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Abstract: In this paper, polynomial recurrence bounds for a class of stochastic differential equations
with a rotational symmetric gradient type drift and an additive Wiener process are established, as
well as certain a priori moment inequalities for solutions. The key feature of this paper is that the
approach does not use Lyapunov functions because it is not clear how to construct them. The method
based on Dynkin’s (nonrandom) chain of equations is applied instead. Another key feature is that
the asymptotic conditions on the potential near infinity are assumed as inequalities—which allows
for more flexibility compared to a single limit at infinity, making it less restrictive.
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1. Introduction

Let us consider a stochastic differential equation in Rd

dXt = dBt +∇U(Xt) dt (1)

with initial data
X0 = x. (2)

Here ,Bt, t ≥ 0 is a d-dimensional Brownian motion, Xt takes values in Rd, U : Rd 7→ R
is a symmetric (i.e., U(x) = U(x′) if |x′| = |x|), non-positive function with U(0) = 0 and
lim|x|→∞ U(x) = −∞. The function U is assumed to be locally bounded in C1. The aim of
this paper is to establish the recurrence properties of the Markov process Xt. Recurrence
properties are the usual preliminary steps to many other features of a process such as
ergodicity, existence, and uniqueness of its invariant probability measure, as well as for
bounds in the Law of Large Numbers type theorems and bounds for the beta-mixing rate (cf.
Ref. [1]). In this paper the goal is to establish some polynomial bound for the hitting time
to some compact subset in Rd by the process X and the moment bounds for the marginal
distribution of the process Xt itself. The issues related to the invariant measure are left
till further studies except for one auxiliary statement, which is used for the comparison.
This hitting time bound will not depend on the first derivatives of the function U, even
though the drift in the SDE is of the gradient type. This may look a bit unusual because
the drift in the SDE (1) is of the form ∇U(x). Such a problem—concerning bounds not
depending explicitly on ∇U—was posed and in some particular case solved in Ref. [2].
Earlier, other various results in the area of SDEs with a gradient type drift were established
by N.I. Portenko [3,4], then by S.Ya. Makhno in Refs. [5–7]. Recently the SDEs of the
type (1) with a gradient drift form under the name Ferrari–Spohn diffusion turned out
to play an important role in mathematical physics; see Refs. [8,9]. Here we extend, relax,
and also correct some of the assumptions from Ref. [2], with the main aim to replace the
assumptions of the limit type (see (9) in what follows) by asymptotic inequalities (see (11)
in what follows). Results on the solutions for SDEs with an irregular drift of a gradient

Mathematics 2023, 11, 3096. https://doi.org/10.3390/math11143096 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143096
https://doi.org/10.3390/math11143096
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8478-0515
https://doi.org/10.3390/math11143096
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143096?type=check_update&version=2


Mathematics 2023, 11, 3096 2 of 16

form were also obtained in Ref. [10], and more recently in Refs. [11,12]. Certain results
on strong solutions were established in Ref. [13]. To the best of the author’s knowledge,
ergodicity issues with slow polynomial convergence rates were not studied, except for in
Ref. [2], where the assumptions were more restrictive.

It is common knowledge that the rate of convergence to the invariant distribution as
well as the decrease rates for certain mixing coefficients may be derived from the estimates
of the type

Exτk

1 + |x|m ≤ C (3)

along with
supt≥0 Ex|Xt|m

1 + |x|m′
≤ C, (4)

for some k > 1, m, m′, C > 0, where

τ = inf(t ≥ 0 : |Xt| ≤ K) (5)

for some K > 1, see, e.g., Refs. [14,15]. Naturally, if |x| ≤ K then τ = 0. The interest lies
in the bounds, such as (3), for large values of |x|. Here the value of m in (3) and in the left
hand side of (4) should be the same; the value m′ may equal m, or may be different. In
particular, for SDEs (1) it may be derived from (3) and (4) that

‖µx
t − µinv‖TV ≤ P(|x|)(1 + t)−k′ , (6)

with some k′ and with some polynomial function P, at least, in the case of a bounded
function ∇U and under certain recurrent condition on ∇U. Here µx

t denotes the marginal
distribution of the process Xt with the initial value X0 = x, while µinv stands for the
invariant probability measure; the norm is in total variation. Moreover, similar bounds
may be established for the beta-mixing coefficient on the basis of the recurrence properties;
this is known to be quite useful in various limit theorems (cf. Ref. [16]) as well as in the
extreme value theory [17]. However, the pursuit of this goal is not within the scope of this
paper; certain applications will be studied in a separate publication.

Bounds such as (3) under various assumptions were obtained for various classes of
processes by many authors, see, in particular Refs. [1,14,18–20], and the references therein;
yet, for SDEs all assumptions were usually—except for in Ref. [2]—stated in terms of ∇U.
See also Refs. [21,22], where stronger sub-exponential bounds were established under
another standing assumption.

In [1,15] a recurrence condition

−p = lim sup
|x|→∞

(∇U(x), x) < 0 (7)

was used to get bounds such as (6). Naturally these bounds depend on the asymptotic
of ∇U. Here the problem was to find some analogue of the latter condition in terms of
the limiting behavior of the function U itself, as in Ref. [2] but under further relaxed
assumptions.

In many papers the study of recurrence starts with the assumption about an existence
of one or another Lyapunov function, which eventually leads to certain recurrence proper-
ties. In other papers the required Lyapunov functions are derived from the assumptions on
the coefficients of the equation. The case under investigation in this paper is different: there
is no clear way to construct Lyapunov functions here using the assumptions on the potential
U(x). It can be considered a rare situation where recurrence bounds are established without
the use of Lyapunov functions. Of course, after the recurrence estimates (14) in Theorem 1 are
established, the functions vq themselves may serve as Lyapunov functions; however, in this case,
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the situation is reversed as Lyapunov functions no longer required after the recurrence bounds have
been found.

The paper consists of six sections, one of them with two subsections. They are as
follows: this introduction, the main results divided into two parts (the earlier results and
the new results), the proof of the main theorem, examples, a discussion, and an appendix
containing a lemma.

2. Main Results
2.1. Earlier Result

Let us recall briefly some earlier results from Ref. [2] where a slightly more general
SDE was considered, with the drift of the form b(x)−∇U(x). In this paper we assume
b ≡ 0, and use +∇U instead of −∇U(x); naturally, the assumptions will be rewritten
accordingly, for example, in our case U(x)→ −∞ in place of U(x)→ +∞ in Ref. [2]. This
reminder will be useful for comparison, as it allows us to discern what is truly novel in this
context. Additionally, the subsequent analysis will be based on similar but less stringent
assumptions.

Assume
sup

x,x′ : |x−x′ |≤1
(U(x)−U(x′)) < ∞. (8)

Since Equation (1) uses only the gradient of U, the particular value of U at the origin
is not important; for example, without loss of generality we may assume U(0) = 0.

The function U is also assumed to possess a central symmetry, i.e., it only depends
on the value of |x| at each point, and the function V(u) := U(x) for |x| = u here is
assumed to be in the class C1[0, ∞). At the origin it follows that V′(0) = 0, otherwise
the gradient ∇U(0) may not exist. In Ref. [2] the bounds were established under the
recurrence condition

lim
ξ→∞

V(ξ)

ln ξ
+ d = −p < 0, (9)

and under certain relationships between the constants. In particular, the bound (3) was
established under the condition p > 1/2 for any 0 < k < p + 1/2 and with any m = 2k + ε
(ε > 0); the inequality (4) was shown to be valid with any m < 2p− 1 and m′ = m + 2ε.

Remark 1. The following corrections should be made in Ref. [2]. (1) It was erroneously assumed
in Ref. [2] that the function U may have the form U(x) = U1(x) + U2(x) with a special
requirement on U2. This is incorrect: U2 must be identically to zero. Furthermore, all subsequent
assumptions regarding U1 should be understood as assumptions on U itself. (2) Additionally,
instead of the reference on the elliptic Harnack inequality in Ref. [23], there should be a reference on
the parabolic one, see, for example, Theorem 6.27 in Ref. [24].

Remark 2. The improvements in relation to Ref. [2] are as follows.
It turned out that the dominating process yt was chosen in Ref. [2] in a non-optimal way, see

(18) and (19) in what follows for a better choice. The assumption (11) is weaker than (9) even in
the case p1 = p2 = p because the value d in the left hand side of (9) can be replaced by a smaller
value (d− 1)/2 in (11). However, a more essential difference is the assumption on U in this paper,
which is presented in an interval form (11)—see the following subsection—instead of the limiting
form (9) as in Ref. [2]. Thus, the limit (9) may not exist under only (11), but certain recurrence
bounds are still available. This extends the class of processes for which such recurrence bounds may
be established.

Remark 3. New improvements in comparison to Ref. [2] are due to the fact that the asymptotic
condition on the potential U in the form of a limit (9) is now replaced by a two-sided inequality (11)
(see the next subsection), which does not necessarily assume the existence of a limit as in (9).
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Remark 4. A comparison to the paper [15] is as follows. In Theorem 6 in Ref. [15], the recurrence
bound was established, in terms of the Equation (1). If condition (7) explicitly related to the gradient
∇U is satisfied with some p > 1 + d

2 , then bound (3) holds true for any k < p− d
2 with a certain

value of m. After integration and a small elementary calculation, this is equivalent to the (one-
sided) asymptotic version of condition (11) with p1 = p2 of Theorem 1 in the next section, also
satisfying (10). Clearly, condition (11) with (10) is valid for a much wider class of drifts leading to
the same recurrence bound (3).

2.2. New Result

Theorem 1. Assume the condition U(x) = U(x′) for any x, x′ such that |x| = |x′|, and let the
assumption (8) hold true, and let ∇U be locally bounded. Let V(ξ) := U(x) for any x such that
|x| = ξ, and let there exist two constants p1 and p2 such that

1/2 < p2 ≤ p1 (10)

and

p2 ≤
−V(ξ)

ln ξ
− d− 1

2
≤ p1, (11)

for all ξ > 0, which are large enough, ξ ≥ K where K > 1 is arbitrary. (K > 1 is used to guarantee
that ln ξ > 0 for any ξ ≥ K.) Then the bound

sup
t≥0

Ex|Xt|m ≤ C(1 + |x|m′) (12)

holds true with any
m < 2p1 + 1, (13)

and with
m′ = m + 2(p1 − p2).

Moreover, for any positive integer value of k < 1 +
2p2 − 1

2(1 + p1 − p2)
=

2p1 + 1
2(1 + p1 − p2)

and

m = 2k(1 + p1 − p2), the bound holds,

Exτk ≤ C(1 + |x|m), (14)

where τ is the stopping time defined in (5).

Moreover the Markov process (Xt) possesses an invariant probability measure µ which admits
the bound ∫

|x|`µ(dx) < ∞, ∀ ` < 2p2 − 1. (15)

Remark 5. The inequality (14) is satisfied with k = 1 and some appropriate m iff p2 > 1/2, which
is a standing assumption (10). In addition, notice that no exponential rate of convergence is claimed.
Even a polynomial rate will be proved only up to some finite power k.

Remark 6. Under the assumptions of the theorem, this invariant measure is apparently unique.
However, we do not need it for the proof of the other statements and, hence, do not claim so in
Theorem 1 in order to not overload this presentation. This uniqueness will be rigorously derived
in further publications along with the rate of convergence to the invariant regime, for which a
polynomial recurrence plays a crucial role. In this paper some invariant measure with explicitly
estimated finite moments of a certain order is all we need for the proofs.

Remark 7. Since ∇U is assumed to be locally bounded, the solution of the Equation (1) is strong
and pathwise unique, at least, locally in time (e.g., see Ref. [25]). In fact, as it follows from the almost
surely finiteness of the hitting time τ, this solution does not explode and, hence, it remains strong
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and pathwise unique for all t ≥ 0. For recent results on weak solutions with a weak uniqueness in a
close setting, see Ref. [11].

3. Proof of Theorem 1

The approach involves comparing the process |Xt| to a one-dimensional process
that follows a SDE with reflection. This allows for obtaining an explicit expression for
the invariant density of the reflected process. This auxiliary dominating process will be
denoted by (yt). The stopping time τ for the process (Xt) will admit an upper bound by
an appropriate stopping time for (yt), which will be denoted by γ: we will have τ ≤ γ.
Then, for the process (yt) it will be possible to estimate by induction the moments of γ
by solving the chain of ordinary differential equations of the second order, which may be
found in Theorem 13.17 in Ref. [26]. In the PDE theory, these equations are known under
the name of Duhamel’s formula; the chain, or system of these equations—see (21) in what
follows—seems to be specific for a probabilistic setting.

1. Comparison to a solution for a 1D equation with reflection. Recall that K > 1 and let

V̄(y) = V(y) +
d− 1

2
ln y, y > 0. (16)

Then
V̄′(y) = V′(y) + (d− 1)/(2y), ∀ y > 0.

Notice that condition (11) in terms of the function V̄ may be rewritten in the form

ξ2p2 ≤ exp(−2V̄(ξ)) ≤ ξ2p1 , ξ ≥ K. (17)

Similarly to Ref. [2], after an application of Itô’s formula to d|Xt| and due to the
comparison theorems for SDEs with reflection as shown in Lemma A1 in the appendix, one
gets,

|Xt| ≤ yt, (18)

where yt is a solution of an SDE with reflection on [K, ∞)

dyt = dw̄t +

(
d− 1
2yt

+ V′(yt)

)
dt + dϕt ≡ dw̄t + V̄′(yt)dt + dϕt, (19)

with any initial condition y0 > |X0|, random or non-random; a formal proof may be found
in Lemma A1 in the Appendix A. Here

w̄t =
∫ t

0
1(|Xs| > 0)

XsdBs

|Xs|

is a one-dimensional Wiener process due to the Lévy characterization, since P(|Xt| = 0) = 0

for any t > 0, which implies that the compensator 〈w̄〉t =
∫ t

0
1(|Xs| > 0)

∑d
k=1(Xk

s )
2

|Xs|2
ds = t

a.s. The process yt is a strong and pathwise unique solution of the SDE (19) (see, e.g.,
Ref. [27]) with a non-sticky boundary condition at K > 1, so that yt ≥ K for all t, ϕ is its
local time at K, that is,

yt ≥ K a.s.,

the function ϕt is non-negative and non-decreasing, with ϕ0 = 0, and

ϕt =
∫ t

0
1(ys = K)dϕs.
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As mentioned, the reflection is assumed to be non-sticky, that is,∫ t

0
1(ys > K)ds = t (a.s.),

If we want to highlight the initial value y0, we will denote this solution of Equation (19)
by yy0

t .
Indeed, let us show (18): by Itô’s formula for |Xt| 6= 0, denoting for convenience

Yt := ∑k(Xk
t )

2 we have,

dYt = d ∑
k
(Xk

t )
2 = ∑

k
d(Xk

t )
2 = ∑

k
2Xk

t dXk
t +

1
2 ∑

k
2(dXk

t )
2 = ∑

k
2Xk

t dXk
t +

1
2 ∑

k
2(dBk

t )
2

= 2|Xt| ∑
k

Xk
t dBk

t
|Xt|︸ ︷︷ ︸

=dw̄t

+

(
2|Xt|∑

k

Xk
t
|Xt|

U′xk (Xt) + d

)
dt

= 2|Xt|dw̄t +

(
2|Xt|〈

Xt

|Xt|
,∇U(Xt)〉+ d

)
dt = 2|Xt|dw̄t +

(
2|Xt|V′(|Xt|) + d

)
dt.

Due to the equality U(x) = V(|x|) on the set |X| > 0, we have,

x
|x|∇U(x) =

1
|x|

d

∑
k=1

xkU′xk
(x) =

1
|x|

d

∑
k=1

xk
∂

∂xk
V(|x|) = 1

|x|
d

∑
k=1

xkV′(|x|)
∂
√

∑d
j=1 x2

j

∂xk

=
1
|x|

d

∑
k=1

xkV′(|x|) xk
|x| =

1
|x|2 V′(|x|)

d

∑
k=1

x2
k = V′(|x|).

Therefore, still for |Xt| 6= 0,

(dYt)
2 = 4Ytdt = 4|Xt|2dt.

So, by Itô’s formula on the set |Xt| 6= 0,

d|Xt| = d(Yt)
1/2 =

1
2

Y−1/2
t dYt +

1
2
× 1

2
× (−1

2
)Y−3/2

t (dYt)
2

=
1
2

(
2|Xt|dw̄t + (2|Xt|V′(|Xt|+ d)dt

|Xt|

)
− 4|Xt|2dt

8|Xt|3

= dw̄t +

(
V′(|Xt|) +

d
2|Xt|

− 1
2|Xt|

)
dt

= dw̄t +

(
V′(|Xt|) +

d− 1
2|Xt|

)
dt = dw̄t + V̄′(|Xt|)dt.

Thus, where |Xt| > K, the stochastic differential of the process |Xt| has the same
form as the stochastic differential of yt, that is, they both satisfy the same SDE on the half
line (K, ∞), but unlike yt, the process |Xt| may take values less than K with a positive
probability. By well-known comparison theorems,

Px(|Xt| ≤ yt, t ≥ 0) = 1. (20)

This assertion (20) will be rigorously proved in Lemma A1 in the Appendix A. It is im-
portant here that both solutions are strong and, hence, are well-defined on the same probability space.
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2. Invariant density and its moments. The invariant density f (x) of the process Xt is
well-known: it has a form f (x) = c exp(2U(x)). Indeed, we may check the invariance
equation L∗ f = 0:

1
c
(

1
2

∆ f (x)− div( f∇U)) =
1
2 ∑

i

∂2

∂x2
i

exp(2U(x))−∑
i

∂

∂xi
(Uxi (x) exp(2U(x)))

= ∑
i

{
1
2

∂

∂xi
(2Uxi (x) exp(2U(x)))− ∂

∂xi
(Uxi (x) exp(2U(x)))

}
= 0.

Further, for any finite dimension d ≥ 1 we have a bound for the moment of the
invariant density,

∫
· · ·

∫
|x|≥1

|x|m exp(2U(x))dx =
∫
· · ·

∫
|x|≥1

|x|m exp(2V(|x|))dx

≤
∫
· · ·

∫
|x|≥1∨K

|x|m|x|−2(p2+(d−1)/2)dx =

∞∫
1∨K

rm−2(p2+(d−1)/2)rd−1dr =
∞∫

1∨K

rm−2p2 dr.

Here a ∨ b = max(a, b). The last integral converges iff m− 2p2 < −1, that is,

m < 2p2 − 1.

For any such value of m the moment of the invariant density of (Xt) is finite. Recall
that the uniqueness of the invariant measure is not emphasized here, but see Remark 6.
The value of m may be integer, or non-integer here.

3. A normalizing constant for the invariant density of (yt). The invariant density f (y) of
the process yt on the half-line [|x|, ∞) with the reflection barrier K = |x| has a form

C(|x|) exp(2V̄(y)), y > |x|, (21)

which can be easily verified by directly computing the stationarity equation L̄∗ f = 0,
following the standard approach using Itô’s formula with expectations for any g(yt) for
g ∈ C2

0 (with a compact support and with g(|x|) = 0), where L̄ is the generator of (yt) and
L̄∗ is its adjoint with respect to Lebesgue’s measure.

Notice that at this stage it is irrelevant whether or not this invariant distribution of the
process (yt) is unique. In fact, it is, but we do not use it in what follows and, hence, do not
pursue this goal.

The normalizing identity implies the estimation from above under the condition
2p1 > 1 (it coincides with 2p1 > d just for d = 1),

C(|x|) =
(∫ ∞

|x|
exp(2V̄(y)) dy

)−1
≤
(∫ ∞

|x|
ξ−2p1 dy

)−1
= (2p1 − 1)|x|2p1−1, (22)

for the values of |x| ≥ K where the assumptions (17) are valid. For smaller values of

|x| > 0 below K, the integral
∫ ∞

|x|
exp(2V̄(y)) dy may not diverge because in any finite

neighborhood of zero the function exp(2V(y)) is bounded; see condition (8) and the

definition (16). Naturally, the integral
∫ ∞

|x|
ξ−2p1 dy increases when |x| decreases, so that

for smaller values of |x| we also have smaller values of C(|x|). Additionally, note that
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the integral
∫

0+
exp(2

(d− 1) ln y
2

)dy =
∫

0+
y(d−1)dy converges for any dimension d ≥ 1.

Hence, for all values |x| ≥ 0

C(|x|) ≤ (2p1 − 1)|x|2p1−1 ∨ C0 (23)

with some finite C0. Additionally, note for the sequel that due to the assumption (11),
the density f (y) admits the bound f (y) = c exp(2V̄(y)) ≤ cy−2p2 for y ≥ K and, hence,
integrates some power function: namely, under the condition p2 > 1/2 we have,

∫
|y|` f (y) dy ≤ C(|x|)

∫ ∞

|x|
|y|`−2p2 dy < ∞, ∀ ` < 2p2 − 1. (24)

Note that the range for the possible values of ` here coincides with that for ` in (15).
This prompts that if we had no explicit formula for the invariant distribution of the process
(Xt), but only for the dominating one (yt), then the right order for its finite moments could
still have been obtained using the technique based on the Harris–Khasminskii’s method.

4. The inequality (12) with any real value m < 2p2 − 1 and with m′ = m + 2(p1 − p2)
(where m′ is not necessarily an integer either) follows from a direct calculation. Indeed,
since by the comparison theorem the process y|x|t with |x| large enough does not exceed
the stationary version of the Markov process satisfying the same SDE with a non-sticky
reflection and with the reflection barrier at |x|, then

Ex|Xt|m ≤ E|x||yt|m ≤ C(|x|)
∞∫
|x|

ξm exp(2V̄(ξ)) dξ

≤ (C|x|2p1−1 ∨ C0)

∞∫
|x|

ξmξ−2p2 dξ

≤ (C|x|m+2(p1−p2)+1−1) ∨ C0 = (C|x|m+2(p1−p2)) ∨ C0.

Here the constants C and C0 may all be different. The first inequality in this calculus
is true for any x large enough, due to comparison theorems for the processes yt with
different initial data y0, see, e.g., Ref. [27] for the bounded coefficients; this result naturally
generalizes to the locally bounded coefficients in the situation where there is no explosion
for (yt). For any |x|, and not necessarily small, this implies the bound (4), as required. Note
that the drift in Ref. [27] was assumed to be bounded, or, at most, satisfying a linear growth
condition. However, given that all solutions are strong and that they are defined on the
infinite interval of time without explosion, this assumption can be dropped and replaced
by a local boundedness of V̄′ outside zero. What is important here is that the values of the
norms of the drift ∇U(x) in Rd do not contribute to the constants in the final bound where
only the assumptions on the function U itself will be used.

5. The inequality (14). This is the crucial part of the statement of the theorem. Denote

vq(ξ) = Eξ γq (25)

for any integer q ≥ 0, γ = inf(t : yt ≤ K); v0(ξ) ≡ 1. Clearly, vq(ξ) = 0 for |ξ| ≤ K, except
for q = 0. Let L̄ denote the generator of the process yt, that is,

L̄g(y) =
1
2

g′′(y) + V̄′(y)g′(y), (26)
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where V̄(y) = V(y) +
(d− 1) ln y

2
, y > 0 (see (16)). By the first theorem of the calculus

(also known as the Newton–Leibniz theorem) we have,

γq =

(∫ γ

0
1 dt
)q

= q
∫ γ

0

(∫ t

0
1 ds

)q−1
dt = q

∫ γ

0

(∫ γ

t
1 ds

)q−1
dt,

Therefore, by taking expectations and considering the Markov property, it follows
that,

vq(y0) = Ey0 γq = Ey0 q
∫ γ

0

(∫ γ

t
1 ds

)q−1
dt = Ey0 q

∫ ∞

0
1(t < γ)

(∫ γ

t
1 ds

)q−1
dt

= q
∫ ∞

0
Ey0 1(t < γ)

(∫ γ

t
1 ds

)q−1
dt = q

∫ ∞

0
Ey01(t < γ)Ey0

((∫ γ

t
1 ds

)q−1
|F y

t

)
dt

= q
∫ ∞

0
Ey01(t < γ)Eyt

(∫ γ

t
1 ds

)q−1
dt = q

∫ ∞

0
Ey01(t < γ)vq−1(yt) dt = qEy0

∫ γ

0
vq−1(yt) dt,

for any q, such that the integral in the right hand side converges. In turn, by Itô’s or
Dynkin’s formula this implies an equation

Lvq(y) = −qvq−1(y), y ≥ K (q = 1, 2, . . .) (27)

(cf. with Theorem 13.17 in Ref. [26] where this very equation is explained differently and
under a stronger assumption, which guarantees some exponential moment of γ). Evidently,
one boundary value for the latter equation is vq(K) = 0. The role of the “second boundary
value” usual for an ODE, or PDE of the second order is played by the condition of a
moderate growth at infinity, that is, not exceeding some power function. The justification
of the formula for the solution below can be done by the limiting procedure, as follows.
Let N > K be the second boundary (later on N would go to infinity). Let vq

N(ξ) = Eξγ
q
N

for any integer q ≥ 0, γN = inf(t : yN
t ≤ K), where the process yN

t is a solution of the
equation similar to (19) but with another non-sticky reflection at N. Recall that all solutions
are strong and, hence, may be constructed on the same probability space; see, e.g., Ref. [27]
for SDEs with one boundary, and results from this paper are easily extended for the case
with two finite boundaries. Apparently, yN

t ≤ yt for any t and N, and γN ↑ γ as N ↑ ∞. So,
by the monotone convergence, vq

N ↑ vq for all values of q, no matter whether or not the
limit vq is finite. Then the sequence of the functions vq

N(ξ) satisfies the Equations (27) with
boundary conditions

vq
N(K) = 0, (vq

N)
′(N) = 0.

The formula for the solution of such an equation reads,

vq
N(ξ) = 2q

∫ ξ

K
exp(−2V̄(y1)) dy1

∫ N

y1

vq−1
N (y2) exp(2V̄(y2)) dy2, K ≤ ξ ≤ N,

which may be verified by a direct calculation. Indeed, substituting ξ = K, we get vq
N(K) = 0,

and by taking the derivative, we can see that

(vq
N)
′(ξ)|ξ=N = 2q exp(−2V̄(ξ))

∫ N

ξ
vq−1

N (y2) exp(2V̄(y2)) dy2|ξ=N = 0.
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The equation itself follows from some calculus, as follows:

(vq
N)
′(ξ) = 2q exp(−2V̄(ξ))

∫ N

ξ
vq−1

N (y2) exp(2V̄(y2)) dy2,

(vq
N)
′′(ξ) = −2q exp(−2V̄(ξ)) vq−1

N (ξ) exp(2V̄(ξ))

− 4qV̄′(ξ) exp(−2V̄(ξ))
∫ N

ξ
vq−1

N (y2) exp(2V̄(y2)) dy2

= −2qvq−1
N (ξ)− 4qV̄′(ξ) exp(−2V̄(ξ))

∫ N

ξ
vq−1

N (y2) exp(2V̄(y2)) dy2,

Lvq
N(ξ) =

1
2
(vq

N)
′′(ξ) + V̄′(ξ)(vq

N)
′(ξ)

= −qvq−1
N (ξ)− 2qV̄′(ξ) exp(−2V̄(ξ))

∫ N

ξ
vq−1

N (y2) exp(2V̄(y2)) dy2

+ V̄′(ξ)× 2q exp(−2V̄(ξ))
∫ N

ξ
vq−1

N (y2) exp(2V̄(y2)) dy2 = −qvq−1
N (ξ),

as required. The uniqueness of the solution for a linear ODE system is well-known.

Hence, by induction, the function vq(ξ) satisfies a representation using the function
vq−1,

vq(ξ) = 2q
∫ ξ

K
exp(−2V̄(y1)) dy1

∫ ∞

y1

vq−1(y2) exp(2V̄(y2)) dy2. (28)

By another induction this implies the inequalities (recall that v0 ≡ 1):

v1(ξ) = 2
∫ ξ

K
exp(−2V̄(y1)) dy1

∫ ∞

y1

v0(y2) exp(2V̄(y2)) dy2

= 2
∫ ξ

K
exp(−2V̄(y1)) dy1

∫ ∞

y1

exp(2V̄(y2)) dy2 ≤ 2
∫ ξ

K
y2p1

1 dy1

∫ ∞

y1

y−2p2
2 dy2

= C
∫ ξ

K
y2p1−2p2+1

1 dy1 = C(ξ2(p1−p2)+2 − K2(p1−p2)+2) ≤ Cξ2(p1−p2)+2, (29)

which is finite under the condition that p2 > 1/2 (otherwise the inner integral diverges).
Further,

v2(ξ) = 4
∫ ξ

K
exp(−2V̄(y1)) dy1

∫ ∞

y1

v1(y2) exp(2V̄(y2)) dy2

≤ C
∫ ξ

K
exp(−2V̄(y1)) dy1

∫ ∞

y1

y2(p1−p2)+2
2 exp(2V̄(y2)) dy2

≤ C
∫ ξ

K
y2p1

1 dy1

∫ ∞

y1

y2(p1−p2)+2−2p2
2 dy2

= C
∫ ξ

K
y2p1

1 dy1 y2p1−4p2+3
1 = C(ξ4(p1−p2)+4 − K4(p1−p2)+4)

≤ Cξ4(p1−p2+1),

where in the calculus it was assumed that 2p1 − 4p2 + 2 < −1, that is, that p1 < 2p2 − 3/2,
otherwise the inner integral in the calculus diverges. Since it was assumed from the
beginning that p1 ≥ p2, for the value of p2, this implies that p2 > 3/2.

It looks plausible that the general bound for a (finite) vq is provided by the formula

vq(ξ) ≤ Cqξ2q(1+p1−p2). (30)
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As the base is already established, let us show the induction step. Assume that for
q = n− 1, the formula is valid with some constant Cn−1, that is,

vn−1(ξ) ≤ Cn−1ξ2(n−1)(1+p1−p2).

Then for q = n, as long as the integrals in the calculus below converge, we have,

vn(ξ) = 2n
∫ ξ

K
exp(−2V̄(y1)) dy1

∫ ∞

y1

vn−1(y2) exp(2V̄(y2)) dy2

≤ 2n
∫ ξ

K
y1

2p1 dy1

∫ ∞

y1

Cn−1 y2(n−1)(p1−p2+1)
2 y2

−2p2 dy2

= Cn

∫ ξ

K
y2p1

1 y2n−1+2(n−1)p1−2np2
1 dy1 = Cn

∫ ξ

K
y2n−1+2np1−2np2

1 dy1 ≤ Cnξ2n(p1−p2+1).

Hence, by induction, Formula (30) is established.
The values of q for which all the integrals in the calculus above converge for each

1 ≤ n ≤ q must satisfy the bound

2(q− 1)(1 + p1 − p2)− 2p2 < −1,

that is,

q < q0 := 1 +
2p2 − 1

2(1 + p1 − p2)
=

1 + 2p1

2(1 + p1 − p2)
.

Recall that in this paper only integer values of q are used. However, q0 introduced
above is not necessarily an integer. In any case, the inequality q0 > 1 is equivalent to
p2 > 1/2, which is necessary and sufficient for the finiteness of the first v1. This proves the
last statement of the theorem.

4. Examples

In this section, two examples are provided with drift functions that do not satisfy
condition (7) or even (9), but for which condition (11) holds. Therefore, Theorem 1 is
applicable. The dimension is equal to one. It suffices to construct the potential U for x ≥ 0;
then we extend it to the negative half-line by the formula U(−x) = −U(x).

Example 1. First of all, let
U(x) ≡ 0, |x| ≤ 1/2.

Further, let p > 1/2, and for x > 1,

U′(x) = − p
x
+ sin x,

and let U′ be smooth between 1/2 and 1. This function, clearly, does not satisfy condition (7),
because the (finite) limit lim sup|x|→∞ xU′(x) does not exist. So, the results of Refs. [1,15] are not
applicable. However, after integration for x > 1 we have,

U(x) = U(1)− p ln x + cos 1− cos x.

Recall that for negative values of x we pose U(x) = −U(−x). Here V(ξ) = V̄(ξ) = U(|ξ|),
the former equality because d− 1 = 0. Condition (9) is satisfied, as we have

lim
ξ→∞

V(ξ)

ln ξ
= lim

ξ→∞

V̄(ξ)

ln ξ
= −p.

Theorem 1 is applicable with any k < p + 1/2 and with p1 = p2 = p.
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Example 2. Let (xn, n ≥ 0) be a sequence of real numbers satisfying x0 = 1 and

ln xn+1 � ln xn : for example, xn = exp(exp(n2)), n ≥ 0.

Further, let us choose 1/2 < p2 < p1. Let U(x) be a smooth and even function on the interval
[−1, 1] such that U(1) = 0, U′(1) = −p1 + sin 1, and U′′(1) = p1 + cos 1.

For 1 = x0 ≤ x ≤ x1 let
U′(x) = − p1

x
+ sin x;

then by induction
U′(x) = − p2

x
+ sin x, x2n+1 < x ≤ x2n+2,

and
U′(x) = − p1

x
+ sin x, x2n < x ≤ x2n+1, n ≥ 0.

It is easily seen that after integration we get,

−p1 ln x + cos x ≤ U(x) ≤ −p2 ln x + cos x, x ≥ 1,

or, equivalently,

−p1 +
cos x
ln x

≤ U(x)
ln x

≤ −p2 +
cos x
ln x

, x ≥ 1.

So, if 0 < δ < (p1 − p2)/2, then for x large enough we have,

−(p1 + δ) ≤ U(x)
ln x

≤ −(p2 − δ).

Hence, the assumptions of theorem 1 are met with any couple ( p̃1, p̃2) such that 1/2 < p̃2 < p̃1,

which is arbitrarily close to (p1, p2). At the same time, due to the construction, the function
U(x)
ln x

has no limit as x → ∞, since ln xn+1 � ln xn. So, no earlier theorem is applicable.

5. Discussion

In most of the earlier papers on the recurrent properties of solutions of SDEs, Lyapunov
functions were used to establish such properties. These Lyapunov functions are often
assumed “ad hoc”, or are derived from some conditions on the coefficients of an SDE.
Here the method does not use Lyapunov functions at all because it is totally unclear how
to construct them in the case under the consideration. Instead, the approach is based on
a comparison idea and on the system of ordinary differential equations, as in Theorem
13.17 in Ref. [26]; the recurrence bounds do not use any norm of the drift itself, but
only some of its integral characteristics. To the best of the author’s knowledge the only
previous result of this sort was established by himself in 2000 (in Russian) and 2001 (English
translation) [2]. Some other properties related to the convergence of SDE solutions to a limit,
when the coefficients converge in a weak integral sense, were established in the works by
S.Ya. Makhno [5–7]. Although these works concern different issues from ours, the main
idea is similar: certain “standard” or “usual” assumptions for various recurrence and
stability properties of SDE solutions in some cases may be replaced by their “integral”
versions. An assumption such as (9) may be relaxed to an assumption such as (11), which
is, clearly, much more general, while the guaranteed recurrence bound is similar; see
Remark 3.

The assumptions of Ref. [2] were considerably extended in this paper; see Remarks 2
and 3. In addition, certain corrections were made concerning the same paper [2]; see
Remark 1. In further studies in this direction the author aims to extend or waive the
assumptions of the central symmetry on the drift to include a multiplicative Wiener noise,
and possibly to work with non-integer values of q.
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Appendix A. On Comparison Inequality for 1D SDEs with and without Reflection

Here, a rigorous proof of the inequality (18) is presented. The author initially con-
sidered it “common knowledge”, and provided a brief explanation after the statement
of the lemma. However, an anonymous referee suggested that a formal proof would
be appropriate.

Lemma A1. Under the assumptions of Theorem 1

P(|Xt| ≤ yt, t ≥ 0) = 1. (A1)

Firstly, let us present the intuitive idea. As it was assumed, |X0| < y0. Both trajectories
are continuous, so |Xt| < yt, at least, in some neighborhood if t = 0. Let T := inf(t ≥
0 : |Xt| > yt) (assuming inf(∅) = ∞). Clearly, |XT | = yT on T < ∞. Note that T is a
stopping time. Hence, if yT > K, then in some right neighborhood of T the trajectories
of yt and |Xt| must coincide due to the uniqueness of the solution of the SDE (19) and
because of the strong Markov property of both processes Xt and (yt), at least, until the
first hitting of the barrier K after time T, let us denote this new stopping time by T′:
T′ := inf(t ≥ T : yt = K). After T′ the trajectory of yt will stay in the area [K, ∞), while the
trajectory of |Xt| with probability one will visit the interval (0, K) infinitely many times in
any right neighborhood of T′. Hence, it appears impossible that at any moment after T′ it
may occur that |Xt| > yt. This will be formally demonstrated in the following lines using
the Yamada and Watanabe method.

Proof of Lemma A1. The reasoning above is, in fact, fully strict until T′. However, after T′

it becomes intuitive and we need more accurate arguments. As mentioned, such arguments
may be based on the method from Ref. [28], which will be combined with a simplified
version of Zvonkin’s transformation [29] adjusted to the case under the consideration.
Notice that the difficulty with the simple reasoning shown above is only around the level
K. Indeed, we have seen that the process |Xt| may not exceed the trajectory of yt for the
first time at any time t where yt > K. Therefore, it suffices to prove that

P(|Xt| ≤ yt, 0 ≤ t ≤ T̂) = 1, (A2)

assuming that |X0| = y0 = K, where

T̂ := inf(t ≥ 0 : |Xt| ∨ yt ≥ K + 1, or |Xt| ∧ yt ≤ δ),

with any 0 < δ < K. Recall that the function V̄′ exists and is bounded on the interval
[δ, K + 1]; hence, V̄ is Lipschitz on this interval. Let

u(y) =
∫ y

0
exp(−2V̄(r))dr.
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Then
u′(y) = exp(−2V̄(y)), u′′(y) = −2V̄′(y) exp(−2V̄(y)),

and a simple calculation shows that the equation holds true,

L̄u(y) = 0, y > 0,

where L̄ is the generator of the process (yt); see (26).
In addition, the function u is strictly increasing. Hence, its inverse u−1 does exist and

is also strictly increasing; moreover, the derivative functions u′ and (u−1)′ are bounded
and bounded away from zero on [δ, K + 1]. Let

Yt := u(yt), Rt := u(|Xt|), t ≥ 0.

Recall that the case y0 = |X0| = K is considered. By Itô-Krylov’s formula (because in
general V̄′ may not be continuous and, hence, the solution u is reasonable to consider in
the Sobolev sense, Chapter 4 in [30]) we have,

dYt = exp(−2V̄(yt))dw̄t + exp(−2V̄(yt))dϕt, dRt = exp(−2V̄(|Xt|))dw̄t.

There is no drift in both equations here due to the choice of the function u; this is the
standing idea of Zvonkin’s transformation of the state space.

Using the inverse function u−1, the equations on Yt and Rt may be rewritten in the
form

dYt = exp(−2V̄(u−1(Yt)))︸ ︷︷ ︸
=:Σ(Yt)

dw̄t + exp(−2V̄(u−1(Yt)))dϕt, dRt = exp(−2V̄(u−1(Rt))dw̄t.

where the function Σ(y) := exp(−2V̄(u−1(Yt))) is non-negative, Lipshcitz on [δ, K + 1],
and bounded along with 1/Σ(y).

Consider a sequence of smooth (C∞) functions 0 ≤ ψn(y), y ∈ R and a sequence of
real numbers a1 ≥ . . . ≥ an ≥ . . . ≥ 0 with the following properties:

an ↓ 0, n→ ∞,

and

ψn(y) = 0, y ≤ 0; 0 ≤ ψ′n(y) ≤ 1; ψn(y) ↑ y+ ≡ y× 1(y > 0), n→ ∞,

ψ′n(y) = 1, y ≥ an−1, ψ′n(y) = 0, y ≤ an; 0 ≤ yψ′′n (y) ≤
2
n

, ∀ y > 0; ψ′′(y) = 0, y ≤ 0.

This is a modified sequence of functions and real numbers from Ref. [28] where the
modification is just a multiplication of each ψn(y) by the indicator 1(y > 0). Now let us
apply Itô’s formula to the expression ψn(Rt −Yt) on the set t ≤ T̃ := inf(s ≥ 0 : ys ∨ |Xs| ≥
K + 1, or |Xs| ≤ δ). Note that P(T̃ > 0) = 1. We have,

dψn(Rt −Yt) = ψ′n(Rt −Yt)d(Rt −Yt) +
1
2

ψ′′n (Rt −Yt)(d(Rt −Yt))
2

= ψ′n(Rt −Yt)(σ(Rt)− σ(Yt))dw̄t − ψ′n(Rt −Yt)σ(Yt)dϕt +
1
2

ψ′′n (Rt −Yt)(σ(Rt)− σ(Yt))
2dt.

By integrating and taking expectations, we obtain

Eψn(Rt∧T̃ −Yt∧T̃) = −E
∫ t∧T̃

0
ψ′n(Rs −Ys)σ(Ys)dϕs +

1
2
E
∫ t∧T̃

0
ψ′′n (Rs −Ys)(σ(Rs)− σ(Ys))

2ds

≤ −E
∫ t∧T̃

0
ψ′n(Rs −Ys)σ(Ys)dϕs + CE

∫ t∧T̃

0
ψ′′n (Rs −Ys)(Rs −Ys)

2ds
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Here the first term in the right hand side is non-positive (because of the minus
sign), while the second one is bounded and uniformly goes to zero due to the property
0 ≤ yψ′′n (y) ⇒ 0, n→ ∞. The left hand side here tends to E(Rt∧T̃ −Yt∧L̃)1(Rt∧T̃ −Yt∧T̃ >
0) = E(Rt∧T̃ −Yt∧T̃)+. Thus, in the limit, as n→ ∞, we obtain

E(Rt∧T̃ −Yt∧T̃)1(Rt∧T̃ −Yt∧T̃ > 0) = 0.

This straightforwardly implies that

P(Rt∧T̃ −Yt∧T̃ > 0) = 0 ⇐⇒ P(Rt∧T̃ ≤ Yt∧T̃) = 1 ⇐⇒ P(|Xt∧T̃ | ≤ yt∧T̃) = 1.

This establishes (A2). So, Lemma A1 is proved. This justifies (20), as promised.
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