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Abstract: In this study, the variational method and numerical simulation technique were used to
solve the problem of bimodular functionally graded thin plates under large deformation. During the
application of the variational method, the functional was established on the elastic strain energy of
the plate while the variation in the functional was realized by changing undetermined coefficients in
the functional. As a result, the classical Ritz method was adopted to obtain the important relationship
between load and maximum deflection that is of great concern in engineering design. At the same
time, the numerical simulation technique was also utilized by applying the software ABAQUS6.14.4,
in which the bimodular effect and functionally graded properties of the materials were simulated by
subareas in tension and compression, as well as the layering along the direction of plate thickness,
respectively. This study indicates that the numerical simulation results agree with those from the
variational solution, by comparing the maximum deflection of the plate, which verifies the validity
of the variational solution obtained. The results presented in this study are helpful for the refined
analysis and optimization design of flexible structures, which are composed of bimodular functionally
graded materials, while the structure is under large deformation.

Keywords: variational solution; numerical simulation; bimodular effect; functionally graded materials;
thin circular plate; large deformation

MSC: 74K20; 74S05

1. Introduction

In the last ten years, bimodular functionally graded materials have gradually become
a new research topic in academic circles. A bimodular material [1] has different elastic
moduli in tension or compression, while a single-modulus material has the same modulus
in tension or compression. Functionally graded materials [2] (FGMs) are a new type of
composite material, generally composed of two materials, and the composition of the two
materials presents continuous gradient changes, thus avoiding interface issues effectively.
On the basis of functionally graded materials, considering the bimodular characteristics
of the material will undoubtedly increase the difficulty of analysis, not to mention the
application of this material model to the analysis of flexible structures involving large
deformation (for example, flexible thin plates [3,4]). The problem is quite challenging for the
combination of nonlinearity of materials and geometrical nonlinearity, especially in terms
of the analytical methods. Therefore, in this study, we try to conduct both analytical and
numerical research on this problem to enrich and improve existing research works in this
field. For this purpose, the review is conducted in the following order to present a complete

Mathematics 2023, 11, 3083. https://doi.org/10.3390/math11143083 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143083
https://doi.org/10.3390/math11143083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8880-3961
https://orcid.org/0000-0003-4356-7173
https://doi.org/10.3390/math11143083
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143083?type=check_update&version=1


Mathematics 2023, 11, 3083 2 of 23

research background. The first is the bimodular materials, functionally graded materials,
and their combination in recent studies; then, we briefly review the basic analytical methods
used for plates and shells; finally, the structure of this paper is presented.

Many investigations show that most materials [5,6], such as graphite, rubber, concrete,
ceramics, and biomedical materials, present different strains in tension and compression
when they are subjected to tensile stress and compressive stress of the same magnitude.
These materials have been referred to as bimodular materials by Jones [7]. In the theoretical
analysis, there are basically two material models widely adopted: Bert’s model [8] and
Ambartsumyan’s model [9]. Bert’s model is mainly used in the analysis of orthotropic
materials and laminated composites [10–12], and this model is based on the criterion of
positive and negative signs in the strain of longitudinal fibers. Ambartsumyan’s model,
which is established on the criterion of positive and negatives signs of principal stresses, is
mainly applied to isotropic materials. This model is of particular significance in the analysis
and design of structures, and our present study is based on this model. In the application
of Ambartsumyan’s model, the principal stress is generally obtained as a result of the
solution but not as a known quantity, which necessarily brings difficulties for describing
the stress state of a point. Moreover, there is also a lack of experimental results to describe
the elastic coefficient in complex stress states. Analytical solutions are only available in
a few simple cases, most of them dealing with plates and beams [13–15]. However, in
complex problems, we must turn to the finite element method (FEM) based on an iterative
strategy. During each iteration, we need to judge the principal stress state of each element,
thus acquiring a new elastic matrix used for the subsequent iteration. In the review of
Ye et al. [16], this method is referred to as a direct iterative method of variable stiffness
that has widely been used in earlier studies. Thereafter, Ma et al. [17] established a finite
element iterative program to obtain buckling critical loads of bimodular rods. Given that
the previous iteration of methods struggled because of the convergence difficulty of the
constitutive model, Du et al. [18] established a new computational framework. Their works
showed that the proposed framework can be successfully applied in solving the problem.

Functionally graded materials are a new type of composite materials, and the char-
acteristic of its composition presents continuous gradient changes along the thickness
direction, thus eliminating interface problems and presenting a smooth stress distribution.
The material has been successfully used in various engineering fields since its advent, such
as micro-electro-mechanical systems [19], aerospace engineering [20], civil engineering [21],
and acoustics [22]. There are many works on the analysis of structural elements made
of functionally graded materials, most of them dealing with beams and plates (for exam-
ple, [23]). Among the studies, few consider the bimodular effect from functionally graded
materials. As indicated above, most materials will show the bimodular effect (it is just
a matter of whether it is obvious or not); thus, functionally graded materials seem to be
no exception.

Recently, the bimodular effect of materials was further introduced into the analysis
of functionally graded materials, and some works finally emerged, including bimodular
FGM beams [24] and bimodular FGM plates [25–28]. Aiming at the bimodular FGM plates,
a simplified theory on the neutral layer under small deflection was established in [25];
thereafter, the governing equations of the large-deflection problem of bimodular FGM thin
circular plates was derived in [26]. For large-deformation problems, both the deflection
and rotation angle will increase with the increase in external loads. For this purpose, a
single-parameter perturbation method was used to solve the Föppl–von Kármán equations
without the small-rotation-angle assumption in [27], and the biparametric perturbation
method was used to solve the same problem in [28]. From the above review, it can be
seen that for the analytical solution of this problem, the method is still mostly limited to
the perturbation method, although extending from a single-parameter perturbation to a
multiple-parameter perturbation. However, the analytical method for this problem is still
relatively single. To solve this problem, various analytical methods must be sought.
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In general, for plate and shell problems, there are three analytical methods widely
used in theoretical analysis. The first one is the so-called series expansion method, in
which the series may take all kinds of functional forms, for example, the power function,
exponential function, and trigonometric function; the variational method is the second
method, which is established on an energy principle (Galerkin method and Ritz method,
for example); and the third is the perturbation technique. Each of the three methods has its
advantages and disadvantages, which are not discussed in this article.

In large-deformation problems of plates and shells, the applications of the perturbation
method and variational method both show their unique advantages. In the perturbation
method, the first step is to establish the governing equation expressed in terms of the un-
known displacement and stress. Then, the unknown displacement and stress are expanded
in the form of ascending powers with respect to a certain small parameter (perturbation
parameter). By substituting the expansions into the governing equations and boundary con-
ditions, a set of equations determining the approximate solution of all levels are obtained.
Due to the fact that the perturbation parameter either appears explicitly or is introduced
artificially, in 1947, Chien [29] first selected the maximum deflection of thin plates as a
perturbation parameter to acquire the perturbation solution successfully. Compared with
the experimental data, Chien’s solution is accurate and regarded as a landmark. For a long
period of time, Chien’s solution has been cited in subsequent studies. In the variational
method, especially in the displacement variational method, that is, the Ritz method, the
first step is to prescribe the displacement containing undetermined coefficients, and the
prescribed displacement should satisfy the boundary conditions. As the second step, the
energy functional is established, in which the total strain energy stored in the elastic body
and the work done by external loads are determined in advance. By substituting the pre-
scribed displacement into the energy functional, the so-called variation is realized only by
the change in coefficients, thus determining the unknown coefficients and finally obtaining
the displacement.

For large-deflection problems of thin circular plates, both Chien’s perturbation solu-
tion [29] and the corresponding variational solution [30] have given satisfactory results
in the literature. Compared with the perturbation method, the variational method has
a distinct advantage. Due to the fact that the displacement variational equation itself
represents the equilibrium equation and stress boundary conditions, it naturally avoids the
consideration for the equilibrium condition of thin plates, while in the perturbation method,
the establishment of an equation of equilibrium is necessary and somewhat complicated.
Recent studies [31,32] also indicated that the variational method can be successfully used
in the analysis of plates and shells. First, Xue et al. [31] adopted the variational method
to obtain the critical loads of cantilever vertical plates with different moduli. Thereafter,
He et al. [32] also used the variational method to solve bimodular thin shells under large
deformation. The studies indicated that the variational method can be used for the analyti-
cal investigation of flexible plate and shell structures, but the introduction of nonlinearity
of materials will increase the complexity in the analysis. From the currently collected
literature, it seems that there is still no application of the variational method to bimodular
functionally graded thin plates under large deformation.

In this study, the variational method of displacement is applied to solve the large
deformation problem of bimodular functionally graded thin circular plates. The purpose
and scope of this work are to seek a feasible analytical method for this problem and, at
the same time, this analytical method is verified by the appropriate numerical simulation
technique. From point of view of the nonlinearity of problems, the analytical solution
for bimodular functionally graded thin plates under large deformation is challenging
because the nonlinearities of materials and geometry that are intertwined further makes
the obtainment of analytical solution more complicated. To this end, the whole article
is organized as follows. In Section 2, the variational method and the bimodular FGM
thin circular plate problem are briefly described. In Section 3, the physical equations
of bimodular functionally graded materials and the geometrical relations under large
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deformation are presented. In Section 4, the total strain energy of the plate is derived first
and then the Ritz method is adopted to solve the large deformation problem of bimodular
functionally graded thin circular plates. Section 5 shows the numerical simulation and the
comparisons with the variational solution and the previous perturbation solution. Section 6
shows the corresponding results and discussion, and the concluding remarks are given
in Section 7.

2. Method and Problem
2.1. Displacement Variational Method

In a spatial axisymmetric problem of elasticity, the cylindrical coordinate system
is established as O-rθz, in which O denotes the origin; r and θ denote the radial and
circumferential direction, respectively; and z denotes the direction normal to the rOθ plane,
as shown in Figure 1. Let σr, σθ , and σz be the normal stress along the radial, circumferential,
and z directions, respectively; and τrθ = τθr, τrz = τzr, and τzθ = τθz be the three shearing
stress components. Due to the axisymmetric characteristic, τrθ = τθr = 0 and τzθ = τθz = 0,
and there are four stress components in total remaining, σr, σθ , σz, and τrz = τzr, which
are the functions of r and z (please refer to Figure 1). Let εr, εθ , and εz be the normal strain
along the radial, circumferential, and z directions, respectively; and let γzr be the shearing
strain of r and z directions. In addition, let ur, uθ , and w be the radial, circumferential, and z
direction displacements, respectively. Note that, due to the axisymmetry, uθ = 0.
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Figure 1. Stresses in a spatial axisymmetric problem in cylindrical coordinate system: (a) hexahedron
element in cylindrical coordinate system; (b) stresses on rOz plane; (c) stresses on rOθ plane.

The geometrical equation of the spatial axisymmetric problem gives [33]

εr =
∂ur

∂r
, εθ =

ur

r
, εz =

∂w
∂z

, γzr =
∂ur

∂z
+

∂w
∂r

. (1)

At the same time, the physical equation of the spatial axisymmetric problem gives [33]

εr =
1
E [σr − µ(σθ + σz)]

εθ = 1
E [σθ − µ(σz + σr)]

εz =
1
E [σz − µ(σr + σθ)]

γzr =
2(1+µ)

E τzr

, (2a)

where µ and E are the Poisson’s ratio and modulus of elasticity, respectively. Alternatively,
we may give another form of the physical equation as

σr =
E

1+µ

[
µ

1−2µ (εr + εθ + εz) + εr

]
σθ = E

1+µ

[
µ

1−2µ (εr + εθ + εz) + εθ

]
σz =

E
1+µ

[
µ

1−2µ (εr + εθ + εz) + εz

]
τzr =

E
2(1+µ)

γzr

. (2b)

The total strain energy stored in the whole elastic body, U, is expressed in stress and
strain as

U =
1
2

y
(σrεr + σθεθ + σzεz + τzrγzr)dV. (3)

Obviously, via the geometrical equation and physical equation, the strain potential energy
may be expressed in terms of the displacement components, ur and w, which opens
possibilities for the application of the displacement variational method.

Under a cylindrical coordinate system, we suppose that a spatial axisymmetric elastic
body is subjected to external forces including the body force and surface force along the r,
θ, and z directions; that is, Fr, Fθ , and Fz, as well as Fr, Fθ , and Fz, and the elastic body are
now in equilibrium. The resulting displacements, ur, uθ , and w, should satisfy the equation
of equilibrium, displacement boundary conditions, as well as stress boundary conditions.
If the displacements cause minor changes allowed by the boundary conditions, the new
displacements will become (note that, due to the axisymmetry, uθ = 0)
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u∗
r = ur + δur, w∗ = w + δw, (4)

where δur and δw are the virtual displacements that occur. During the virtual displacement,
if there are no changes in thermal and kinetic energies, according to the principle of energy
conservation, the increment in strain potential energy, δU, is equal to the work done by
the external forces; therefore, the displacement variational equation may be obtained
as follows [33]

δU =
y

(Frδur + Fzδw)dV +
x

(Frδur + Fzδw)dS, (5)

which is referred to as the Lagrangian variational equation. This variational equation
provides an approximate solution to elastic problems. More specifically, if a group of
displacements containing a series of unknown coefficients satisfy the displacement bound-
ary conditions, Equation (5) may be used for the determination of these coefficients, thus
obtaining the displacement.

The displacement expression is taken as

ur = ur0 + ∑
m

Amurm, w = w0 + ∑
m

Cmwm, (6)

where Am and Cm are the independent coefficients; ur0 and w0 are the specified functions
whose boundary value is equal to the known quantity at the boundary; and urm and wm
are given functions that are equal to zero at the boundary. Therefore, regardless of how
Am and Cm are taken, the displacements ur and w always satisfy the boundary conditions.
Note that because the displacement variation is obtained only by changing Am and Cm,
according to Equation (6), the variation of displacement is

δur = ∑
m

urmδAm, δw = ∑
m

wmδCm. (7)

The variation of strain energy gives

δU = ∑
m

(
∂U

∂Am
δAm +

∂U
∂Cm

δCm

)
. (8)

Substituting Equations (7) and (8) into Equation (5) will yield

∑
m

(
∂U

∂Am
−

t
FrurmdV −

s
FrurmdS

)
δAm

+∑
m

(
∂U

∂Cm
−

t
FzwmdV −

s
FzwmdS

)
δCm = 0

. (9)

Because the variations δAm and δCm are arbitrary and independent from one another, the
coefficients of these variations in Equation (9) must be zero, thus obtaining the following
two relations: 

∂U
∂Am

=
t

FrurmdV +
s

FrurmdS

∂U
∂Cm

=
t

FzwmdV +
s

FzwmdS
, (10)

which are used for solving the undermined coefficients; thus, the displacement may be
obtained via Equation (6). In many references [30,33,34], the variational method based on
displacement is also called the Ritz method.

2.2. Description of Problem

As shown in Figure 2, a bimodular FGM thin circular plate is subjected to a transversely
uniformly distributed load q, in which t is the plate thickness and a denotes the radius of
the plate. The origin O of cylindrical coordinates system (O-rθz) is set at the plate center on
the neutral layer; r, θ, and z denote the radial, circumferential, and transverse coordinates,
respectively. For the reason of axisymmetry, θ is not depicted in Figure 2.
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Figure 2. Sketch of bimodular FGM thin circular plate.

Note that in Figure 2, the dot-dashed line stands for the location of the unknown
neutral layer of the plate, which is determined next. In general, due to the introduction
of bimodular functionally graded materials, the neutral layer does not coincide with the
geometrical middle plane of the plate. In Figure 2, t1 and t2 are the tensile thickness and
compressive thickness, respectively, and the corresponding modulus of the material on
the two thicknesses is the tensile modulus E+(z) and compressive modulus E−(z), which is
a function of z since the functionally graded property is varied along the thickness direc-
tion. To facilitate the application of the displacement variational method, the prescribed
displacement should satisfy all displacement boundary conditions. Thus, the constraints
for the thin circular plate are considered as fully fixed on its peripheral.

For the convenience of differential and integral operations, E+(z) and E−(z) are defined
as exponent-type functions [25], such that

E+(z) = E0eα1z/t, E−(z) = E0eα2z/t, (11)

where α1 and α2 are two graded indices of the tensile zone and compressive one, respec-
tively, and E0 is the elastic modulus on the neutral layer. From Equation (11), it is found that
when α1 = α2 = 0 or z = 0, E+(z) = E−(z) = E0. Meanwhile, according to common practice,
the Poisson’s ratio is assumed as two constants, µ+ and µ−, ignoring the gradient change
along the direction of z.

In addition, the determination of the unknown neutral layer (t1 and t2) may be via two
different conditions, according to our previous study [25]. One is the equilibrium condition,
that is, the radial and circumferential normal forces acting on the differential element are
zero; the other is the continuity condition, that is, the stresses acting on the neutral layer
are continuous. In [25], the equilibrium condition gives

A+
1

1 − µ+
+

A−
1

1 − µ− = 0, (12a)

while also in [25], the continuity condition gives
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A+
1

1 − (µ+)2 +
A−

1

1 − (µ−)2 = 0, (12b)

in which 
A+

1 =
∫ t1

0 zeα1z/tdz =

[(
tt1
α1

− t2

α2
1

)
eα1t1/t + t2

α2
1

]

A−
1 =

∫ 0
−t2

zeα2z/tdz =

[(
tt2
α2

+ t2

α2
2

)
e−α2t2/t − t2

α2
2

] . (13)

The obtainment process in detail for Equation (12a,b) may refer to our previous
study [25], so there is no need to repeat the derivation process again. During the obtainment
of Equation (12a,b), we first need to give the functional forms of E+(z) and E−(z) for the
subsequent integral operation, which is also the reason why Equation (11) is given first.

In addition, we note that for the two solutions concerning the neutral layer, it is
obvious that the difference between them is slight due to the fact that the values for the
Poisson’s ratio generally fall into the range of 0 to 0.3; also in Equation (12a,b), there is
always a larger number compared to it (here, it is unit 1) before the Poisson’s ratio, thus
making the influence of Poisson’s ratio on the solution small. Moreover, according to
our previous study [35], if the influence of Poisson’s ratio is completely neglected, both
Equation (12a,b) are reduced to A+

1 + A−
1 = 0, which is exactly the solution used for the

determination of the unknown neutral axis of bimodular FGM beams.

3. Geometrical and Physical Equations of Thin Circular Plates

Note that in a spatial axisymmetric problem, there exist four stress components in total,
σr, σθ , σz, and τrz, and their corresponding strain components, εr, εθ , εz, and γrz; thus, the
geometrical and physical relations will involve these stresses and strains. In the bending
problem of thin plates, according to the classical Kirchhoff hypothesis, εz is negligibly
small and γrz may be regarded as zero; thus, the geometrical and physical equations will
finally involve the two main stresses, σr and σθ , as well as the corresponding strains, εr and
εθ . Note that σz and τrz are not zero; they will participate in the equilibrium conditions;
however, only the geometric and physical relations are discussed here.

3.1. Geometrical Equations under Large Deformation

The geometrical relation under small-deflection bending may be expressed in terms of
the curvature [33] as follows, according to the classical Kirchhoff hypothesis:

εrb =
z
ρr

, εθb =
z
ρθ

, (14)

where εrb and εθb are the radial and circumferential strain under small-deflection bend-
ing, respectively; ρr and ρθ are the curvature radius along the radial and circumferential
directions, respectively; and in the case of small rotation angle, they are the following
familiar forms [33]:

1
ρr

= −d2w
dr2 ,

1
ρθ

= −1
r

dw
dr

, (15)

where w is the transverse displacement or the deflection. Thus, the geometrical relation
under small-deflection bending may be expressed in terms of w as follows:

εrb = −z
d2w
dr2 , εθb = −z

1
r

dw
dr

. (16)

At the same time, the geometrical relation between in-plane displacements and in-plane
strain will give [33]

εrm =
dur

dr
+

1
2

(
dw
dr

)2
, εθm =

ur

r
, (17)
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where εrm and εθm are the in-plane strains along the radial and circumferential directions,
respectively; ur and w are the radial displacement and deflection, as indicated above.
Finally, the total geometrical relation will give

εr = εrm + εrb = dur
dr + 1

2

(
dw
dr

)2
− z d2w

dr2

εθ = εθm + εθb = ur
r − z 1

r
dw
dr

. (18)

If the plate is under small deflection, the above relation will change into the form of
Equation (16). In the case of small deflection, only the bending effect is considered while
the membrane effect is neglected.

3.2. Physical Equations

We suppose the radial and circumferential bending stresses in tensile and compressive
zones are σ+/−

rb and σ+/−
θb , respectively, in which the subscript b stands for the bending,

and the stress–strain relations, in the tensile zone, will give
σ+

rb = E+(z)
1−(µ+)2 (εrb + µ+εθb)

σ+
θb = E+(z)

1−(µ+)2 (εθb + µ+εrb)

, at 0 ≤ z ≤ t1, (19a)

and in the compressive zone,
σ−

rb = E−(z)
1−(µ−)2 (εrb + µ−εθb)

σ−
θb = E−(z)

1−(µ−)2 (εθb + µ−εrb)

, at − t2 ≤ z ≤ 0. (19b)

At the same time, we note that under large deformation, the in-plane stresses acting on
the whole thickness of the cross-section are always tensile; thus. the membrane stress may
be changed to σ+

rm and σ+
θm, in which the subscript m stands for the membrane stress, and

the elastic modulus and Poisson’s ratio may also be changed to E+(z) and µ+, respectively.
The physical equation of in-plane deformation may be expressed, along the whole thickness
direction, as 

σ+
rm = E+(z)

1−(µ+)2 (εrm + µ+εθm)

σ+
θm = E+(z)

1−(µ+)2 (εθm + µ+εrm)

, at − t2 ≤ z ≤ t1. (20)

Next, the geometrical and physical equations obtained above are used for the establishment
of the functional of energy.

4. Displacement Variational Method
4.1. Total Strain Energy

The total strain energy, U, consists of the energy produced by the bending deformation,
Ub, and the energy produced by the deformation of middle surface, Um, that is [30],

U = Ub + Um, (21)

where the subscript b denotes the bending deformation and the subscript m denote the
in-plane membrane deformation, which is consistent with the above notational conventions
in geometrical and physical equations.

First, the strain energy produced by the middle surface deformation, Um, is computed
as follows [30]:

Um =
1
2

y

V

(
σ+

rmεrm + σ+
θmεθm

)
dV. (22)
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Substituting Equation (20) into Equation (22) and also noticing that the lower limit and
upper limit of the integral along the z direction are −t2 and t1, respectively, and dV = dzdS,
Equation (22) may be written as

Um =
1
2

1

1 − (µ+)2

∫ t1

−t2

E+(z)dz
x

S

[
(εrm)

2 + (εθm)
2 + 2µ+εrmεθm

]
dS. (23)

Also, substituting Equation (17) into Equation (23) will yield

Um =
1
2

1

1 − (µ+)2

∫ t1

−t2

E+(z)dz
x

S


[

dur

dr
+

1
2

(
dw
dr

)2
]2

+
(ur

r

)2
+ 2µ+ ur

r

[
dur

dr
+

1
2

(
dw
dr

)2
]dS. (24)

Thus, Um is expressed in terms of ur and w. Considering Equation (11), we have

A0 =
∫ t1

−t2

E+(z)dz =
∫ t1

−t2

E0eα1z/tdz =
E0t
α1

(
eα1 − 1
eα1t2/t

)
, (25)

and also noting dS = rdθdr, Um may be further computed as

Um =
πA0

1 − (µ+)2

∫ r

[
dur

dr
+

1
2

(
dw
dr

)2
]2

+
ur

2

r
+ 2µ+ur

[
dur

dr
+

1
2

(
dw
dr

)2
]dr. (26)

The energy produced by the bending deformation, Ub, can be derived by the above
subareas in tension and compression, that is,

Ub =
1
2

y

V+

(
σ+

rbεrb + σ+
θbεθb

)
dV +

1
2

y

V−

((
σ−

rbεrb + σ−
θbεθb

))
dV. (27)

Substituting Equation (19a,b) into Equation (27), we have

Ub = 1
2

1
1−(µ+)2

t

V+

E+(z)
[
(εrb)

2 + (εθb)
2 + 2µ+εrbεθb

]
dV

+ 1
2

1
1−(µ−)2

t

V−
E−(z)

[
(εrb)

2 + (εθb)
2 + 2µ−εrbεθb

]
dV

. (28)

Substituting Equation (16) into Equation (28), and also noticing that the range of integrals
in the tensile term is from 0 to t1 while the range in the compressive term is from −t2 to 0,
we have

Ub = 1
2

1
1−(µ+)2

∫ t1
0 z2E+(z)dz

s
[(

d2w
dr2

)2
+
(

1
r

dw
dr

)2
+ 2µ+ 1

r
dw
dr

d2w
dr2

]
dS

+ 1
2

1
1−(µ−)2

∫ 0
−t2

z2E−(z)dz
s
[(

d2w
dr2

)2
+
(

1
r

dw
dr

)2
+ 2µ− 1

r
dw
dr

d2w
dr2

]
dS

. (29)

If we let 

A+
2 = 1

1−(µ+)2

∫ t1
0 z2E+(z)dz = E0

1−(µ+)2

∫ t1
0 z2eα1z/tdz

= E0
1−(µ+)2

[(
2t3

α3
1
+

t2
1t

α1
− 2t2t1

α2
1

)
eα1t1/t − 2t3

α3
1

]
A−

2 = 1
1−(µ−)2

∫ 0
−t2

z2E−(z)dz = E0
1−(µ−)2

∫ 0
−t2

z2eα2z/tdz

= E0
1−(µ−)2

[
−
(

2t3

α3
2
+

t2
2t

α2
+ 2t2t2

α2
2

)
e−α2t2/t + 2t3

α3
2

]
, (30)
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and also noting dS = rdθdr, Um may be finally computed as

Ub = πA+
2
∫ [

r
(

d2w
dr2

)2
+ 1

r

(
dw
dr

)2
+ 2µ+ dw

dr
d2w
dr2

]
dr

+πA−
2
∫ [

r
(

d2w
dr2

)2
+ 1

r

(
dw
dr

)2
+ 2µ− dw

dr
d2w
dr2

]
dr

. (31)

Further, Equation (31) may be simplified if the peripheral of the circular plate is fully fixed.
Note that the last term of the integrand in Equation (31) may be written as

∫ a

0

d2w
dr2

dw
dr

dr =
∫ a

0

dw
dr

d
(

dw
dr

)
=

1
2

(
dw
dr

)2
∣∣∣∣∣
a

0

, (32)

in which a is the radius of the circular plate, as shown in Figure 2. If the peripheral of
the circular plate is fully fixed, we may have dw/dr = 0 at r = a; at the same time, the
axisymmetric condition also gives dw/dr = 0 at r = 0; it is obvious that, lastly, we have∫ a

0

d2w
dr2

dw
dr

dr = 0. (33)

Thus, Equation (32) is simplified as

Ub = π
(

A+
2 + A−

2
)∫ [

r
(

d2w
dr2

)2

+
1
r

(
dw
dr

)2
]

dr = πD∗
∫ [

r
(

d2w
dr2

)2

+
1
r

(
dw
dr

)2
]

dr, (34)

in which D* is exactly the bending stiffness of the bimodular FGM plate,

D∗ = A+
2 + A−

2 , (35)

which indicates that the bending stiffness is still obtained via the derivation of bending
strain energy, not via the equilibrium relation in our previous study [25].

Finally, we obtain the total strain potential energy, U,

U = Ub + Um = πD∗∫ [r
(

d2w
dr2

)2
+ 1

r

(
dw
dr

)2
]

dr

+ πA0
1−(µ+)2

∫ {
r
[

dur
dr + 1

2

(
dw
dr

)2
]2

+ ur
2

r + 2µ+ur

[
dur
dr + 1

2

(
dw
dr

)2
]}

dr
, (36)

which is expressed in terms of the displacement components, ur and w. Note that for the
case of small deflection, in Equation (36), only the bending term Ub is retained, while the
membrane force term Um is omitted.

4.2. Ritz Method

For the large-deformation problem of thin circular plates, we take the following
displacement components (note that due to the axisymmetry, uθ = 0):

ur = ∑
m

Amurm, w = ∑
m

Cmwm, (37)

where Am and Cm are the independent coefficients, and urm and wm are the specified
functions that are equal to zero on the boundaries. Thus, the displacements, ur and w,
always satisfy displacement boundary conditions. According to the variational method
in Section 2.1 and also considering Equation (10), the following two variational equations
may be obtained:

∂U
∂Am

=
y

FrurmdV +
x

FrurmdS = 0 (38)

and
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∂U
∂Cm

=
y

FzwmdV +
x

FzwmdS =
x

qwmdS = 2π
∫

qwmrdr, (39)

where Fz = q. Equations (38) and (39) are used for solving Am and Cm. We adopt the
following forms of the radial displacement and deflection:

ur =
(

1 − r
a

) r
a

[
A0 + A1

r
a
+ A2

( r
a

)2
+ · · ·

]
(40)

and

w =

(
1 − r2

a2

)2[
C0 + C1

(
1 − r2

a2

)
+ C2

(
1 − r2

a2

)2

+ · · ·
]

. (41)

Obviously, regardless of how the coefficients are chosen, the displacements satisfy the
boundary conditions of displacement at the peripheral:

ur = 0, w = 0,
dw
dr

= 0 at r = a, (42)

and the axisymmetric conditions at the center:

ur = 0,
dw
dr

= 0 at r = 0. (43)

According to the conclusion from [30,33,34], by taking the first few terms, the variational
method can give satisfactory results. Thus, in the next computation, for convenience, we
take A0 and A1 in Equation (40) and C0 in Equation (41) and then substitute these two
displacement formulas into Equation (34):

Ub =
32πD∗

3a2 C2
0 . (44)

And substituting these displacement formulas into Equation (26), we have

Um = E0πt
1260[1−(µ+)2]α1a2eα1t2/t (e

α1 − 1)

×
(

328µ+aA0C2
0 + 176µ+aA1C2

0 + 315a2 A2
0 + 378a2 A0 A1

−184aA0C2
0 + 147a2 A2

1 + 16aA1C2
0 + 384C4

0

) . (45)

In addition,

2π
∫

qwmrdr = 2πq
∫ a

0

(
1 − r2

a2

)2

rdr =
π

3
qa2. (46)

According to Equations (21), (38), and (39), we have

∂

∂A0
(Ub + Um) = 0,

∂

∂A1
(Ub + Um) = 0, (47)

and
∂

∂C0
(Ub + Um) =

π

3
qa2. (48)

Substituting Equations (44) and (45) into Equation (47), we have

∂U
∂A0

= E0πt
1260[1−(µ+)2]α1a2eα1t2/t (e

α1 − 1)

(
328µ+aC0

2 + 630a2 A0

+378a2 A1 − 184aC0
2

)
= 0

∂U
∂A1

= E0πt
1260[1−(µ+)2]α1a2eα1t2/t (e

α1 − 1)

(
176µ+aC0

2 + 378a2 A0

+294a2 A1 + 16aC0
2

)
= 0

, (49)
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and then we express A0 and A1 with C0:

A0 = −
C2

0
126a

(
89µ+ − 179

)
, A1 =

C2
0

42a
(
13µ+ − 79

)
. (50)

At the same time, substituting Equations (44)–(46) into Equation (48), we have

E0πt
1260[1−(µ+)2]α1a2eα1t2/t (e

α1 − 1)

 656µ+aA0C0 + 352µ+aA1C0

−368aA0C0 + 32aA1C0 + 1536C3
0


+ 64πD∗

3a2 C0 − π
3 qa2 = 0

. (51)

Substituting Equation (50) into Equation (51), we finally have

HC3
0 +

64D∗

3
C0 =

1
3

qa4, (52)

where

H = − 2E0t(eα1 − 1)

19845[1 − (µ+)2]α1eα1t2/t

[
2791(µ+)

2 − 4250µ+ − 7505
]
. (53)

Thus, C0 may be solved and, according to Equation (50), A0 and A1 may also be obtained
accordingly. Once the displacements become known, the corresponding stresses and strains
may be obtained. Note that C0 also stands for the central deflection of the thin circular plate;
therefore, Equation (52) presents the important relationship of load vs. central deflection.
In order to better clarify the solution process of the variational method, we add a flow block
diagram for reference (please see Figure 3).
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In addition, we note that the above solution is derived on the simple form of the
displacement functions ur and w; that is, A0 and A1 are taken in Equation (40), and only C0
is taken in Equation (41). Although the next comparison with the numerical simulation
will show its reliability in the case of small-number terms, for higher precision, more terms
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in displacement functions ur and w are necessary; thus, the computation for more terms
was also conducted. But, for the sake of coherence of this study, we put this part into
Appendix A for interested readers, in which A0, A1, and A2 are taken in Equation (40) and
C0 and C1 are taken in Equation (41).

5. Numerical Simulation and Comparison with Variational Solution

We use the software ABAQUS6.14.4 to conduct the numerical simulation. When
constructing the computational model of a thin circular plate, the first step is to create the
three-dimensional solid diagram based on the real shape and size. In our study, the radius
of the thin plate, a, is taken as 10 m, and the thickness of the plate, t, is taken as 0.2 m.
The peripheral of the circular plate is fully fixed and the load magnitudes take different
values, ranging from 10 kPa to 200 kPa, with an interval of 10 kPa. The given values in the
numerical simulation are listed in Table 1. A three-dimensional solid element with eight
nodes, C3D8, is adopted to conduct the numerical computation. Figure 4 shows the grid
division, the loading, and the boundary conditions.
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Table 1. Given values in numerical simulation.

Physical Quantities Taken Values

plate radius a 10 m
plate thickness t 0.2 m

neutral layer modulus E0 2 × 1010 Pa
load magnitudes q 10 kPa to 200 kPa

tensile grade index α1 0.5
compressive grade index α2 0.1

tensile Poisson’s ratio µ+ 0.35
compressive Poisson’s ratio µ− 0.25

In our numerical computation, the simulation for bimodular functionally graded
materials presents a slight degree of complexity. In ABAQUS6.14.4 software, the realization
for functionally graded properties of materials is by layering, but before layering, in
consideration of the bimodular effect, we must determine the position of the neutral layer
first, that is, only after the subareas are in tension and compression can we effectively layer.
To this end, we need to use Equation (12a) or (12b) and the data from Table 1 to determine
the tensile thickness and compressive one first, which give t1 = 0.4917t and t2 = 0.5083t,
respectively, where t is the thickness of the plate. Then, the thin circular plate is divided
into eight layers along the thickness direction (see Figure 5), taking the middle modulus as
the average modulus of this layer. The moduli of elasticity and Poisson’s ratios for these
eight layers are computed and listed in Table 2, which are used for the property module
during the material editing.
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Table 2. Modulus of elasticity of 8-layer plate (t is the plate thickness, m).

Distance from Plate Top
(m)

Modulus of Elasticity
(×1010 Pa) Poisson’s Ratio

0.0625t 1.913 0.25
0.1875t 1.937 0.25
0.3125t 1.961 0.25
0.4375t 1.986 0.25

0.5625t 2.055 0.35
0.6875t 2.186 0.35
0.8125t 2.326 0.35
0.9375t 2.475 0.35

Figure 6 shows some representative displacement nephograms under different mag-
nitudes of load, including 20 kPa, 40 kPa, 60 kPa, 80 kPa, 100 kPa, and 120 kPa. From
Figure 6, it is easy to see that the maximum deflection occurs at the center of the thin
circular plate, as we predicted; the central deflection gradually increases with the increase
in load magnitude; and from the center of the plate to the edge of the plate, the deflection
gradually decreases, as predicted in our theoretical solution.

Table 3 lists the central deflection values under different load magnitudes (from
q = 10 kPa to q = 200 kPa, with an interval of 10 kPa). For an effective comparison, in
Table 3, we also list two other groups of value from different theoretical solutions, the
variational solution in this study and the perturbation solution in our previous study [26],
in which the results from the variational solution are obtained via Equation (52) in this
study; the results from the perturbation solution are based on Equation (104) in [26]. By
comparing the values of central deflection in Table 3, it is easily found that the values from
the three solutions are basically consistent, but there still exist small differences between
them. However, the differences are negligibly small and generally acceptable, which
verifies the validity of the variational method.

Table 3. Numerical results of central deflection of three solutions.

q (kPa)
Central Deflection w0 (m)

Result from Analytical Calculations Result from [26] Result from FEM

10 0.0898 1 0.0897 2 0.0895 0.0885
20 0.1538 0.1514 0.1516 0.1491
30 0.2003 0.1953 0.1963 0.1925
40 0.2368 0.2293 0.2311 0.2263
50 0.2670 0.2571 0.2602 0.2542
60 0.2931 0.2808 0.2851 0.2781
70 0.3160 0.3015 0.3070 0.2991
80 0.3366 0.3200 0.3268 0.3179
90 0.3554 0.3367 0.3447 0.3350
100 0.3727 0.3519 0.3613 0.3507
110 0.3887 0.3660 0.3766 0.3653
120 0.4037 0.3790 0.3910 0.3789
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Table 3. Cont.

q (kPa)
Central Deflection w0 (m)

Result from Analytical Calculations Result from [26] Result from FEM

130 0.4178 0.3913 0.4045 0.3917
140 0.4312 0.4028 0.4173 0.4038
150 0.4438 0.4137 0.4294 0.4152
160 0.4558 0.4240 0.4409 0.4262
170 0.4674 0.4338 0.4519 0.4366
180 0.4784 0.4432 0.4625 0.4466
190 0.4890 0.4522 0.4726 0.4562
200 0.4992 0.4608 0.4824 0.4654

1 Results from the variational solution, in which A0 and A1 are taken in Equation (40) and C0 is taken in Equation
(41) (please refer to Section 4.2). 2 Results from the variational solution, in which A0, A1, and A2 are taken in
Equation (40), and C0 and C1 are taken in Equation (41) (please refer to Appendix A).
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6. Results and Discussion
6.1. Numerical Comparision of Three Solutions

From the current results, it is found that if the numerical solution can be regarded
as a standard to test the validity of two theoretical solutions, the perturbation solution is
closest, followed by the variational solution. The values from the variational solution are
slightly larger than the values from the perturbation solution, which agrees with the results
of classical large-deflection solutions from [29,30]. As indicated in the Introduction, in the
literature, both Chien’s perturbation solution [29] and the variational solution [30] give
satisfactory results. In Chien’s perturbation solution [29], the relationship between load
and maximum deflection gives

qa4

64D
= w0

[
1 + 0.544

(w0

t

)2
]

, (54)

while, in the variational solution [30], the same relationship is

qa4

64D
= w0

[
1 + 0.486

(w0

t

)2
]

, (55)

where a is the radius of a thin circular plate, t is the plate thickness, w0 is the central
deflection, q is the uniformly distributed loads, and D is the bending stiffness of the plate.
It is readily found that they are quite close. In addition, we note that if other quantities
in this relationship take the same values, the value of the maximum deflection from the
variational solution is a little greater than the value from the perturbation solution.

The above conclusion is drawn on the basis of the variation solution with fewer terms.
If the variation solution with more terms is taken, another phenomenon should be noticed.
From the data of the second column marked with footer 2, it is easy to see that if more
terms in the displacement functions are taken, the precision of the variational solution will
be significantly improved, even exceeding that of the perturbation solution.

It should be noted here that the observed discrepancies resulting from the variational
method and FEM method may come down to the fact that, apart from differences in
the calculation methods themselves, it comes from different simulated models of the
material properties. In the Ritz method, the bimodular functionally graded properties
are considered as, for the bimodular effect, the subarea in tension and compression is
used, while for the functionally graded property, in each tensile or compressive area, two
smooth and continuous functions ((Equation (11)) are adopted. At the same time, in the
FEM method, the subarea in tension and compression is still used for the bimodular effect,
but the functionally graded property is realized by the layering along the direction of
plate thickness; thus, the difference is inevitable. We can speculate that if more layers are
adopted, the simulation of materials is likely to be closer to the continuous function change,
like Equation (11). However, considering the computational efforts and time, only eight
layers were adopted in our present study. In future work, more layers can be adopted to
obtain a more precise result.

6.2. Stress Variation along Plate Thickness

In order to investigate the influence of plate thickness on the radial and circumferential
stresses, we take three different thickness values, 0.1 m, 0.2 m, and 0.3 m, to carry out the
numerical computation, and other taken values may refer to Table 1, in which the load
intensity is taken as 10 kPa. At the same time, we take two different survey locations, that is,
r = a/4 and r = 3a/4, where a is the radius of the circular plate, to investigate the influence
of different radial locations on stresses. The numerical results are plotted in Figure 7, in
which Figure 7a–c correspond to the thickness cases of t = 0.1 m, t = 0.2 m, and t = 0.3 m.
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From Figure 7, the following two trends may be found. (i) The stress distribution
trend of radial and circumferential stresses under different plate thicknesses is basically
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the same, that is, when r = a/4 (near the plate center), the differences between the radial
and circumferential stresses tend to be smaller; when r = 3a/4 (near the plate edge), the
differences between the radial and circumferential stresses tend to be larger, which may
be due to the influence of boundary constraints. (ii) When the plate becomes thinner
(t = 0.1 m), the radial and circumferential stresses both tend to be tensile, indicating that the
membrane stress is dominant in thinner plates; when the plate becomes thicker (t = 0.3 m),
the tensile area and compressive area appear distinct, showing that the bending stress is
dominant in thicker plates. This phenomenon is also consistent with our expectations.

7. Conclusions

In this paper, the displacement variational method is used to solve the large-deformation
problem of bimodular functionally graded thin plates. In order to facilitate the application
of the variational method, the physical equations of the bimodular functionally graded
material and the geometric equation under large deformation are first given. The total
strain potential energy is expressed as the displacement component, which opens up the
possibility for the realization of the Ritz method. Finally, the analytical result is verified by
numerical simulation. The following three conclusions can be drawn.

(i) The numerical simulation results verify the validity of the perturbation solution
obtained in our previous study and the variational solution presented in this study.

(ii) The perturbation method and variational method are both, in terms of nature, the-
oretical, being able to give useful analytical expressions that are convenient for use
in the analysis and design. However, the variational method based on the energy
principle avoids the establishment of an equation of equilibrium, which is necessary
in the perturbation method yet.

(iii) Compared with the traditional variational method, the improvement on this method
in this study lies mainly in such a fact that the derivation of total strain energy is
somewhat complicated due to the introduction of bimodular functionally graded
materials and structural large deformation. In addition, the bending stiffness of the
bimodular FGM plate may also be obtained from the derivation of total strain energy,
but not necessarily from the conditions of equilibrium.

The results presented in this study are helpful for the refined analysis and optimized
design of flexible thin plate structures, which are composed of functionally graded materials,
while at the same time, the bimodular effect of materials is relatively obvious and cannot
be ignored.

In the end, it should be pointed out again that Ambartsumyan’s bimodular model is
established on the criterion of positive–negative signs of principal stresses. This fact makes
it very difficult to use this model in structural analysis, because, except for a very few cases,
the state of principal stress at any point in the structure is different each other under the
action of external load. Fortunately, the proposal of a simplified mechanical model on a
subarea in tension and compression makes it possible to use Ambartsumyan’s bimodular
model in structural analysis. While, at the same time, the material model also deviates from
the original definition, this may be seen as an imperfection of the method. In the future,
we will try to establish a simplified mechanical model that satisfies the requirements of
structural analysis and is closer to the original material model. This work is in progress.
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Appendix A

If more terms in displacement functions ur and w are taken, that is, A0, A1, and
A2 are taken in Equation (40), and C0 and C1 are taken in Equation (41), we have the
following displacement:

ur =
(

1 − r
a

) r
a

[
A0 + A1

r
a
+ A2

( r
a

)2
]

(A1)

and
w =

(
1 − r2

a2

)2[
C0 + C1

(
1 − r2

a2

)]
. (A2)

Substituting them into Equations (34) and (26), respectively, we have

Ub =
32πD∗

3a2 C2
0 +

16πD∗

a2 C0C1 +
48πD∗

5a2 C2
1 . (A3)

and

Um = E0πt
[1−(µ+)2]α1eα1t2/t (e

α1 − 1)×

13
168 A2

2 +
7

60 A2
1 +

3
10 A0 A1 +

1
5 A0 A2 +

19
105 A1 A2 +

32
105a2 C4

0 +
18

55a2 C4
1 +

6
5a2 C0C3

1 +
1
4 A2

0

+ 1
3465a

(
284µ+A2C2

0 + 212A2C2
0
)
+ 1

315a
(
44µ+A1C2

0 + 82µ+A0C2
0 − 46A0C2

0 + 4A1C2
0
)

+ 1
385a

 102µ+A1C0C1

+206µ+A0C0C1

+ 1
5005a

(
886A2C0C1 + 1467µ+A0C2

1 + 678µ+A1C2
1 + 346µ+A2C2

1

+722µ+A2C0C1 − 69A0C2
1 + 526A2C2

1 + 498A1C2
1

)

+ 1
77a (10A1C0C1 − 10A0C0C1) +

1
7a2

(
12C2

0C2
1 + 8C3

0C1
)


. (A4)

In addition,  2π
∫

qwm=0rdr = 2πq
∫ a

0

(
1 − r2

a2

)2
rdr = π

3 qa2

2π
∫

qwm=1rdr = 2πq
∫ a

0

(
1 − r2

a2

)3
rdr = π

4 qa2
(A5)

According to Equations (21), (38), and (39), we have
∂

∂A0
(Ub + Um) = 0

∂
∂A1

(Ub + Um) = 0
∂

∂A2
(Ub + Um) = 0

(A6)

and { ∂
∂C0

(Ub + Um) =
π
3 qa2

∂
∂C1

(Ub + Um) =
π
4 qa2

. (A7)

Substituting Equations (A3) and (A4) into Equation (A6), we have
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

∂U
∂A0

= E0πt
[1−(µ+)2]α1eα1t2/t (e

α1 − 1)

 1
2 A0 +

206µ+

385a C0C1 +
3

10 A1 +
1
5 A2 +

82µ+

315a C2
0

+ 1467µ+

5005a C2
1 −

10
77a C0C1 − 46

315a C2
0 −

69
5005a C2

1

 = 0

∂U
∂A1

= E0πt
[1−(µ+)2]α1eα1t2/t (e

α1 − 1)

 7
30 A1 +

102µ+

385a C0C1 +
3

10 A0 +
19

105 A2 +
44µ+

315a C2
0

+ 678µ+

5005a C2
1 +

10
77a C0C1 +

4
315a C2

0 +
498

5005a C2
1

 = 0

∂U
∂A2

= E0πt
[1−(µ+)2]α1eα1t2/t (e

α1 − 1)

 13
84 A2 +

722µ+

5005a C0C1 +
1
5 A0 +

19
105 A1 +

284µ+

3465a C2
0

+ 886
5005a C0C1 +

346µ+

5005a C2
1 +

212
3465a C2

0 +
526

5005a C2
1

 = 0

(A8)

And then we express A0, A1, and A2 with C0 and C1:

A0 = − 1
180,180a

(
93, 990µ+C2

0 + 249, 516µ+C0C1 + 167, 931µ+C2
1

−206, 050C2
0 − 553, 824C0C1 − 350, 145C2

1

)

A1 = − 1
25,740a

(
11, 050µ+C2

0 + 5508µ+C0C1 − 8307µ+C2
1

+19, 890C2
0 + 149, 328C0C1 + 124, 425C2

1

)

A2 = 8
6435a

(
520µ+C2

0 + 891µ+C0C1 + 306µ+C2
1

−780C2
0 + 1341C0C1 + 1980C2

1

)
. (A9)

At the same time, substituting Equations (A3) and (A4) into Equation (A7), we have

D∗
(

16π
a2 C1 +

64π
3a2 C0

)
+ E0πt

[1−(µ+)2]α1eα1t2/t (e
α1 − 1)

×



722µ+

5005a A2C1 +
102µ+

385a A1C1 +
206µ+

385a A0C1 +
128

105a2 C3
0

+ 568µ+

3465a A2C0 +
88µ+

315a A1C0 +
164µ+

315a A0C0 +
886

5005a A2C1

+ 10
77a A1C1 − 10

77a A0C1 − 92
315a A0C0 +

8
315a A1C0

+ 424
3465a A2C0 +

24
7a2 C0C2

1 +
24
7a2 C2

0C1 +
6

5a2 C3
1


= πqa2

3

, (A10)

and

D∗
(

16π
a2 C0 +

96π
5a2 C1

)
+ E0πt

[1−(µ+)2]α1eα1t2/t (e
α1 − 1)

×



722µ+

5005a A2C0 +
102µ+

385a A1C0 +
206µ+

385a A0C0 +
72

55a2 C3
1

+ 1356µ+

5005a A1C1 +
886

5005a A2C0 +
2934µ+

5005a A0C1 +
10
77a A1C0

− 10
77a A0C0 +

692µ+

5005a A2C1 − 138
5005a A0C1 +

24
7a2 C2

0C1

+ 8
7a2 C3

0 +
1052
5005a A2C1 +

996
5005a A1C1 +

18
5a2 C0C2

1


= πqa2

4

, (A11)

Substituting Equation (A9) into Equations (A10) and (A11), we finally obtain the
expressions of C0 and C1. Since the expressions are too complex, they are not given here.
At the same time, according to Equation (A2), if we let r = 0, the central deflection or the
maximum deflection of the circular plate will be

w0 = C0 + C1. (A12)
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