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Abstract: In this work, we have characterized the frame bundle FM admitting metallic structures
on almost quadratic ¢-manifolds ¢? = p¢ + gI — gy @ {, where p is an arbitrary constant and 4 is
a nonzero constant. The complete lifts of an almost quadratic ¢-structure to the metallic structure
on FM are constructed. We also prove the existence of a metallic structure on FM with the aid of
the | tensor field, which we define. Results for the 2-Form and its derivative are then obtained.
Additionally, we derive the expressions of the Nijenhuis tensor of a tensor field | on FM. Finally, we
construct an example of it to finish.

Keywords: metallic structure; frame bundle; partial differential equations; almost quadratic ¢-structure;
2-Form; diagonal lift; mathematical operators; nijenhuis tensor

MSC: 53C15; 58D17

1. Introduction

Numerous types of f-structures on a differentiable manifold M have been studied
by Yano [1], Ishihara and Yano [2], Blair [3], Nakagawa [4] and others. Yano proposed
the notion of an f-structure obeying f° + f = 0, f is a tensor field of type (1,1), which
is the generalization of an almost complex structure and an almost contact structure [5]
and investigated some basic results of it. Later, Goldberg and Yano [6] and Goldberg and
Perridis [7] defined a polynomial structure P(J) = J* +a,J" ' + ... + a] + a1, where
ai,ay,...,a, are real numbers, | is a tensor field of type (1,1) and [ is an identity tensor
field of type (1,1) on M. Moreover, some important polynomial structures such as an
f (3, €)-structure [8], a general quadratic structure [9], an almost complex structure and an
almost product structure [1], ¢(4, £2)-structures [10] and an almost r-contact structure [11]
are studied and the fundamental results are established in these papers.

Recently, the polynomial structure J> = pJ +ql, p,q € N, where N is the set of
natural numbers, of degree 2 is known as a metallic structure on M [12-14]. For spe-
cific values of p and ¢, metallic structures become prominent structures given below:

Pl q Structure

0| 1 an almost product structure [15]

0 | —1 | an almost complex structure [16,17]
1] 1 a golden structure [18,19]
211 a silver structure [20]

Hretceanu and Crasmareanu [21] initiated the study of golden and metallic structures
on a Riemannian manifold and interpreted the geometry of submanifolds admitting both
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structures on M. The various geometric properties of such structures in a metallic (and
golden) Riemannian manifold and a metallic (and golden) warped product Riemannian
manifold were studied in [22-26]. Debnath and Konar [27] defined a new type of structure
named as an almost quadratic ¢-structure (¢,{,1) on M and studied some geometric
properties of such structures. Next, Gonul et al. [28] established the relationship between
an almost quadratic metric ¢-structure and a metallic structure on M. Most recently, Gok
et. al. [29] defined a generalized structure namely f(, ;) (3,2, 1)-structures on manifolds and
construct a framed f(, (3,2, 1)-structures on M.

On the other hand, let M be an m-dimensional differentiable manifold, TM its tangent
bundle and FM its frame bundle. The notion of the mappings, namely vertical, complete
and horzontal lifts from the manifold M to its tangent bundle TM were introduced by
Sasaki [30], Yano and Ishihara [31] and Yano and Davis [32]. Kabayashi and Nomizu [33],
Mok [34] and Okubo [35] have studied the complete lift of a vector field A to FM. The
geometric structures such as an almost contact metric structure (¢, ,7,g), and almost
complex structures | on FM have been studied by Bonome et al. [16], who established the
integrability and normality of such structures on FM.

In [36], Khan has introduced a tensor field ] on FM and proved that | is a metallic
structure on FM. The integrability condition for the diagonal and horizontal lifts of the
metallic structure ] on FM is established. The geometric structures on FM have been
studied by Cordero et al. [37], Kowalski [38], Sekizawa [39], Kowalski and Sekizawa [40],
Niedzialomski [41], Lachieze-Rey [42], Khan [43-45] and many more.

The main objective of this paper can be summarized as follows:

*  We study the complete lifts of an almost quadratic ¢-structure to the metallic structure
on FM.

e We establish the existence of a metallic structure on FM in the tensor field |, which we
define.

*  We obtain results on the 2-Form and its derivative on FM.

*  We derive the expressions of the Nijenhuis tensor of a tensor field | on FM.

*  We construct an example related to it.

Remark: 3% (M) and 3% (FM) are symbolized as the set of all (a, b)-type tensor fields
in M and FM respectively [17].

2. Preliminaries

Let F, A, f and 7 be a tensor field of type (1,1), a vector field, a function and a 1-
form, respectively, on M. The horizontal, vertical and a-vertical lifts of F, A, f and 7 are
represented by FH, A", AW, fH 1V and '« on FM and they are expressed in terms of
partial differential equations as [16,17]

H _ d g k d
AT = AaAz AiTh A"‘E)Ah’ 1
9
@ _ 49
A AaAi’ 2)
, )
H _ Y ki ¢h
i = FaAh®dx+A(I’kF I”F)aAh,
Brn O j
®dx! + 6L F! w@dX ©)
n" = pdx, o)
yHe = Afrh;yhdxmldx;, (5)
A = Z(A]Fhiyhdx + dXL), (6)

a=1
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where F?j, Al th and 7; are the local components of a linear connection V, A, F and 7,
respectively on M.

Proposition 1. V.A, B € S} (M), by using mathematical operators, we have the following

ARy = (A)Y),

A(w)(fv) 0,

FHAW) = (F(A4))",

FH(AR) = (F(A)F, )
' (A = (F(A))Y,

nV(AW) = o,

nHe(AM) = o,

(AP = s (n(A)Y,

wherea, p=1,...,mand 5g denotes the Kronecker delta.

Proposition 2. Let V.A, B € S}(M). Then, we have the following

[A®, B = o, ®)
[AH,BW] = (Vx1)®,
[AHr BH] = [A’ B]H - ’)’R(A/ B)/
where R(A, B) = [V 4, V] — V|45, Ris the curvature tensor of V.

Let ¢ be a Riemannian metric on a Riemannian manifold M and g? its diagonal metric
on FM, then
g (AT, BY) = {g(AB)}Y,
g(AM,B®) = 0, ©)
P (AW, BBy = 5{e(AB)}V Ve, p=1,...,m

and

28°(V4B8,C) = A(g°(B,C)) +B(g"(C,A) — C(g"(A B)) (10)
+ §7([4 B],C) +5°(IC, Al B) + 8" (A [C, B]),

VA, B € 3}(FM), where V and V represent the Levi-Civita connection of (M, g) and
(FM, gP), respectively.

Proposition 3. V.A, B € S}(M) , by using mathematical operators, we have the following

R BB — 0,

P (VB CcB = o,

g7 (V wB, ) = —ZgP(yR(C,B), AW),

g7 (V uB®,cP) = 5¥{g(V4B,C)}Y, (11)
g2 (V guB®,cH) = —%gD(vR(C,A),B(“’),

§P(T B, C0) = gD (YR(A,B),CW),

§P(V B, CH) = {g(VaB,C)}Y.
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2.1. Metallic Structure
If a (1, 1) tensor field | obeying

P=pl+ql, pgeN, (12)

where N is the set of natural numbers and I is an identity operator, determines a polynomial
structure on a manifold M, the structure is referred to as metallic. A metallic manifold is
defined as (M, J) when a manifold M possesses a metallic structure (MS) J.

The Nijenhuis tensor Nj of | is expressed as

Nj(A, B) = [JA,]B] — JIJA,B] — J[A, ]B] + J*[A,B], (13)
VA, B e S§(M).

2.2. Almost Quadratic ¢-Structure

An m(= 2n 4 1)-dimensional differentiable manifold M with a non-null tensor field ¢
of type (1,1), a 1-form # and a vector field { on M satisfies

¢ = pptal—qnel, PP+ #0, (14)
n€) = 1 no¢=0 ¢(5) =0, (15)
where p is an arbitrary constant and g # 0. The structure (¢, (,7) is called an almost
quadratic ¢-structure on M and the manifold (M, ¢,,#) is called an almost quadratic
¢-manifold [27,28].
Furthermore,
8(pA B) =g(A ¢B) (16)
and

s(9pA, ¢B) = pg(pA, B) +q8(A, B) — qn(A)n(B)). (17)

The structure (¢,,1,8) is referred to as an almost quadratic metric ¢-structure and
(M, ¢,Z,1,8) is called an almost quadratic metric ¢-manifold.
In addition, the 1-form # is associated with g such that

8(A Q) =n(A)
and the fundamental 2-Form @ is given by [3]
(A, B) = g(A, ¢B). (18)
The Nijenhuis tensor of (¢, , 1) is denoted by N and is given by
Np(A, B) = [9A,¢B] — ¢[9pA, B] — p[A, ¢B] +¢*[A, B], (19)
VA, B e SH(M).

3. Proposed Theorems on FM Admitting Metallic Structures on Almost
Quadratic ¢-Manifolds

In this section, we construct the complete lifts of an almost quadratic ¢-structure to
the metallic structure on FM.

Next, we obtain the results on the 2-Form and its derivative on FM.

Boname et al. [16] proposed and gave the definition of | on FM as

f — (PH 4 2 WH:x ®€(“+”) — Z 17Hoc+n ®§(D‘)
a=1 a=1

+ 1,]V ® g(ZVl-‘rl) _ 77H2n+1 ® gH (20)
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Recently, Khan [36] proposed and gave the definition of the tensor field Jon FM as

_ 207 — «
Jo= fi- (M) [+ Y gt
a=1
n
. Z UHHH ® g(a) + ”V ® €(2n+1) _ ”H2n+1 ® CH]/ (21)
a=1

where 7 = n;dx’, 1V = y;dx’ and nHe = Aﬁrgiyhdxi + 1;dxc,.
Motivated by the above definitions, let us introduce a tensor field | of type (1,1) on
FM as

n
J = Bi—afp+ gy pte gl
a=1
n
— Y e @ @ 4 gV @ g e g 7Y, (22)
a=1
o 2(7;7;7 i
where A = N T 1 = n;dx’,

7V = ndx' and yHe = A{;Ff;nhdxi + 1;dx,.

Theorem 1. Let A be a vector field on FM. Then | given by (22) is a metallic structure on FM.
Proof. To prove that | defined in (22) is a metallic structure, we have to prove that
JPPA=pJ(A)+qLp,q€eN. (23)
O

Taking the horizontal lift A" and p!-vertical lift A(P) for each p = 1,...2n 41 on
both sides of (22), we infer

J(AB) = gA(ﬁ) — Al(pA)P + /g{e(p)gEreBI

— & an(A)VeEy, (24)
where
1, B<n,
e(B)=< -1, n<B<2n, (25)
0, B=2n+1,
and

J(At) = EAM — AlpA)" + ya{n(4) g2y, 26)

In view of (22), we provide

J@HA) = LotA—al-A+ /gy g™ (A)gln

a=1

LY e (A 4V (D)) gt (gHy, @)
a=1

Je®) = FW—aygelen -,

e = Eett — a ey,



Mathematics 2023, 11, 3097

6 of 12

and
P = §1A- A2 + V(L ™ (AT
R CTE) 1 AT ) =g D)
PA) = pl(A)+q4

Definition 1. The 2-Form Q) of | is given by
O(4,B) = g"(A,]B),
VA, B € S{(FM).

Theorem 2. The 2-Form Q) of (¢P, ]) on FM is given by

(i) Q(AH, BH) = gg(A B)Y — A®(A,B)Y,
(ii) Q(AH, BP)Y = A\f5zn+1’7( ) n(B)",
(iii) Q(AP),BM) = Lsb(g(A,B))Y - Alshd(A,B)Y

+ \fs( )ob L (A) n(B)),
wherew, B,u=1,..., 2n+1andVA,B ¢ %é(M)

Proof. Using (9) and (29), we infer

(i) (A" B! = P (A", DB - Al(gB)" + v (B) 7)),

- gg(A B)Y — A®(A,B)Y,

(ii) QA" BO) = gP(Al,EBE — A[(pB)
Vale(B)n(B) g Frem —52n+177(B)VCH])}-
AVGSh, (A n(B)Y,
(iif) Q(AP®),BWY = oD(U®), pg(u A[(fPB)

+ f{E( n ( YV lkrem — b (B)Y M)}
sh(g(A B))Y - A[(sﬁcp(A B)Y

+ fs( o L (A) Vi (B)V].

+

(28)

(29)

(30)



Mathematics 2023, 11, 3097 7 of 12

Theorem 3. The differential dQ) on FM is expressed as

(i) d0(a™, 8%, e = (P1(xg(5,0))" ~ 514, B],0)" - (Y(B,C))”
$(A.CLB)" + (Zg(A, B)Y —g([B,C], A)]
AIA@(5,0))" — (B@(AC)

(C(@(A,5))" — (@(4,B,0)") + (®([4,C).B)")
(®([B,C], A)") + O(1R(A, B),H)
)

(

I+ 1+

— Q(YR(A,C), BN+ Q(yR(B,C), AT},
(ii) dQ(AH, BH,clF)) = ,{Aﬂ b (AgCn(B)Y
— & (Br(C)n(A)Y

/—\\./

o (LA B)3(C)Y + Q(1R(A, B),CP)
+ &y (1(VxZ)n(B)”

B])y

)i (B)

— B (1(TyZ)n(A)V]},
(B,0)

(

)
)
(iii) dQ(AR,B®),c) = g{zéﬁwxg) B,C)V — A5 (V 4®)(B,C)"
+ ae(a)sh wtge(ayn’l (B) Y(Vam)C) +7(C)V(Van)B) '},

(iv) dQ(A®, BB cy = o,
VA, B,C € S}J(M).
Proof. The differential d() is given by

3d0(A,B,C) = {A(Q(B,C)) - B(Q(A0Q))

(i) 3d0(A", B, ¢ty = BLaf(g(8,0)") - B (g(4,0)")
+ CM(g(4,B))] - Al (@(B,C)Y)
— BH(@(A,0)Y) +CH(®(A B)Y)]
- Le(4.B,0)" + A(@(14,8],¢)")
+ Q(R(AB),cM) +Ee(14,0),8)
+ A(®([A,C),B)") — Q(YR(A,C), B")
- LB, A)Y + A(e(B,¢], A))

Q(yR(B,C), AM)

= Ll(xe(B,0))" —2(14,Bl.C)" - (vg(8,0))"

+ g(MC] > <Zg< B)” —g([B,¢], 4)Y]

— A[(A®(B,C))" — (B(®(A,C))"

+ (C(D(4, B)) ®([4,8],0)") + (®([4,€], B)")

—(
(®([B,C], A)Y) + Q(yR(A, B),CH)
Q(YR(A,C), BH) + Q(yR(B,C), AT),
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(if) 3dQ(AR, BR,c®) = AyglAtsh  n(C)Vn(B)
- BH52n+m<C> n(A)Y
+ {—g(A,B) —®(A,B)V}
— 8, (A B)n(C) +Q(R(A, B),CP)
+ 8, ((VxZ)y(B))"
— & (n(VyZ)n(A
n(B))"

)
)"]
= Ayqo 2n+1(AW(C
zn+1( n(C)n(A)Y
11 (LA, B])n (
1((VxZ)n(
- 2n+1(’7(vyz)’7(

vv

€)Y + Q(YR(A, B),CP))
B))”
A )V].

2n+
- )
)
Formulas (iii) and (iv) can be easily obtained. [

4. Behavior of the Nijehuis Tensor on FM
The Nijenhuis tensor of | is expressed by

Theorem 4. VA, B € S{(FM), then
P (Vg A)P) — (VaB) )
¢B PpA

+ A%pA, 9B — AJlpA, BT
—  AJ[A¢B]" + (A, B!

A2((B)Y (V) >+ = (Vyg) ")

(VpaQ) @D + (9V 40) @) (n(B)Y
(Vs0) @ + (pV0) ® ) (n(A)Y
(VB0 n(A)Y =1(Vag) n(B))g"
{(Vg A) (2n+1) —(V B)(2n+1)}

R(9pA,¢B) + AJYR(pA, B)
R(¢A, B) — PR(A, B),

+ o+

2

|
b

[
(
A%(
(
A% (1

+ o+

pA
2
A2y
T
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(i) N(AW, BB =

(iii) N(AH",BP))

wherea,f=1,...,

VA28, 11(B)Y (V(pA))*

+ e(@)n(A)(B)Y 85, 4 (Vep)ren

— &b (A (Ve (¢B))"

— e(B)n(A) n(B)Y83,,1(V ) PP

+ 65‘,1“%1([@ g" — YR(Z,0))]

- <v B — Lo (B (Vag)

- 7“4 ‘52n+1’7(v4)v

+ APxWag, (A ((<PV§B) P

+ e(Bn(Ve BB —of (VB
- 76( >52n+1’7(3)v

+ AW, (B)Y (9V AP

e(B) (Vo A)V g Fren)

_I_

f 5h,1n(B)Y (Vo A) P —f<v¢,48)<ﬁ>
A2<V¢A¢B> )+ A2 /q{e(B)n(B)Y (Vgag) PP
5 11(B)Y ([PA,Z] — YR(PA, D))
0,11 (A (B (V)@Y — pv,1B)(P)
e(B) (VpuB)VPHBM — 68 n(VyaB) M)}
P2 (VpaB)” ~ pA((9Vx) )
pA((9V 49B) P
Ve (VxY) BB g8 n(Vxy)VH)
+e(B)n(V apB)V g FrebIm)

8 1 1(V apB)VT) + e(B)y(B)Y (97 47) PPN
E(B)y(B)Y (9 0) T EHBD —6b e(B)n(B) 'y
o, 11(B)Y (LA, L) +n[A,)V g2+,

Proof. Using (22) and Theorem (1), Theorem (4) is proven. [

— &b (VA T,

(¢Va2)" M)
—7JR(A,0)))}
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5. Example

Let {e;, ¢e;, (} be abasis in (M, ¢, {, 1, g) where i denotes 1 to n. The coderivative 6Q)
with basis {el, (¢e;) !, éH,el('X), (¢e;)®,7(®)} can be expressed as [16]

0Q(A) = =Y {(VrQ)(ef', A) + (Vg Q) ((ge:) ", A)}

— (V) A) - Y YAV 0 Q)" A) (31)
+ (Y gy F) (), A)}.

Taking A= AP in (31), using (11) and (29), we acquire

SAP) = Y {gP (T el TAB) 1 g2(T g (), AP}
- g’:’l(;gHéH,fA(ﬁ))
=~ Ls (R (e), §AP) - AL-g (R g ), A)
— 305, 1 1(A) 8(Ved e)V — /305, 11(A) 8(Vged, per) '}
+ a0k, 18(Veug, AV))

=3 Y- {8 (vR(es e), AP) — Al~gP (7R (e; per), A®)
i=1

+asE ()Y )Y, (Ve AV,

where
‘577 = - Z{(Veﬂ?)@i + (V¢ei’7)4’€i}
i=1
and

(Ve A= g(A V).

Taking A = AH in (31), using (11) and (29), we acquire



Mathematics 2023, 11, 3097 11 of 12

HA) = = LTl TAY) .50 (Vg (90, TA")
- g’Jl(_vg(zm)dZ”“%fAH) — 8P (Veug", JAT)
- ZZ(g( Vel JAR) 8 (9 o (9) ), JAM),
= T l(Tari )Y + (5T ADY + (3(TeL, A"

= A=Y (=8((Vep)ei, A)Y = g(Voed)gei, A)Y)

= —§ f[(gmiei, ANV + (8(Vgeper, A) +(8(VeZ, A))Y)

i=1
— A(5D(A))Y,
where .
0D(A) = — ; )(ei, A) + (Vge, @) (gei, A)) — (V@) (G, A).
and

(Va®)(B,C) = =g((Vag)(B,C).
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