŷi is the predicted value.

MSE =
∑N

i=1(ŷi − yi)
2

N
(4)
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MAE =
∑N

i=1 |ŷi − yi|
N

(5)

4.4. Experiment Result

We compared the results with the current mainstream networks developed in recent
years. As the number of prediction steps grows, our algorithm performs better than other
methods. Table 2 shows univariate results with different prediction lengths, including 96,
192, 336, 720 for key computer parameter datasets. A lower MSE or MAE indicates a better
prediction.

Table 2. Experiment Results.

Models Our Model Autoformer [36] Informer [35] Reformer [41] Transformer [42] LSTNET [40] LSTM [43]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.052 0.159 0.086 0.219 0.088 0.223 0.114 0.259 0.104 0.251 0.121 0.268 0.243 0.357
192 0.091 0.214 0.117 0.245 0.158 0.301 0.195 0.349 0.206 0.365 0.240 0.381 0.449 0.476
336 0.136 0.259 0.227 0.369 0.251 0.398 0.273 0.412 0.282 0.439 0.348 0.462 0.817 0.753
720 0.262 0.335 0.332 0.465 0.420 0.519 0.438 0.457 0.462 0.527 0.507 0.541 1.017 1.184

As shown in Table 2, our method exhibits better accuracy because our model adopts the
transfer learning method. During the training process, this enables the iterative prediction
sequence to achieve distribution alignment with the real sequence, thereby more effectively
eliminating prediction error accumulation compared to previous methods.

Our method’s advantages are further demonstrated in Figure 5. The long-term predic-
tion process of our method can effectively use the iterative output for the next prediction,
which is more accurate than other methods. In Figure 5, the Autoformer network represents
the Transformer methods, and the LSTM network represents the RNN methods. The blue
line represents the ground truth. The red line represents the output prediction.

Figure 5. The prediction result comparison.

4.5. Ablation Studies

To validate the impact of curriculum learning and transfer learning methods on our
model, we performed ablation experiments to compare their effects on long-term prediction.
In Table 3, curriculum learning and transfer learning can separately improve the accuracy
of the network with 720 prediction steps. A lower MSE or MAE indicates a better prediction.
The combination of the two approaches can produce better results.

Table 3. Ablation experiment.

Method MSE MAE

Baseline 0.507 0.541
Curriculum learning 0.351 0.407

Our method (curriculum learning + transfer learning) 0.262 0.335
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4.6. Different Input Substitution Schemes

Our experiments demonstrated the influence of different p substitution schemes
during curriculum learning. We compared the linear, convex, and concave substitution
functions, as shown in Figure 6. In the convex function, a percentage of p changed faster
in the early training stages, whereas p changed faster in the later stages in the concave
function. The change in p is constant with linear function during the training.

Figure 6. The p proportion different change function schemes.

It is evident from the tests that too high a rate of change in p in the early iterations
may lead to lower performance, as shown in Table 4. A lower MSE or MAE indicates a
better prediction. Too high a prediction input proportion in the early training stages may
lead to unstable convergence in the model.

Table 4. Experiments with p proportion schemes.

p Change Scheme MSE MAE

linear function 0.262 0.335
convex function 0.264 0.349
concave function 0.355 0.391

4.7. Influence of Different Queue Lengths

The experiments evaluated the effect of different-length covariance matrices on the
CORAL loss function. The two first-in-first-out branch queues were compared according
to different queue length settings. Table 5 shows that the 512 lengths can achieve better
results. A lower MSE or MAE indicates a better prediction. Too long queues mean more
computation and no significant increase in performance.

Table 5. Experiments with different queue length.

Queue Length MSE MAE

128 0.371 0.435
256 0.305 0.398
512 0.262 0.335
1024 0.268 0.347

5. Conclusions

With the development of networks and sensor technology, it is possible to collect
datasets more efficiently. It is possible to employ data-driven computer degradation
analysis. Our paper uses a combination of curriculum learning and transfer learning to
effectively reduce cumulative errors in the prediction process for long-term prediction
scenarios of key computer features. We propose a Siamese network architecture oriented
towards correlation alignment. During training, one branch uses annotated data, while the
other uses curriculum learning in iterative prediction. Moreover, the correlation of the time
series generated by the two branches is measured by optimizing the CORAL loss function,
which realizes the alignment of the prediction time series distribution. Compared to the
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time series prediction methods developed in recent years, our approach can effectively
address long-term prediction in embedded computers. The maintenance and reliability of
electronic devices can be improved.

Current time series networks based on deep learning rely on complete datasets, but
many applications are challenging to achieve. We need to preprocess to impute the missing
value for incomplete data. This can be performed for simple cases by interpolating before
and after values. For complex cases, the missing parts can be generated by using self-
encoders and adversarial networks.
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Abbreviations
The following notations are used in this manuscript:

p The probability of the iterative prediction input
yi The annotated output at i step
ŷi The prediction output at i step
Ds The feature presentation of source domain
Dt The feature presentation of target domain
Cs The covariance matrices of source domain
Ct The covariance matrices of target domain
Ns The length of the sequence in the source domain
Nt The length of the sequence in the target domain
d The size of the covariance matrices is (d × d)
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