Article

Characterizations of the Frame Bundle Admitting Metallic Structures on Almost Quadratic $\boldsymbol{\phi}$-Manifolds

Mohammad Nazrul Islam Khan ${ }^{1(D)}$, Uday Chand De ${ }^{2(\mathbb{D})}$ and Teg Alam ${ }^{3, *}$ (D)
1 Department of Computer Engineering, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia; m.nazrul@qu.edu.sa
2 Department of Pure Mathematics, University of Calcutta, 35, Ballygaunge Circular Road, Kolkata 700019, India; ucdpm@caluniv.ac.in
3 Department of Industrial Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
* Correspondence: t.alam@psau.edu.sa

Abstract

In this work, we have characterized the frame bundle $F M$ admitting metallic structures on almost quadratic ϕ-manifolds $\phi^{2}=p \phi+q I-q \eta \otimes \zeta$, where p is an arbitrary constant and q is a nonzero constant. The complete lifts of an almost quadratic ϕ-structure to the metallic structure on $F M$ are constructed. We also prove the existence of a metallic structure on $F M$ with the aid of the \tilde{J} tensor field, which we define. Results for the 2-Form and its derivative are then obtained. Additionally, we derive the expressions of the Nijenhuis tensor of a tensor field \tilde{J} on $F M$. Finally, we construct an example of it to finish.

Keywords: metallic structure; frame bundle; partial differential equations; almost quadratic ϕ-structure; 2-Form; diagonal lift; mathematical operators; nijenhuis tensor

Citation: Khan, M.N.I.; De, U.C.; Alam, T. Characterizations of the Frame Bundle Admitting Metallic Structures on Almost Quadratic ϕ-Manifolds. Mathematics 2023, 11, 3097. https://doi.org/
10.3390/math11143097

Academic Editors: Adara M. Blaga and Ion Mihai

Received: 1 June 2023
Revised: 20 June 2023
Accepted: 11 July 2023
Published: 13 July 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

MSC: 53C15; 58D17

1. Introduction

Numerous types of f-structures on a differentiable manifold M have been studied by Yano [1], Ishihara and Yano [2], Blair [3], Nakagawa [4] and others. Yano proposed the notion of an f-structure obeying $f^{3}+f=0, f$ is a tensor field of type (1,1), which is the generalization of an almost complex structure and an almost contact structure [5] and investigated some basic results of it. Later, Goldberg and Yano [6] and Goldberg and Perridis [7] defined a polynomial structure $P(J)=J^{n}+a_{n} J^{n-1}+\ldots+a_{2} J+a_{1} I$, where $a_{1}, a_{2}, \ldots, a_{n}$ are real numbers, J is a tensor field of type $(1,1)$ and I is an identity tensor field of type $(1,1)$ on M. Moreover, some important polynomial structures such as an $f(3, \varepsilon)$-structure [8], a general quadratic structure [9], an almost complex structure and an almost product structure [1], $\phi(4, \pm 2)$-structures [10] and an almost r-contact structure [11] are studied and the fundamental results are established in these papers.

Recently, the polynomial structure $J^{2}=p J+q I, p, q \in \mathbb{N}$, where \mathbb{N} is the set of natural numbers, of degree 2 is known as a metallic structure on M [12-14]. For specific values of p and q, metallic structures become prominent structures given below:

p	q	Structure
0	1	an almost product structure [15]
0	-1	an almost complex structure [16,17]
1	1	a golden structure [18,19]
2	1	a silver structure [20]

Hretceanu and Crasmareanu [21] initiated the study of golden and metallic structures on a Riemannian manifold and interpreted the geometry of submanifolds admitting both
structures on M. The various geometric properties of such structures in a metallic (and golden) Riemannian manifold and a metallic (and golden) warped product Riemannian manifold were studied in [22-26]. Debnath and Konar [27] defined a new type of structure named as an almost quadratic ϕ-structure (ϕ, ζ, η) on M and studied some geometric properties of such structures. Next, Gonul et al. [28] established the relationship between an almost quadratic metric ϕ-structure and a metallic structure on M. Most recently, Gok et. al. [29] defined a generalized structure namely $f_{(a, b)}(3,2,1)$-structures on manifolds and construct a framed $f_{(a, b)}(3,2,1)$-structures on M.

On the other hand, let M be an m-dimensional differentiable manifold, $T M$ its tangent bundle and FM its frame bundle. The notion of the mappings, namely vertical, complete and horzontal lifts from the manifold M to its tangent bundle $T M$ were introduced by Sasaki [30], Yano and Ishihara [31] and Yano and Davis [32]. Kabayashi and Nomizu [33], Mok [34] and Okubo [35] have studied the complete lift of a vector field \mathcal{A} to $F M$. The geometric structures such as an almost contact metric structure (ϕ, ζ, η, g), and almost complex structures J on $F M$ have been studied by Bonome et al. [16], who established the integrability and normality of such structures on $F M$.

In [36], Khan has introduced a tensor field \tilde{J} on $F M$ and proved that \tilde{J} is a metallic structure on $F M$. The integrability condition for the diagonal and horizontal lifts of the metallic structure \tilde{J} on $F M$ is established. The geometric structures on $F M$ have been studied by Cordero et al. [37], Kowalski [38], Sekizawa [39], Kowalski and Sekizawa [40], Niedzialomski [41], Lachieze-Rey [42], Khan [43-45] and many more.

The main objective of this paper can be summarized as follows:

- We study the complete lifts of an almost quadratic ϕ-structure to the metallic structure on FM.
- We establish the existence of a metallic structure on $F M$ in the tensor field \tilde{J}, which we define.
- We obtain results on the 2-Form and its derivative on FM.
- We derive the expressions of the Nijenhuis tensor of a tensor field \tilde{J} on $F M$.
- We construct an example related to it.

Remark: $\Im_{a}^{b}(M)$ and $\Im_{a}^{b}(F M)$ are symbolized as the set of all (a, b)-type tensor fields in M and $F M$ respectively [17].

2. Preliminaries

Let F, \mathcal{A}, f and η be a tensor field of type (1,1), a vector field, a function and a 1form, respectively, on M. The horizontal, vertical and α-vertical lifts of F, \mathcal{A}, f and η are represented by $F^{H}, \mathcal{A}^{H}, \mathcal{A}^{(\alpha)}, f^{H}, \eta^{V}$ and $\eta^{H_{\alpha}}$ on $F M$ and they are expressed in terms of partial differential equations as $[16,17]$

$$
\begin{align*}
\mathcal{A}^{H}= & \mathcal{A}^{i} \frac{\partial}{\partial \mathcal{A}^{i}}-\mathcal{A}^{i} \Gamma_{i k}^{h} \mathcal{A}_{\alpha}^{k} \frac{\partial}{\partial \mathcal{A}^{h}}, \tag{1}\\
\mathcal{A}^{(\alpha)}= & \mathcal{A}^{i} \frac{\partial}{\partial \mathcal{A}_{\alpha}^{i}}, \tag{2}\\
F^{H}= & F_{j}^{h} \frac{\partial}{\partial \mathcal{A}^{h}} \otimes d x^{j}+\mathcal{A}_{\alpha}^{k}\left(\Gamma_{j k}^{i} F_{i}^{h}-\Gamma_{i k}^{h} F_{j}^{i}\right) \frac{\partial}{\partial \mathcal{A}_{\alpha}^{h}}, \\
& \otimes d x^{j}+\delta_{\alpha}^{\beta} F_{j}^{h} \frac{\partial}{\partial \mathcal{A}_{\alpha}^{h}} \otimes d X_{\beta^{\prime}}^{j}, \tag{3}\\
\eta^{V}= & \eta_{i} d x^{i}, \tag{4}\\
\eta^{H_{\alpha}}= & \mathcal{A}_{\alpha}^{j} \Gamma_{i j}^{h} \eta_{h} d x^{i}+\eta_{i} d X_{\alpha}^{i}, \tag{5}\\
\mathcal{A}^{H}= & \sum_{\alpha=1}^{m}\left(\mathcal{A}_{\alpha}^{j} \Gamma_{i j}^{h} \eta_{h} d x^{i}+\eta_{i} d X_{\alpha}^{i}\right), \tag{6}
\end{align*}
$$

where $\Gamma_{i j}^{h}, \mathcal{A}^{i}, F_{j}^{h}$ and η_{i} are the local components of a linear connection ∇, \mathcal{A}, F and η, respectively on M.

Proposition 1. $\forall \mathcal{A}, \mathcal{B} \in \Im_{0}^{1}(M)$, by using mathematical operators, we have the following

$$
\begin{align*}
\mathcal{A}^{H}\left(f^{V}\right) & \left.=(\mathcal{A}(f))^{V}\right) \\
\mathcal{A}^{(\alpha)}\left(f^{V}\right) & =0 \\
F^{H}\left(\mathcal{A}^{(\alpha)}\right) & =(F(\mathcal{A}))^{\alpha}, \\
F^{H}\left(\mathcal{A}^{H}\right) & =(F(\mathcal{A}))^{H} \tag{7}\\
\eta^{V}\left(\mathcal{A}^{H}\right) & =(F(\mathcal{A}))^{V}, \\
\eta^{V}\left(\mathcal{A}^{(\alpha)}\right) & =0 \\
\eta^{H_{\alpha}}\left(\mathcal{A}^{H}\right) & =0 \\
\eta^{H_{\alpha}}\left(\mathcal{A}^{(\beta)}\right) & =\delta_{\alpha}^{\beta}(\eta(\mathcal{A}))^{V}
\end{align*}
$$

where $\alpha, \beta=1, \ldots, m$ and δ_{β}^{α} denotes the Kronecker delta.
Proposition 2. Let $\forall \mathcal{A}, \mathcal{B} \in \Im_{0}^{1}(M)$. Then, we have the following

$$
\begin{align*}
{\left[\mathcal{A}^{(\alpha)}, \mathcal{B}^{(\beta)}\right] } & =0 \tag{8}\\
{\left[\mathcal{A}^{H}, \mathcal{B}^{(\alpha)}\right] } & =\left(\nabla_{X} Y\right)^{(\alpha)}, \\
{\left[\mathcal{A}^{H}, \mathcal{B}^{H}\right] } & =[\mathcal{A}, \mathcal{B}]^{H}-\gamma R(\mathcal{A}, \mathcal{B})
\end{align*}
$$

where $R(\mathcal{A}, \mathcal{B})=\left[\nabla_{\mathcal{A}}, \nabla_{\mathcal{B}}\right]-\nabla_{[\mathcal{A}, \mathcal{B}]}, R$ is the curvature tensor of ∇.
Let g be a Riemannian metric on a Riemannian manifold M and g^{D} its diagonal metric on $F M$, then

$$
\begin{align*}
g^{D}\left(\mathcal{A}^{H}, \mathcal{B}^{H}\right) & =\{g(\mathcal{A}, \mathcal{B})\}^{V}, \\
g^{D}\left(\mathcal{A}^{H}, \mathcal{B}^{(\alpha)}\right) & =0, \tag{9}\\
g^{D}\left(\mathcal{A}^{(\alpha)}, \mathcal{B}^{(\beta)}\right) & =\delta^{\alpha \beta}\{g(\mathcal{A}, \mathcal{B})\}^{V}, \forall \alpha, \beta=1, \ldots, m
\end{align*}
$$

and

$$
\begin{align*}
2 g^{D}\left(\tilde{\nabla}_{\tilde{\mathcal{A}}} \tilde{\mathcal{B}}, \tilde{\mathcal{C}}\right) & =\tilde{\mathcal{A}}\left(g^{D}(\tilde{\mathcal{B}}, \tilde{\mathcal{C}})\right)+\tilde{\mathcal{B}}\left(g^{D}(\tilde{\mathcal{C}}, \tilde{\mathcal{A}})\right)-\tilde{\mathcal{C}}\left(g^{D}(\tilde{\mathcal{A}}, \tilde{\mathcal{B}})\right) \tag{10}\\
& +g^{D}([\tilde{\mathcal{A}}, \tilde{\mathcal{B}}], \tilde{\mathcal{C}})+g^{D}([\tilde{\mathcal{C}}, \tilde{\mathcal{A}}], \tilde{\mathcal{B}})+g^{D}(\tilde{\mathcal{A}},[\tilde{\mathcal{C}}, \tilde{\mathcal{B}}])
\end{align*}
$$

$\forall \tilde{\mathcal{A}}, \tilde{\mathcal{B}} \in \Im_{0}^{1}(F M)$, where ∇ and $\tilde{\nabla}$ represent the Levi-Civita connection of (M, g) and $\left(F M, g^{D}\right)$, respectively.

Proposition 3. $\forall \mathcal{A}, \mathcal{B} \in \Im_{0}^{1}(M)$, by using mathematical operators, we have the following

$$
\begin{align*}
\tilde{\nabla}_{\mathcal{A}^{(\alpha)}} \mathcal{B}^{(\beta)} & =0 \\
g^{D}\left(\tilde{\nabla}_{\mathcal{A}^{(\alpha)}} \mathcal{B}^{H}, \mathcal{C}^{(\beta)}\right. & =0 \\
g^{D}\left(\tilde{\nabla}_{\mathcal{A}^{(\alpha)}} \mathcal{B}^{H}, \mathcal{C}^{H}\right) & =-\frac{1}{2} g^{D}\left(\gamma R(\mathcal{C}, \mathcal{B}), \mathcal{A}^{(\alpha)}\right), \\
g^{D}\left(\tilde{\nabla}_{\mathcal{A}^{H} \mathcal{B}^{(\alpha)}}, \mathcal{C}^{(\beta)}\right) & =\delta^{\alpha \beta}\left\{g\left(\nabla_{\mathcal{A}} \mathcal{B}, \mathcal{C}\right)\right\}^{V} \tag{11}\\
g^{D}\left(\tilde{\nabla}_{\mathcal{A}^{H}} \mathcal{B}^{(\alpha)}, \mathcal{C}^{H}\right) & =-\frac{1}{2} g^{D}\left(\gamma R(\mathcal{C}, \mathcal{A}), \mathcal{B}^{(\alpha)}\right), \\
g^{D}\left(\tilde{\nabla}_{\mathcal{A}^{H}} \mathcal{B}^{H}, \mathcal{C}^{(\alpha)}\right) & =-\frac{1}{2} g^{D}\left(\gamma R(\mathcal{A}, \mathcal{B}), \mathcal{C}^{(\alpha)}\right), \\
g^{D}\left(\tilde{\nabla}_{\mathcal{A}^{H}} \mathcal{B}^{H}, \mathcal{C}^{H}\right) & =\left\{g\left(\nabla_{\mathcal{A}} \mathcal{B}, \mathcal{C}\right)\right\}^{V} .
\end{align*}
$$

2.1. Metallic Structure

If a $(1,1)$ tensor field J obeying

$$
\begin{equation*}
J^{2}=p J+q I, \quad p, q \in \mathbb{N} \tag{12}
\end{equation*}
$$

where \mathbb{N} is the set of natural numbers and I is an identity operator, determines a polynomial structure on a manifold M, the structure is referred to as metallic. A metallic manifold is defined as (M, J) when a manifold M possesses a metallic structure (MS) J.

The Nijenhuis tensor N_{J} of J is expressed as

$$
\begin{equation*}
N_{J}(\mathcal{A}, \mathcal{B})=[J \mathcal{A}, J \mathcal{B}]-J[J \mathcal{A}, \mathcal{B}]-J[\mathcal{A}, J \mathcal{B}]+J^{2}[\mathcal{A}, \mathcal{B}], \tag{13}
\end{equation*}
$$

$\forall \mathcal{A}, \mathcal{B} \in \Im_{0}^{1}(M)$.

2.2. Almost Quadratic ϕ-Structure

An $m(=2 n+1)$-dimensional differentiable manifold M with a non-null tensor field ϕ of type (1,1), a 1-form η and a vector field ζ on M satisfies

$$
\begin{align*}
\phi^{2} & =p \phi+q I-q \eta \otimes \zeta, p^{2}+4 q \neq 0 \tag{14}\\
\eta(\zeta) & =1, \eta \circ \phi=0, \phi(\zeta)=0 \tag{15}
\end{align*}
$$

where p is an arbitrary constant and $q \neq 0$. The structure (ϕ, ζ, η) is called an almost quadratic ϕ-structure on M and the manifold (M, ϕ, ζ, η) is called an almost quadratic ϕ-manifold $[27,28]$.

Furthermore,

$$
\begin{equation*}
g(\phi \mathcal{A}, \mathcal{B})=g(\mathcal{A}, \phi \mathcal{B}) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
g(\phi \mathcal{A}, \phi \mathcal{B})=p g(\phi \mathcal{A}, \mathcal{B})+q g(\mathcal{A}, \mathcal{B})-q \eta(\mathcal{A}) \eta(\mathcal{B})) . \tag{17}
\end{equation*}
$$

The structure (ϕ, ζ, η, g) is referred to as an almost quadratic metric ϕ-structure and (M, ϕ, ζ, η, g) is called an almost quadratic metric ϕ-manifold.

In addition, the 1 -form η is associated with g such that

$$
g(\mathcal{A}, \zeta)=\eta(\mathcal{A})
$$

and the fundamental 2-Form Φ is given by [3]

$$
\begin{equation*}
\Phi(\mathcal{A}, \mathcal{B})=g(\mathcal{A}, \phi \mathcal{B}) \tag{18}
\end{equation*}
$$

The Nijenhuis tensor of (ϕ, ζ, η) is denoted by N_{ϕ} and is given by

$$
\begin{equation*}
N_{\phi}(\mathcal{A}, \mathcal{B})=[\phi \mathcal{A}, \phi \mathcal{B}]-\phi[\phi \mathcal{A}, \mathcal{B}]-\phi[\mathcal{A}, \phi \mathcal{B}]+\phi^{2}[\mathcal{A}, \mathcal{B}], \tag{19}
\end{equation*}
$$

$\forall \mathcal{A}, \mathcal{B} \in \Im_{0}^{1}(M)$.

3. Proposed Theorems on FM Admitting Metallic Structures on Almost Quadratic $\boldsymbol{\phi}$-Manifolds

In this section, we construct the complete lifts of an almost quadratic ϕ-structure to the metallic structure on $F M$.

Next, we obtain the results on the 2-Form and its derivative on $F M$.
Boname et al. [16] proposed and gave the definition of \tilde{J} on $F M$ as

$$
\begin{align*}
\tilde{J} & =\phi^{H}+\sum_{\alpha=1}^{n} \eta^{H_{\alpha}} \otimes \zeta^{(\alpha+n)}-\sum_{\alpha=1}^{n} \eta^{H_{\alpha+n}} \otimes \zeta^{(\alpha)} \\
& +\eta^{V} \otimes \zeta^{(2 n+1)}-\eta^{H_{2 n+1}} \otimes \zeta^{H} \tag{20}
\end{align*}
$$

Recently, Khan [36] proposed and gave the definition of the tensor field \tilde{J} on $F M$ as

$$
\begin{align*}
\tilde{J} & =\frac{p}{2} I-\left(\frac{2 \sigma_{p}^{q}-p}{2}\right)\left[\phi^{H}+\sum_{\alpha=1}^{n} \eta^{H_{\alpha}} \otimes \zeta^{(\alpha+n)}\right. \\
& \left.-\sum_{\alpha=1}^{n} \eta^{H_{\alpha+n}} \otimes \zeta^{(\alpha)}+\eta^{V} \otimes \zeta^{(2 n+1)}-\eta^{H_{2 n+1}} \otimes \zeta^{H}\right] \tag{21}
\end{align*}
$$

where $\eta=\eta_{i} d x^{i}, \eta^{V}=\eta_{i} d x^{i}$ and $\eta^{H_{\alpha}}=\mathcal{A}_{\alpha}^{j} \Gamma_{i j}^{h} \eta_{h} d x^{i}+\eta_{i} d x_{\alpha}^{i}$.
Motivated by the above definitions, let us introduce a tensor field \tilde{J} of type $(1,1)$ on $F M$ as

$$
\begin{align*}
\tilde{J} & =\frac{p}{2} I-A\left[\phi^{H}+\sqrt{q}\left\{\sum_{\alpha=1}^{n} \eta^{H_{\alpha}} \otimes \zeta^{(\alpha+n)}\right.\right. \\
& \left.\left.-\sum_{\alpha=1}^{n} \eta^{H_{\alpha+n}} \otimes \zeta^{(\alpha)}+\eta^{V} \otimes \zeta^{(2 n+1)}-\eta^{H_{2 n+1}} \otimes \zeta^{H}\right\}\right] \tag{22}
\end{align*}
$$

where $A=\frac{2 \sigma_{p}^{q}-p}{2 \sqrt{p \phi^{H}+q}}, \eta=\eta_{i} d x^{i}$,

$$
\eta^{V}=\eta_{i} d x^{i} \text { and } \eta^{H_{\alpha}}=\mathcal{A}_{\alpha}^{j} \Gamma_{i j}^{h} \eta_{h} d x^{i}+\eta_{i} d x_{\alpha}^{i} .
$$

Theorem 1. Let $\tilde{\mathcal{A}}$ be a vector field on FM. Then \tilde{J} given by (22) is a metallic structure on $F M$.
Proof. To prove that \tilde{J} defined in (22) is a metallic structure, we have to prove that

$$
\begin{equation*}
\tilde{J}^{2} \tilde{\mathcal{A}}=p \tilde{J}(\tilde{\mathcal{A}})+q I ; p, q \in \mathbb{N} . \tag{23}
\end{equation*}
$$

Taking the horizontal lift \mathcal{A}^{H} and $\beta^{\text {th }}$-vertical lift $\mathcal{A}^{(\beta)}$ for each $\beta=1, \ldots 2 n+1$ on both sides of (22), we infer

$$
\begin{align*}
\tilde{J}\left(\mathcal{A}^{(\beta)}\right) & =\frac{p}{2} \mathcal{A}^{(\beta)}-A\left[(\phi \mathcal{A})^{(\beta)}+\sqrt{q}\left\{\varepsilon(\beta) \zeta^{(\beta+\varepsilon(\beta) n)}\right.\right. \\
& \left.\left.-\delta_{2 n+1}^{\beta} \eta(\mathcal{A})^{V} \xi^{H}\right\}\right], \tag{24}
\end{align*}
$$

where

$$
\varepsilon(\beta)= \begin{cases}1, & \beta \leq n \tag{25}\\ -1, & n<\beta \leq 2 n \\ 0, & \beta=2 n+1\end{cases}
$$

and

$$
\begin{equation*}
\tilde{J}\left(\mathcal{A}^{H}\right)=\frac{p}{2} \mathcal{A}^{H}-A\left[(\phi \mathcal{A})^{H}+\sqrt{q}\left\{\eta(\mathcal{A})^{V} \zeta^{(2 n+1)}\right\}\right] . \tag{26}
\end{equation*}
$$

In view of (22), we provide

$$
\begin{gather*}
\tilde{J}\left(\phi^{H} \tilde{\mathcal{A}}\right)=\frac{p}{2} \phi^{H} \tilde{\mathcal{A}}-A\left[-\tilde{\mathcal{A}}+\sqrt{q}\left\{\sum_{\alpha=1}^{n} \eta^{H_{\alpha}}(\tilde{\mathcal{A}}) \zeta^{(\alpha+n)}\right.\right. \\
\left.\left.-\sum_{\alpha=1}^{n} \eta^{H_{\alpha+n}}(\tilde{\mathcal{A}}) \zeta^{(\alpha)}+\eta^{V}(\tilde{\mathcal{A}}) \zeta^{(2 n+1)}-\eta^{H_{2 n+1}}(\tilde{\mathcal{A}}) \zeta^{H}\right\}\right] \tag{27}\\
\tilde{J}\left(\zeta^{(\alpha)}\right)=\frac{p}{2} \zeta^{(\alpha)}-A \sqrt{q}\left(\zeta^{(\alpha+n)}-\zeta^{H}\right) \\
\tilde{J}\left(\zeta^{H}\right)=\frac{p}{2} \zeta^{H}-A \sqrt{q} \zeta^{(2 n+1)}
\end{gather*}
$$

and

$$
\begin{align*}
\tilde{J}^{2}(\tilde{\mathcal{A}}) & =\frac{p}{2} J \tilde{\mathcal{A}}-A\left[\tilde{J}\left(\phi^{H} \tilde{\mathcal{A}}\right)+\sqrt{q}\left\{\sum_{\alpha=1}^{n} \eta^{H_{\alpha}}(\tilde{\mathcal{A}}) \tilde{J}\left(\zeta^{(\alpha+n)}\right)\right.\right. \\
& \left.\left.-\sum_{\alpha=1}^{n} \eta^{H_{\alpha+n}}(\tilde{\mathcal{A}}) \tilde{J}\left(\zeta^{(\alpha)}\right)+\eta^{V}(\tilde{\mathcal{A}}) \tilde{J}\left(\zeta^{(2 n+1)}\right)-\eta^{H_{2 n+1}}(\tilde{\mathcal{A}}) \tilde{J}\left(\zeta^{H}\right)\right\}\right], \\
\tilde{J}^{2}(\tilde{\mathcal{A}}) & =p \tilde{J}(\tilde{\mathcal{A}})+q \tilde{\mathcal{A}} . \tag{28}
\end{align*}
$$

Definition 1. The 2-Form Ω of J is given by

$$
\begin{equation*}
\Omega(\tilde{\mathcal{A}}, \tilde{\mathcal{B}})=g^{D}(\tilde{\mathcal{A}}, \tilde{J} \tilde{\mathcal{B}}) \tag{29}
\end{equation*}
$$

$\forall \tilde{\mathcal{A}}, \tilde{\mathcal{B}} \in \Im_{0}^{1}(F M)$.
Theorem 2. The 2-Form Ω of $\left(g^{D}, \tilde{J}\right)$ on $F M$ is given by

$$
\begin{aligned}
\text { (i) } \Omega\left(\mathcal{A}^{H}, \mathcal{B}^{H}\right) & =\frac{p}{2} g(\mathcal{A}, \mathcal{B})^{V}-A \Phi(\mathcal{A}, \mathcal{B})^{V}, \\
\text { (ii) } \Omega\left(\mathcal{A}^{H}, \mathcal{B}^{(\beta)}\right) & =A \sqrt{q} \delta_{2 n+1}^{\beta} \eta(\mathcal{A})^{V} \eta(\mathcal{B})^{V}, \\
\text { (iii) } \Omega\left(\mathcal{A}^{(\beta)}, \mathcal{B}^{(\mu)}\right) & =\frac{p}{2} \delta_{\mu}^{\beta}(g(\mathcal{A}, \mathcal{B}))^{V}-A\left[\delta_{\mu}^{\beta} \Phi(\mathcal{A}, \mathcal{B})^{V}\right. \\
& \left.+\sqrt{q} \varepsilon(\mu) \delta_{\mu+\varepsilon(\mu) n}^{\beta+\varepsilon(\beta) n} \eta(\mathcal{A})^{V} \eta(\mathcal{B})^{V}\right],
\end{aligned}
$$

where $\alpha, \beta, \mu=1, \ldots, 2 n+1$ and $\forall \mathcal{A}, \mathcal{B} \in \Im_{0}^{1}(M)$.
Proof. Using (9) and (29), we infer

$$
\begin{align*}
(i) \Omega\left(\mathcal{A}^{H}, \mathcal{B}^{H}\right) & =g^{D}\left(\mathcal{A}^{H}, \frac{p}{2} \mathcal{B}^{H}-A\left[(\phi \mathcal{B})^{H}+\sqrt{q} \eta(\mathcal{B})^{V} \zeta^{(2 n+1)}\right]\right), \\
& =\frac{p}{2} g(\mathcal{A}, \mathcal{B})^{V}-A \Phi(\mathcal{A}, \mathcal{B})^{V}, \\
\text { (ii) } \Omega\left(\mathcal{A}^{H}, \mathcal{B}^{(\beta)}\right) & =g^{D}\left(\mathcal{A}^{H}, \frac{p}{2} \mathcal{B}^{(\beta)}-A\left[(\phi \mathcal{B})^{(\beta)}\right.\right. \\
& \left.\left.+\sqrt{q}\left\{\varepsilon(\beta) \eta(\mathcal{B})^{V} \zeta^{(\beta+\varepsilon(\beta) n)}-\delta_{2 n+1}^{\beta} \eta(\mathcal{B})^{V} \zeta^{H}\right]\right)\right\} . \\
& =A \sqrt{q} \delta_{2 n+1}^{\beta} \eta(\mathcal{A})^{V} \eta(\mathcal{B})^{V}, \tag{30}\\
\text { (iii) } \Omega\left(\mathcal{A}^{(\beta)}, \mathcal{B}^{(\mu)}\right) & =g^{D}\left(\mathcal{A}^{(\beta)}, \frac{p}{2} \mathcal{B}^{(\mu)}-A\left[(\phi \mathcal{B})^{(\mu)}\right.\right. \\
& \left.\left.+\sqrt{q}\left\{\varepsilon(\beta) \eta(\mathcal{B})^{V} \zeta^{(\mu+\varepsilon(\mu) n)}-\delta_{2 n+1}^{\mu} \eta(\mathcal{B})^{V} \zeta^{H}\right]\right)\right\} \\
& =\frac{p}{2} \delta_{\mu}^{\beta}(g(\mathcal{A}, \mathcal{B}))^{V}-A\left[\delta_{\mu}^{\beta} \Phi(\mathcal{A}, \mathcal{B})^{V}\right. \\
& \left.+\sqrt{q} \varepsilon(\mu) \delta_{\mu+\varepsilon(\mu) n}^{\beta+\varepsilon(\beta) n} \eta(\mathcal{A})^{V} \eta(\mathcal{B})^{V}\right] .
\end{align*}
$$

Theorem 3. The differential $d \Omega$ on FM is expressed as

$$
\begin{aligned}
& \text { (i) } d \Omega\left(\mathcal{A}^{H}, \mathcal{B}^{H}, \mathcal{C}^{H}\right)=\frac{1}{3}\left\{\frac { p } { 2 } \left[(X g(\mathcal{B}, \mathcal{C}))^{V}-g([\mathcal{A}, \mathcal{B}], \mathcal{C})^{V}-(Y g(\mathcal{B}, \mathcal{C}))^{V}\right.\right. \\
& \left.+\quad g([\mathcal{A}, \mathcal{C}], \mathcal{B})^{V}+(Z g(\mathcal{A}, \mathcal{B}))^{V}-g([\mathcal{B}, \mathcal{C}], \mathcal{A})^{V}\right] \\
& -\quad A\left[\left(\mathcal{A}(\Phi(\mathcal{B}, \mathcal{C}))^{V}-\left(\mathcal{B}(\Phi(\mathcal{A}, \mathcal{C}))^{V}\right.\right.\right. \\
& +\left(\mathcal{C}(\Phi(\mathcal{A}, \mathcal{B}))^{V}-\left(\Phi([\mathcal{A}, \mathcal{B}], \mathcal{C})^{V}\right)+\left(\Phi([\mathcal{A}, \mathcal{C}], \mathcal{B})^{V}\right)\right. \\
& -\quad\left(\Phi([\mathcal{B}, \mathcal{C}], \mathcal{A})^{V}\right)+\Omega\left(\gamma R(\mathcal{A}, \mathcal{B}), \mathcal{C}^{H}\right) \\
& \left.-\Omega\left(\gamma R(\mathcal{A}, \mathcal{C}), \mathcal{B}^{H}\right)+\Omega\left(\gamma R(\mathcal{B}, \mathcal{C}), \mathcal{A}^{H}\right)\right\}, \\
& \text { (ii) } d \Omega\left(\mathcal{A}^{H}, \mathcal{B}^{H}, \mathcal{C}^{(\beta)}\right)=\frac{1}{3}\left\{A \sqrt { q } \left[\delta_{2 n+1}^{\beta}(\mathcal{A} \eta(\mathcal{C}) \eta(\mathcal{B}))^{V}\right.\right. \\
& -\delta_{2 n+1}^{\beta}(\mathcal{B} \eta(\mathcal{C}) \eta(\mathcal{A}))^{V} \\
& -\quad \delta_{2 n+1}^{\beta}(\eta([\mathcal{A}, \mathcal{B}]) \eta(\mathcal{C}))^{V}+\Omega\left(\gamma R(\mathcal{A}, \mathcal{B}), \mathcal{C}^{(\beta)}\right) \\
& +\delta_{2 n+1}^{\beta}\left(\eta\left(\nabla_{X} Z\right) \eta(\mathcal{B})\right)^{V} \\
& \left.\left.-\delta_{2 n+1}^{\beta}\left(\eta\left(\nabla_{Y} Z\right) \eta(\mathcal{A})\right)^{V}\right]\right\} \text {, } \\
& \text { (iii) } d \Omega\left(\mathcal{A}^{H}, \mathcal{B}^{(\beta)}, \mathcal{C}^{(\mu)}\right)=\frac{1}{3}\left\{\frac{p}{2} \delta_{\alpha}^{\beta}\left(\nabla_{X} g\right)(\mathcal{B}, \mathcal{C})^{V}-A \delta_{\alpha}^{\beta}\left(\nabla_{\mathcal{A}} \Phi\right)(\mathcal{B}, \mathcal{C})^{V}\right. \\
& \left.\left.\left.+\sqrt{ } \bar{q} \varepsilon(\alpha) \delta_{\alpha+\sqrt{q} \varepsilon(\alpha) n}^{\beta} \eta(\mathcal{B})^{V}\left(\nabla_{\mathcal{A}} \eta\right) \mathcal{C}\right)^{V}+\eta(\mathcal{C})^{V}\left(\nabla_{\mathcal{A}} \eta\right) \mathcal{B}\right)^{V}\right\} \text {, } \\
& \text { (iv) } d \Omega\left(\mathcal{A}^{(\alpha)}, \mathcal{B}^{(\beta)}, \mathcal{C}^{(\mu)}\right)=0 \text {, } \\
& \forall \mathcal{A}, \mathcal{B}, \mathcal{C} \in \Im_{0}^{1}(M) .
\end{aligned}
$$

Proof. The differential $d \Omega$ is given by

$$
\begin{aligned}
& 3 d \Omega(\tilde{\mathcal{A}}, \tilde{\mathcal{B}}, \tilde{\mathcal{C}})=\{\tilde{\mathcal{A}}(\Omega(\tilde{\mathcal{B}}, \tilde{\mathcal{C}}))-\tilde{\mathcal{B}}(\Omega(\tilde{\mathcal{A}}, \tilde{\mathcal{C}}))+\tilde{\mathcal{C}}(\Omega(\tilde{\mathcal{A}}, \tilde{\mathcal{B}})) \\
&-\Omega([\tilde{\mathcal{A}}, \tilde{\mathcal{B}}], \tilde{\mathcal{C}})+\Omega([\tilde{\mathcal{A}}, \tilde{\mathcal{C}}], \tilde{\mathcal{B}})-\Omega([\tilde{\mathcal{B}}, \tilde{\mathcal{C}}], \tilde{\mathcal{A}})\}, \\
& \forall \tilde{\mathcal{A}}, \tilde{\mathcal{B}}, \tilde{\mathcal{C}} \in \Im_{0}^{1}(F M) .
\end{aligned}
$$

$$
\text { (i) } \begin{aligned}
3 d \Omega\left(\mathcal{A}^{H}, \mathcal{B}^{H}, \mathcal{C}^{H}\right) & =\frac{p}{2}\left[\mathcal{A}^{H}\left(g(\mathcal{B}, \mathcal{C})^{V}\right)-\mathcal{B}^{H}\left(g(\mathcal{A}, \mathcal{C})^{V}\right)\right. \\
& \left.+\mathcal{C}^{H}\left(g(\mathcal{A}, \mathcal{B})^{V}\right)\right]-A\left[\mathcal{A}^{H}\left(\Phi(\mathcal{B}, \mathcal{C})^{V}\right)\right. \\
& \left.-\mathcal{B}^{H}\left(\Phi(\mathcal{A}, \mathcal{C})^{V}\right)+\mathcal{C}^{H}\left(\Phi(\mathcal{A}, \mathcal{B})^{V}\right)\right] \\
& -\frac{p}{2} g([\mathcal{A}, \mathcal{B}], \mathcal{C})^{V}+A\left(\Phi([\mathcal{A}, \mathcal{B}], \mathcal{C})^{V}\right) \\
& +\Omega\left(\gamma R(\mathcal{A}, \mathcal{B}), \mathcal{C}^{H}\right)+\frac{p}{2} g([\mathcal{A}, \mathcal{C}], \mathcal{B})^{V} \\
& +A\left(\Phi([\mathcal{A}, \mathcal{C}], \mathcal{B})^{V}\right)-\Omega\left(\gamma R(\mathcal{A}, \mathcal{C}), \mathcal{B}^{H}\right) \\
& -\frac{p}{2} g([\mathcal{B}, \mathcal{C}], \mathcal{A})^{V}+A\left(\Phi([\mathcal{B}, \mathcal{C}], \mathcal{A})^{V}\right) \\
& +\Omega\left(\gamma R(\mathcal{B}, \mathcal{C}), \mathcal{A}^{H}\right) \\
& =\frac{p}{2}\left[(X g(\mathcal{B}, \mathcal{C}))^{V}-g([\mathcal{A}, \mathcal{B}], \mathcal{C})^{V}-(Y g(\mathcal{B}, \mathcal{C}))^{V}\right. \\
& \left.+g([\mathcal{A}, \mathcal{C}], \mathcal{B})^{V}+(Z g(\mathcal{A}, \mathcal{B}))^{V}-g([\mathcal{B}, \mathcal{C}], \mathcal{A})^{V}\right] \\
& -A\left[\left(\mathcal{A}(\Phi(\mathcal{B}, \mathcal{C}))^{V}-\left(\mathcal{B}(\Phi(\mathcal{A}, \mathcal{C}))^{V}\right.\right.\right. \\
& +\left(\mathcal{C}(\Phi(\mathcal{A}, \mathcal{B}))^{V}-\left(\Phi([\mathcal{A}, \mathcal{B}], \mathcal{C})^{V}\right)+\left(\Phi([\mathcal{A}, \mathcal{C}], \mathcal{B})^{V}\right)\right. \\
& -\left(\Phi([\mathcal{B}, \mathcal{C}], \mathcal{A})^{V}\right)+\Omega\left(\gamma R(\mathcal{A}, \mathcal{B}), \mathcal{C}^{H}\right) \\
& -\Omega\left(\gamma R(\mathcal{A}, \mathcal{C}), \mathcal{B}^{H}\right)+\Omega\left(\gamma R(\mathcal{B}, \mathcal{C}), \mathcal{A}^{H}\right),
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
3 d \Omega\left(\mathcal{A}^{H}, \mathcal{B}^{H}, \mathcal{C}^{(\beta)}\right) & =A \sqrt{q}\left[\mathcal{A}^{H} \delta_{2 n+1}^{\beta} \eta(\mathcal{C})^{V} \eta(\mathcal{B})^{V}\right. \\
& -\mathcal{B}^{H} \delta_{2 n+1}^{\beta} \eta(\mathcal{C})^{V} \eta(\mathcal{A})^{V} \\
& +\mathcal{C}^{(\beta)}\left\{\frac{p}{2} g(\mathcal{A}, \mathcal{B})^{V}-\Phi(\mathcal{A}, \mathcal{B})^{V}\right\} \\
& -\delta_{2 n+1}^{\beta}(\eta([\mathcal{A}, \mathcal{B}]) \eta(\mathcal{C}))^{V}+\Omega\left(\gamma R(\mathcal{A}, \mathcal{B}), \mathcal{C}^{(\beta)}\right) \\
& +\delta_{2 n+1}^{\beta}\left(\eta\left(\nabla_{\mathrm{X}} Z\right) \eta(\mathcal{B})\right)^{V} \\
& \left.-\delta_{2 n+1}^{\beta}\left(\eta\left(\nabla_{\gamma} Z\right) \eta(\mathcal{A})\right)^{V}\right] \\
& =A \sqrt{q}\left[\delta_{2 n+1}^{\beta}(\mathcal{A} \eta(\mathcal{C}) \eta(\mathcal{B}))^{V}\right. \\
& -\delta_{2 n+1}^{\beta}(\mathcal{B} \eta(\mathcal{C}) \eta(\mathcal{A}))^{V} \\
& -\delta_{2 n+1}^{\beta}(\eta([\mathcal{A}, \mathcal{B}]) \eta(\mathcal{C}))^{V}+\Omega\left(\gamma R(\mathcal{A}, \mathcal{B}), \mathcal{C}^{(\beta)}\right) \\
& +\delta_{2 n+1}^{\beta}\left(\eta\left(\nabla_{X} Z\right) \eta(\mathcal{B})\right)^{V} \\
& \left.-\delta_{2 n+1}^{\beta}\left(\eta\left(\nabla_{Y} Z\right) \eta(\mathcal{A})\right)^{V}\right] .
\end{aligned}
$$

Formulas (iii) and (iv) can be easily obtained.

4. Behavior of the Nijehuis Tensor on FM

The Nijenhuis tensor of \tilde{J} is expressed by

$$
N(\tilde{\mathcal{A}}, \tilde{\mathcal{B}})=[\tilde{J} \tilde{\mathcal{A}}, \tilde{J} \tilde{\mathcal{B}}]-\tilde{J}[\tilde{J} \tilde{\mathcal{A}}, \tilde{\mathcal{B}}]-\tilde{J}[\tilde{\mathcal{A}}, \tilde{J} \tilde{\mathcal{B}}]+\tilde{J}^{2}[\tilde{\mathcal{A}}, \tilde{\mathcal{B}}] .
$$

Theorem 4. $\forall \tilde{\mathcal{A}}, \tilde{\mathcal{B}} \in \Im_{0}^{1}(F M)$, then

$$
\text { (i) } \begin{aligned}
N\left(\mathcal{A}^{H}, \mathcal{B}^{H}\right) & =\frac{p A}{2}\left\{\left(\nabla_{\phi \mathcal{B}} \mathcal{A}\right)^{(\beta)}-\left(\nabla_{\phi \mathcal{A}} \mathcal{B}\right)^{(\beta)}\right\} \\
& +A^{2}[\phi \mathcal{A}, \phi \mathcal{B}]^{H}-A \tilde{J}[\phi \mathcal{A}, \mathcal{B}]^{H} \\
& -A \tilde{J}[\mathcal{A}, \phi \mathcal{B}]^{H}+\tilde{J}^{2}[\mathcal{A}, \mathcal{B}]^{H} \\
& +A^{2}\left(\eta(\mathcal{B})^{V}\left(\left(\nabla_{\phi \mathcal{A}} \zeta\right)^{(2 n+1)}-\left(\nabla_{\phi \mathcal{B}} \zeta\right)^{(2 n+1)}\right)\right. \\
& +A^{2}\left(\left(\nabla_{\phi \mathcal{A}} \zeta\right)^{(2 n+1)}+\left(\phi \nabla_{\mathcal{A}} \zeta\right)^{(2 n+1)}\right)\left(\eta(\mathcal{B})^{V}\right. \\
& -A^{2}\left(\left(\nabla_{\phi \mathcal{B}} \zeta\right)^{(2 n+1)}+\left(\phi \nabla_{\mathcal{B}} \zeta\right)^{(2 n+1)}\right)\left(\eta(\mathcal{A})^{V}\right. \\
& +A^{2}\left(\eta\left(\nabla_{\mathcal{B}} \zeta\right)^{V} \eta(\mathcal{A})^{V}-\eta\left(\nabla_{\mathcal{A}} \zeta\right)^{V} \eta(\mathcal{B})^{V}\right) \zeta^{H} \\
& +\frac{p A}{2}\left\{\left(\nabla_{\mathcal{B} \mathcal{A}}\right)^{(2 n+1)}-\left(\nabla_{\mathcal{A}} \mathcal{B}\right)^{(2 n+1)}\right\} \\
& -A^{2} \gamma R(\phi \mathcal{A}, \phi \mathcal{B})+A \tilde{J} \gamma R(\phi \mathcal{A}, \mathcal{B}) \\
& +A \tilde{J} \gamma R(\phi \mathcal{A}, \mathcal{B})-\tilde{J}^{2} \gamma R(\mathcal{A}, \mathcal{B}),
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
N\left(\mathcal{A}^{(\alpha)}, \mathcal{B}^{(\beta)}\right) & =\sqrt{q}\left\{A ^ { 2 } \left[\left(\delta_{2 n+1}^{\beta} \eta(\mathcal{B})^{V}\left(\nabla_{\zeta}(\phi \mathcal{A})\right)^{\alpha}\right.\right.\right. \\
& +\varepsilon(\alpha) \eta(\mathcal{A})^{V} \eta(\mathcal{B})^{V} \delta_{2 n+1}^{\beta}\left(\nabla_{\zeta} \zeta\right)^{(\alpha+\varepsilon(\alpha) n)} \\
& -\delta_{2 n+1}^{\beta} \eta(\mathcal{A})^{V}\left(\nabla_{\zeta}(\phi \mathcal{B})\right)^{\alpha} \\
& -\varepsilon(\beta) \eta(\mathcal{A})^{V} \eta(\mathcal{B})^{V} \delta_{2 n+1}^{\alpha}\left(\nabla_{\zeta} \zeta\right)^{(\beta+\varepsilon(\beta) n)} \\
& \left.+\delta_{2 n+1}^{\alpha} \delta_{2 n+1}^{\beta}\left([\zeta, \zeta]^{H}-\gamma R(\zeta, \zeta)\right)\right] \\
& -\frac{p A}{2}\left(\nabla_{\zeta} \mathcal{B}\right)^{(\beta)}-\frac{p}{2} \delta_{2 n+1}^{\beta} \eta(\mathcal{B})^{V}\left(\nabla_{\mathcal{A} \zeta}\right)^{(\alpha)} \\
& -\frac{p A}{2} \mathcal{A}^{(\alpha)} \delta_{2 n+1}^{\alpha} \eta(\mathcal{A})^{V} \\
& +A^{2} X^{(\alpha)} \delta_{2 n+1}^{\alpha} \eta(\mathcal{A})^{V}\left(\left(\phi \nabla_{\zeta} \mathcal{B}\right)^{(\beta)}\right. \\
& \left.+\varepsilon(\beta) \eta\left(\nabla_{\zeta} \mathcal{B}\right)^{V} \zeta^{(\beta+\varepsilon(\beta) n)}-\delta_{2 n+1}^{\beta} \eta\left(\nabla_{\zeta} \mathcal{B}\right)^{V} \zeta^{H}\right) \\
& -\frac{p A}{2} \mathcal{B}^{(\beta)} \delta_{2 n+1}^{\alpha} \eta(\mathcal{B})^{V} \\
& +A^{2} Y^{(\alpha)} \delta_{2 n+1}^{\alpha} \eta(\mathcal{B})^{V}\left(\left(\phi \nabla_{\zeta} \mathcal{A}\right)^{(\beta)}\right. \\
& \left.\left.+\varepsilon(\beta) \eta\left(\nabla_{\zeta} \mathcal{A}\right)^{V} \zeta^{(\beta+\varepsilon(\beta) n)}-\delta_{2 n+1}^{\beta} \eta\left(\nabla_{\zeta} \mathcal{A}\right)^{V} \zeta^{H}\right)\right\}
\end{aligned}
$$

(iii) $N\left(\mathcal{A}^{H}, \mathcal{B}^{(\beta)}\right)=-\frac{p A}{2} \sqrt{q} \delta_{2 n+1}^{\beta} \eta(\mathcal{B})^{V}\left(\nabla_{\zeta} \mathcal{A}\right)^{(\beta)}-\frac{p A}{2}\left(\nabla_{\phi \mathcal{A}} \mathcal{B}\right)^{(\beta)}$

$$
+A^{2}\left(\nabla_{\phi \mathcal{A}} \phi \mathcal{B}\right)^{(\beta)}+A^{2} \sqrt{q}\left\{\varepsilon(\beta) \eta(\mathcal{B})^{V}\left(\nabla_{\phi \mathcal{A}} \zeta\right)^{(\beta+\varepsilon(\beta) n)}\right.
$$

$$
-\delta_{2 n+1}^{\beta} \eta(\mathcal{B})^{V}([\phi \mathcal{A}, \zeta]-\gamma R(\phi \mathcal{A}, \zeta))
$$

$$
\left.+\delta_{2 n+1}^{\beta} \eta(\mathcal{A})^{V} \eta(\mathcal{B})^{V}\left(\nabla_{\zeta} \zeta\right)^{(2 n+1)}-\phi \nabla_{\phi \mathcal{A}} \mathcal{B}\right)^{(\beta)}
$$

$$
\left.\left.+\varepsilon(\beta) \eta\left(\nabla_{\phi \mathcal{A}} \mathcal{B}\right)^{V} \zeta^{(\beta+\varepsilon(\beta) n)}-\delta_{2 n+1}^{\beta} \eta\left(\nabla_{\phi \mathcal{A}} \mathcal{B}\right)^{V} \zeta^{H}\right)\right\}
$$

$$
+\frac{p A}{2}\left(\nabla_{\phi \mathcal{A}} \mathcal{B}\right)^{V}-p A\left(\left(\phi \nabla_{X} Y\right)^{(\beta)}\right.
$$

$$
+\quad p A\left(\left(\phi \nabla_{\mathcal{A}} \phi \mathcal{B}\right)^{(\beta)}\right.
$$

$$
+\sqrt{q}\left\{\varepsilon(\beta) \eta\left(\nabla_{X} Y\right)^{V} \zeta^{(\beta+\varepsilon(\beta) n)}-\delta_{2 n+1}^{\beta} \eta\left(\nabla_{X} Y\right)^{V} \zeta^{H}\right)
$$

$$
+\quad+\varepsilon(\beta) \eta\left(\nabla_{\mathcal{A}} \phi \mathcal{B}\right)^{V} \zeta^{(\beta+\varepsilon(\beta) n)}
$$

$$
\left.-\delta_{2 n+1}^{\beta} \eta\left(\nabla_{\mathcal{A}} \phi \mathcal{B}\right)^{V} \zeta^{H}\right)+\varepsilon(\beta) \eta(\mathcal{B})^{V}\left(\phi \nabla_{\mathcal{A}} \zeta\right)^{(\beta+\varepsilon(\beta) n)}
$$

$$
\left.+\varepsilon^{2}(\beta) \eta(\mathcal{B})^{V} \eta\left(\phi \nabla_{\mathcal{A}} \zeta\right)^{V} \zeta^{(\beta+\varepsilon(\beta) n)}-\delta_{2 n+1}^{\beta} \varepsilon(\beta) \eta(\mathcal{B})^{V} \eta\left(\phi \nabla_{\mathcal{A}} \zeta\right)^{V} \zeta^{H}\right)
$$

$$
\left.\left.-\delta_{2 n+1}^{\beta} \eta(\mathcal{B})^{V}\left((\phi[\mathcal{A}, \zeta])^{H}+\eta[\mathcal{A}, \zeta]^{V} \zeta^{(2 n+1)},-\gamma \tilde{J} R(\mathcal{A}, \zeta)\right)\right)\right\}
$$

where $\alpha, \beta=1, \ldots, 2 n+1$.
Proof. Using (22) and Theorem (1), Theorem (4) is proven.

5. Example

Let $\left\{e_{i}, \phi e_{i}, \zeta\right\}$ be a basis in $(M, \phi, \zeta, \eta, g)$ where i denotes 1 to n. The coderivative $\delta \Omega$ with basis $\left\{e_{i}^{H},\left(\phi e_{i}\right)^{H}, \zeta^{H}, e_{i}^{(\alpha)},\left(\phi e_{i}\right)^{(\alpha)}, \zeta^{(\alpha)}\right\}$ can be expressed as [16]

$$
\begin{align*}
\delta \Omega(\tilde{\mathcal{A}}) & =-\sum_{i=1}^{n}\left\{\left(\tilde{\nabla}_{e_{i}^{H}} \Omega\right)\left(e_{i}^{H}, \tilde{\mathcal{A}}\right)+\left(\tilde{\nabla}_{\left(\phi e_{i}\right)^{H}} \Omega\right)\left(\left(\phi e_{i}\right)^{H}, \tilde{\mathcal{A}}\right)\right\} \\
& +\sum_{j=1}^{n}\left(\tilde{\nabla}_{\zeta^{(j)}} \Omega\right)\left(\zeta^{(j)}, \tilde{\mathcal{A}}\right)-\left(\tilde{\nabla}_{\zeta^{(2 n+1)}} \Omega\right)\left(\zeta^{(2 n+1)}, \tilde{\mathcal{A}}\right) \\
& -\left(\tilde{\nabla}_{\zeta^{H}} \Omega\right)\left(\zeta^{H}, \tilde{\mathcal{A}}\right)-\sum_{\alpha=1}^{2 n+1} \sum_{i=1}^{n}\left\{\tilde{\nabla}_{e_{i}^{(\alpha)}} \Omega\right)\left(e_{i}^{(\alpha)}, \tilde{\mathcal{A}}\right) \tag{31}\\
& \left.+\left(\tilde{\nabla}_{\left(\phi e_{i}\right)^{(\alpha)}} F\right)\left(\left(\phi e_{i}\right)^{(\alpha)}, \tilde{\mathcal{A}}\right)\right\} .
\end{align*}
$$

Taking $\tilde{\mathcal{A}}=\mathcal{A}^{(\beta)}$ in (31), using (11) and (29), we acquire

$$
\begin{aligned}
\delta \Omega\left(\mathcal{A}^{(\beta)}\right) & =-\sum_{i=1}^{n}\left\{g^{D}\left(\nabla_{e_{i}^{H}} e_{i}^{H}, \tilde{J} \mathcal{A}^{(\beta)}\right)+g^{D}\left(\nabla_{\left(\phi E_{i}\right)^{H}}\left(\phi e_{i}\right)^{H}, \tilde{J} \mathcal{A}^{(\beta)}\right)\right\} \\
& -g^{D}\left(\nabla_{\zeta^{H}} \zeta^{H}, \tilde{J} \mathcal{A}^{(\beta)}\right) \\
& =-\sum_{i=1}^{n}\left\{-g^{D}\left(\gamma R\left(e_{i}, e_{i}\right), \frac{p}{2} \mathcal{A}^{(\beta)}\right)-A\left[-g^{D}\left(\gamma R\left(\phi e_{i}, e_{i}\right), \mathcal{A}^{(\beta)}\right)\right.\right. \\
& \left.-\sqrt{q} \delta_{2 n+1}^{\beta} \eta(\mathcal{A})^{V} g\left(\nabla_{e_{i}} \zeta, e_{i}\right)^{V}-\sqrt{q} \delta_{2 n+1}^{\beta} \eta(\mathcal{A})^{V} g\left(\nabla_{\phi e_{i}} \zeta, \phi e_{i}\right)^{V}\right\} \\
& \left.+\sqrt{q} \delta_{2 n+1}^{\beta} g\left(\nabla_{\zeta^{H}} \zeta^{H}, \mathcal{A}^{V}\right)\right] \\
& =\frac{p}{2} \sum_{i=1}^{n}\left\{g^{D}\left(\gamma R\left(e_{i}, e_{i}\right), \mathcal{A}^{(\beta)}\right)-A\left[-g^{D}\left(\gamma R\left(e_{i}, \phi e_{i}\right), \mathcal{A}^{(\beta)}\right)\right.\right. \\
& \left.+\sqrt{q} \delta_{2 n+1}^{\beta}\left\{\eta(\mathcal{A})^{V}(\delta \eta)^{V},\left(\nabla_{\zeta} \eta\right) \mathcal{A}^{V}\right\}\right],
\end{aligned}
$$

where

$$
\delta \eta=-\sum_{i=1}^{n}\left\{\left(\nabla_{e_{i}} \eta\right) \zeta_{i}+\left(\nabla_{\phi e_{i}} \eta\right) \phi \zeta_{i}\right\}
$$

and

$$
\left(\nabla_{\zeta} \eta\right) \mathcal{A}=g\left(\mathcal{A}, \nabla_{\zeta} \zeta\right)
$$

Taking $\tilde{\mathcal{A}}=\mathcal{A}^{H}$ in (31), using (11) and (29), we acquire

$$
\begin{aligned}
\delta \Omega\left(\mathcal{A}^{H}\right) & =-\sum_{i=1}^{n}\left\{g^{D}\left(\nabla_{e_{i}^{H}} e_{i}^{H}, \tilde{J} \mathcal{A}^{H}\right)+g^{D}\left(\nabla_{\left(\phi E_{i}\right)^{H}}\left(\phi e_{i}\right)^{H}, \tilde{J} \mathcal{A}^{H}\right\}\right. \\
& -g^{D}\left(\nabla_{\zeta^{(2 n+1)}} \zeta^{(2 n+1)}, \tilde{J} \mathcal{A}^{H}\right)-g^{D}\left(\nabla_{\zeta^{H}} \zeta^{H}, \tilde{J} \mathcal{A}^{H}\right) \\
& -\sum_{\alpha=1}^{2 n+1} \sum_{i=1}^{n}\left(g^{D}\left(\nabla_{e_{i}^{(\alpha)}} e_{i}^{(\alpha)}, \tilde{J} \mathcal{A}^{H}\right)+g^{D}\left(\nabla_{\left(\phi E_{i}\right)^{(\alpha)}}\left(\phi e_{i}\right)^{(\alpha)}, \tilde{J} \mathcal{A}^{H}\right) .\right. \\
& =-\frac{p}{2} \sum_{i=1}^{n}\left[\left(g\left(\nabla_{e_{i}} e_{i}, \mathcal{A}\right)\right)^{V}+\left(g\left(\nabla_{\phi e_{i}} \phi e_{i}, \mathcal{A}\right)\right)^{V}+\left(g\left(\nabla_{\zeta} \zeta, \mathcal{A}\right)\right)^{V}\right] \\
& -A\left[-\sum_{i=1}^{n}\left(-g\left(\left(\nabla_{e_{i}} \phi\right) e_{i}, \mathcal{A}\right)^{V}-g\left(\left(\nabla_{\phi e_{i}} \phi\right) \phi e_{i}, \mathcal{A}\right)^{V}\right)\right. \\
& \left.+g\left(\left(\nabla_{\zeta} \phi\right) \zeta, \mathcal{A}\right)^{V}\right] . \\
& =-\frac{p}{2} \sum_{i=1}^{n}\left[\left(g\left(\nabla_{e_{i}} e_{i}, \mathcal{A}\right)\right)^{V}+\left(g\left(\nabla_{\phi e_{i}} \phi e_{i}, \mathcal{A}\right)\right)^{V}+\left(g\left(\nabla_{\zeta} \zeta, \mathcal{A}\right)\right)^{V}\right] \\
& -A(\delta \Phi(\mathcal{A}))^{V},
\end{aligned}
$$

where

$$
\left.\delta \Phi(\mathcal{A})=-\sum_{i=1}^{n}\left(\nabla_{e_{i}} \Phi\right)\left(e_{i}, \mathcal{A}\right)+\left(\nabla_{\phi e_{i}} \Phi\right)\left(\phi e_{i}, \mathcal{A}\right)\right)-\left(\nabla_{\zeta} \Phi\right)(\zeta, \mathcal{A})
$$

and

$$
\left(\nabla_{\mathcal{A}} \Phi\right)(\mathcal{B}, \mathcal{C})=-g\left(\left(\nabla_{\mathcal{A}} \phi\right)(\mathcal{B}, \mathcal{C})\right.
$$

Author Contributions: Conceptualization, T.A., U.C.D. and M.N.I.K.; methodology, T.A., U.C.D. and M.N.I.K.; investigation, T.A., U.C.D. and M.N.I.K.; writing-original draft preparation, T.A., U.C.D. and M.N.I.K.; writing-review and editing, T.A., U.C.D. and M.N.I.K. All authors have read and agreed to the published version of the manuscript.

Funding: Researcher would like to thank the Deanship of Scientific Research, Qassim University, for funding publication of this project.
Data Availability Statement: This manuscript has no associated data.
Acknowledgments: Researcher would like to thank the Deanship of Scientific Research, Qassim University, for funding publication of this project.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Yano, K.; Kon, M. Structures on Manifolds, Series in Pure Mathematics; World Scientific Publishing Co.: Singapore, 1984; Volume 3. Ishihara, S.; Yano, K. On integrability conditions of a structure f satisfying $f^{3}+f=0$. Q. J. Math. Oxf. Ser. 1964, 15, 217-222. [CrossRef]
2. Blair, D.E. Contact Manifolds in Riemannian Geometry. Lect. Notes in Math. 509; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1976.
3. Nakagawa, H. f-structures induced on submanifolds in spaces, almost Hermitian or Kaehlerian. Kodai Math. Semin. Rep. 1966, 18, 161-183. [CrossRef]
4. Yano, K. On a structure defined by a tensor field f of type $(1,1)$ satisfying $f^{3}+f=0$. Tensor N. S. 1963, 14, 99-109.
5. Goldberg, S.I.; Yano, K. Polynomial structures on manifolds. Kodai Math. Semin. Rep. 1970, 22, 199-218. [CrossRef]
6. Goldberg, S.I.; Petridis, N.C. Differentiable solutions of algebraic equations on manifolds. Kodai Math. Semin. Rep. 1973, 25, 111-128. [CrossRef]
7. Singh, K.D.; Singh, R. Some $f(3, \varepsilon)$-structure manifolds. Demonstr. Math. 1977, 10, 637-645.
8. Khan, M.N.I.; Das Lovejoy S. ON CR-structure and the general quadratic structure. J. Geom. Graph. 2020, 24, 249-255.
9. Yano, K.; Houh, C.S.; Chen, B.Y. Structure defined by a tensor field ϕ of type (1,1) satisfying $\phi^{4} \pm \phi^{2}=0$. Tensor N. S. 1972, 23, 81-87.
10. Vanzura, J. Almost r-contact structures. Ann. Sci. Fis. Mat. 1972, 26, 97-115 .
11. Azami, S. General natural metallic structure on tangent bundle. Iran. J. Sci. Technol. Trans. Sci. 2018, 42, 81-88. [CrossRef]
12. Khan, M.N.I. Complete and horizontal lifts of metallic structures. Int. J. Math. Comput. Sci. 2020, 15, 983-992.
13. de Spinadel, V.W. The metallic means family and multifractal spectra. Nonlinear Anal. 1999, 36, 721-745. [CrossRef]
14. Naveira, A. A classification of Riemannian almost-product manifolds. Rend. Di Mat. Di Roma 1983, 3, 577-592.
15. Bonome, A.; Castro, R.; Hervella, L.M. Almost complex structure in the frame bundle of an almost contact metric manifold. Math. Z. 1986, 193, 431-440. [CrossRef]
16. Cordero, L.A.; Dodson, C.T.; León, M.D. Differential Geometry of Frame Bundles; Kluwer Academic: Dordrecht, The Netherlands, 1989.
17. Crasmareanu, M.; Hretcanu, C.E. Golden differential geometry. Chaos Solitons Fractals 2008, 38, 1229-1238. [CrossRef]
18. Stakhov, A. The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical arithmetic. Chaos Solitons Fractals 2007, 33, 315-334. [CrossRef]
19. Ozkan, M.; Peltek, B. A new structure on manifolds: Silver structure. Int. Electron. J. Geom. 2016, 9, 59-69. [CrossRef]
20. Hretcanu, C.E.; Crasmareanu, M. Metallic structures on Riemannian manifolds. Rev. Unión Mat. Argent. 2013, 54, 15-27.
21. Blaga, A.M.; Hretcanu, C.E. Remarks on metallic warped product manifolds. Facta Univ. Ser. Math. Inform. 2018, 33, 269-277. [CrossRef]
22. Blaga, A.M.; Hretcanu, C.E. Golden warped product Riemannian manifolds. Lib. Math. 2017, 37, 39-49.
23. Hretcanu, C.E.; Blaga, A.M. Slant and semi-slant submanifolds in metallic Riemannian manifolds. J. Funct. Spaces 2018, 2018, 2864263. [CrossRef]
24. Hretcanu, C.E.; Blaga, A.M. Warped product submanifolds in metallic Riemannian manifods. Tamkang J. Math. 2020, 51, 161-186. [CrossRef]
25. Hretcanu, C.E.; Blaga, A.M. Hemi-slant submanifolds in metallic Riemannian manifolds. Carpathian J. Math. 2019, 35, 59-68. [CrossRef]
26. Debmath, P.; Konar, A. A new type of structure on differentiable manifold. Int. Electron. J. Geom. 2011, 4, 102-114.
27. Gonul, S.; Erken, I.K.; Yazla, A.; Murathan, C. A Neutral relation between metallic structure and almost quadratic ϕ-structure. Turk. J. Math. 2019, 43, 268-278. [CrossRef]
28. Gök, M.; Kiliç, E.; Özgür, C. $f(a, b)(3,2,1)$-structures on manifolds. J. Geom. Phys. 2021, 169, 104346. [CrossRef]
29. Sasaki, S. On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 1958, 10, 338-354. [CrossRef]
30. Yano, K.; Ishihara, S. Horizontal lifts of tensor fields to tangent bundles. J. Math. Mech. 1967, 16, 1015-1029.
31. Yano, K.; Davies, E.T. On the tangent bundles of finsler and Riemannian manifolds. Rend. Circ. Mat. Palermo 1963, 12, 1-18. [CrossRef]
32. Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Interscience: New York, NY, USA, 1963; Volume 1.
33. Mok, K.P. Complete lift of tensor fields and connections to the frame bundle. Proc. Lond. Math. Soc. 1979, 3, 72-88. [CrossRef]
34. Okubo, T. On the differential geometry of frame bundles. Ann. Mat. Pura Appl. 1966, 72, 29-44. [CrossRef]
35. Khan, M.N.I. Novel theorems for the frame bundle endowed with metallic structures on an almost contact metric manifold. Chaos Solitons Fractals 2021, 146, 110872. [CrossRef]
36. Cordero, L.A.; De Leon, M. Prolongation of G-structures to the frame bundle. Ann. Mat. Pura Appl. 1986, 143, 123-141. [CrossRef]
37. Kowalski, O.; Sekizawa, M. Curvatures of the diagonal lift from an affine manifold to the linear frame bundle. Cent. Eur. J. Math. 2012, 10, 837-843. [CrossRef]
38. Sekizawa, M. On the geometry of orthonormal frame bundles. Note Mat. 2008, 33, 357-371.
39. Kowalski, O.; Sekizawa, M. On the geometry of orthonormal frame bundles II. Ann. Glob. Anal. Geom. 2008, 33, 357-371. [CrossRef]
40. Niedzialomski, K. On the frame bundle adapted to a submanifold. Math. Nachr. 2015, 288, 648-664. [CrossRef]
41. Lachieze-Rey, M. Connections and frame bundle reductions. arXiv 2020, arxiv:2002.01410.
42. Khan, M.N.I. Proposed theorems for lifts of the extended almost complex structures on the complex manifold. Asian-Eur. J. Math. 2022, 15, 2250200. [CrossRef]
43. Khan, M.N.I. Novel theorems for metallic structures on the frame bundle of the second order. Filomat 2022, 36, 4471-4482. [CrossRef]
44. Khan, M.N.I. Integrability of the metallic structures on the frame bundle. Kyungpook Math. J. 2021, 61, 791-803.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

