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Abstract: Dysphagia is a common geriatric syndrome that might induce serious complications and
death. Standard diagnostics using the Videofluoroscopic Swallowing Study (VFSS) or Fiberoptic
Evaluation of Swallowing (FEES) are expensive and expose patients to risks, while bedside screen-
ing is subjective and might lack reliability. An affordable and accessible instrumented screening is
necessary. This study aimed to evaluate the classification performance of Transformer models and
convolutional networks in identifying swallowing and non-swallowing tasks through depth video
data. Different activation functions (ReLU, LeakyReLU, GELU, ELU, SiLU, and GLU) were then
evaluated on the best-performing model. Sixty-five healthy participants (n = 65) were invited to
perform swallowing (eating a cracker and drinking water) and non-swallowing tasks (a deep breath
and pronouncing vowels: “/eI/”, “/i:/”, “/aI/”, “/oU/”, “/u:/”). Swallowing and non-swallowing
were classified by Transformer models (TimeSFormer, Video Vision Transformer (ViViT)), and convo-
lutional neural networks (SlowFast, X3D, and R(2+1)D), respectively. In general, convolutional neural
networks outperformed the Transformer models. X3D was the best model with good-to-excellent
performance (F1-score: 0.920; adjusted F1-score: 0.885) in classifying swallowing and non-swallowing
conditions. Moreover, X3D with its default activation function (ReLU) produced the best results,
although LeakyReLU performed better in deep breathing and pronouncing “/aI/” tasks. Future
studies shall consider collecting more data for pretraining and developing a hyperparameter tuning
strategy for activation functions and the high dimensionality video data for Transformer models.

Keywords: dysphagia; aspiration pneumonia; computer-aided screening; gerontechnology; deep learning

MSC: 68T01; 68U10

1. Introduction

Eating is an essential part of everyone’s life. However, older adults may have difficulty
eating or swallowing because of sarcopenia, declining cognitive functions, tissue elasticity,
and neuromuscular control of the neck [1,2], or other health conditions such as strokes, age-
related neurological conditions, and gastroesophageal reflux [3,4]. Dysphagia, classified as
a sign or symptom, is defined as the difficulty in swallowing [5], in which foods/liquids
may obstruct the passage towards the stomach [6]. Individuals with dysphagia may have
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problems with drinking, eating, controlling saliva, and taking medications. A quarter of
the adult population manifested swallowing problems, while the prevalence of dysphagia
in stroke, institutionalized dementia, and Parkinson’s patients was 41%, 45%, and 60%,
respectively [2,7,8].

Complications of dysphagia are major causes of mortality and morbidity in the elderly
and include aspiration pneumonia, malnutrition, and dehydration [9]. Dysphagic individ-
uals reported a mortality rate that was 1.7 times higher and spent approximately USD 6000
more in hospitalization expenses compared to the non-dysphagic group [1]. Moreover, the
fear and anxiety of choking also severely impacted their quality of life and psychological
wellbeing [10]. Over one-third of dysphagic older adults avoid eating because of their
conditions [11]. In fact, up to 68% of dysphagic elderly people lived in nursing homes, and
about one-third of them lived independently [12], which inherited a significant burden and
risk to the healthcare system and society.

Screening or assessment is crucial to prompting immediate management and reha-
bilitative interventions to reduce complication risks. Clinically, fiber-optic endoscopic
evaluation of swallowing (FEES) and the video-fluoroscopy swallowing study (VFSS) are
standard methods for dysphagia screening [13]. The procedure of FEES involves passing
the endoscopic instrument through the nose to observe the pharynx and larynx when
the individual is swallowing saliva with and without food consistencies [13]. Similarly,
VFSS evaluates the swallowing function with different food consistencies, but through
fluoroscopy over the oral cavity, pharynx, and cervical esophagus [13]. There are some
drawbacks to these two methods. FEES induces pain and discomfort, while topical anes-
thesia may be applied sometimes. The VFSS exposes patients to radiation hazards and
contrast agents [13]. Moreover, FEES and the VFSS are expensive and require professionals
to operate.

It is demanding to develop alternative bedside methods that are valid and reliable [14].
Non-instrumental bedside assessments relied heavily on experts or therapists to conduct
anamnesis, morphodynamical, and gustative function evaluations [15], whereas other
related tests, such as the 3-ounce water swallowing test [16] and cough reflex test [17],
lacked sensitivity and predictive strength [18] despite being routinely carried out in nursing
homes or care homes. The use of acoustic and accelerometric sensors has been one of the
common approaches to analyze swallowing [19,20]. The accelerometer is positioned on
the surface of the skin above the larynx, where muscle movements take place when an
individual swallows [21]. On the other hand, through a microphone near the throat, the
chewing and swallowing sounds could be collected and analyzed to determine the food
consistencies and viscosities and thus the swallowing conditions. Hidden Markov or other
deep learning models were used for signal processing and analysis [22–24]. However,
the approach was subject to background noise and may require additional pre-processing
and segmentation of the acoustic data [25]. For the piezoelectric sensors, they were in the
form of necklaces or patches that were versatile and light. The sensors detected physical
strain and movement, which were subsequently processed with deep learning models
to recognize chewing and swallowing motions [26–28]. It might also be challenging to
implement contact-based sensors for older adults, especially those with dementia [29].

Recently, noncontact optical-based approaches using infrared depth cameras have
emerged and been adopted for different mobile health applications [30–33]. Specific to
dysphagia, An et al. [34] developed a liquid viscosity estimation model using the built-
in camera of the smartphone with a convolutional neural network (CNN). Some other
researchers also attempted to estimate the swallowing time using a depth camera [35].
Another study focused on measuring laryngeal movement via depth images, modeled by a
decision tree [36]. We believed that the infrared depth camera could analyze the swallowing
movement of the throat and compromise privacy. With the advancement of deep learning
models in computer vision, we anticipated that they could help identify swallowing and
thus abnormalities of swallowing. While CNN was a class of models commonly used for
image classification, recent studies demonstrated that another cutting-edge class of models,
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Transformers, which lay upon the core of natural language processing (NLP) [37], could
effectively model the spatiotemporal relationship of image data (i.e., video data) and thus
improve the classification performance.

On the other hand, regardless of the kind of model, an activation function is often
required after the linear transformation of each layer. It is essential to provide nonlinearity
in order to facilitate the learning of complicated input–output interactions [38]. In more
technical terms, activation functions turn the weighed sum of inputs into an output value
and transmit it to the nodes of the next layer. During model training, the choice of activation
function is often determined by compromising convergence, complexity, smooth gradient
flow, and data preservation during model training [38]. A Rectified Linear Unit (ReLU) is
one of the common activation functions utilized by renowned networks, including AlexNet,
GoogleNet, ResNet, and MobileNets. Other more recent activation functions, such as Swish,
Exponential Linear Unit (ELU), Gaussian Error Linear Unit (GELU), and Gated Linear
Units (GLU) have garnered attention for being superior to ReLU in certain tasks, despite the
fact that the majority of model developments still adhere to the well-established ReLU [39].
Contemporary CNN networks often incorporate residual blocks with a Rectified Linear
Unit (ReLU) as the default activation function. Nevertheless, the developers of ResNet and
their successors did not justify or evaluate the choice of activation functions.

To this end, the objective of this study was to evaluate the performance of deep
learning models (CNNs and Transformers) in classifying swallowing events from infrared
depth camera video data. For the model with the best performance, we would then analyze
the activation function that may further enhance the performance. The goal was to select
the appropriate model and activation functions for this application at the outset and to
facilitate a full-scale study for deployment in the future. This work represented the initial
step to pave the road towards affordable and accessible instrumented dysphagia screening.

2. Materials and Methods
2.1. Participant Recruitment

We recruited 65 healthy adults (28 males and 37 females) from the university campus.
Inclusion criteria were adults with no prior swallowing deprivation or disorder and no
operation history for the head or neck within three months. Exclusion criteria were adults
with difficulties in communication due to consciousness disturbance and patients with a
tracheotomy hole. The participants had a mean age of 43.2 years (SD: 17.7, range: 18 to 77),
an average height of 164.6 cm (SD: 8.19 cm, range: 148 cm to 183 cm), and a weight of 62.9 kg
(SD: 13.5 kg, range: 40 kg to 100 kg). The experiment was approved by the Institutional
Review Board of the university (reference No.: HSEARS20210416005). Prior to the start
of the experiment, all participants were provided with oral and written descriptions of
the experimental procedures, and they signed an informed consent form indicating their
understanding and agreement to participate.

2.2. System Setup

An infrared Red-Blue-Green (RGB) stereo-based depth camera (Realsense D435i, Intel
Corp., Santa Clara, CA, USA) was positioned to capture the entire swallowing process using
the RealSense viewer program. Some preliminary tests were previously carried out and it
was determined that the camera should be oriented at a 45◦ angle from the horizontal plane
and placed 30 cm away from the neck of the participant (Figure 1a) to acquire the lower face
and neck regions. The depth image data were captured at a resolution of 640 × 480 pixels,
a frame rate of 30 frames per second, and a pixel depth of 2 bytes per pixel (or 1 mm per
depth unit). The data were transmitted and processed on a personal computer.
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Figure 1. (a) System setup of the depth camera, (b) overall data processing framework, and (c) the
temporal segment network [40].

2.3. Experimental Procedure

During the experiment, we recorded the lower face and neck (lip, mandible, and
throat) motions for both non-swallowing and swallowing tasks. For the non-swallowing
tasks, participants were asked to pronounce vowels, “/eI/”, “/i:/”, “/aI/”, “/oU/”, “/u:/”
(i.e., /a/, /e/, /i/, /o/, /u/), in addition to performing a deep breath. After completing
the non-swallowing motion tests, participants were asked to perform swallowing tasks.
The first swallowing task was to eat (swallow) a cracker, approximately 45 mm × 45 mm
in size. The second task was to drink (swallow) a cup of 10 mL of water. Participants
were asked to consume as much as possible while taking bites/boluses at their comfortable
size/volume.

The recording time depended on the actual duration of the tasks for each participant
and trial. The swallowing time was approximately 1.0 to 1.5 s. Similarly, all tasks were
repeated four times. Therefore, there was a total of 520 and 1560 sample data for all
participants on the swallowing and non-swallowing tasks, respectively. The full dataset,
with both swallowing and non-swallowing tasks, constituted 2080 sample data. The actual
swallowing or non-swallowing tasks performed by the participants (i.e., ground truth)
were manually labeled on each clip.

2.4. Data Processing

The overall data processing framework was shown in Figure 1b, which consisted
of frame-by-frame filtering and video sampling. After data collection, we processed the
data to improve the image (frame) quality and reduce noise. We followed the processing
pipeline using RealSense SDK, as recommended by the official documents. For each frame,
we first transformed the depth domain of the images to the disparity domain. Next, we
applied spatial and temporal filters to denoise. The spatial filter was a one-dimensional
edge-preserving spatial filter using a high-order domain transformation [41]. It aimed to
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smooth the depth noise while preserving the edges. The temporal filter was similar to the
spatial filter but suppressed artifacts across consecutive frames of the depth video sequence.
The strength of smoothing was controlled by the parameters α and δ, for calculating
the one-dimensional exponential moving average (EMA). It is defined by the recursive
Equation (1):

St =


Y1, t = 1

αYt + (1− α)St−1, t > 1 and ∆ = |St − St−1| < δthresh
Yt, t > 1 and ∆ = |St − St−1| > δthresh

(1)

where coefficient α refers to the degree of weighting decrease, Yt represents the latest
recorded value for disparity or depth, and St−1 is the value of the EMA at a previous time
period, denoted as t.

When α is set to 1, no filtering is applied, while an α of zero results in an infinite history
for the filtering. Additionally, the delta threshold (δthresh) was introduced. If the difference
in depth values between neighboring pixels exceeds δthresh, α would be temporarily reset
to one, which disables the filtering. In other words, if an edge is detected, the smoothing
function is temporarily turned off. However, this may result in artifacts, depending on
the direction of the edge traversed (i.e., right-to-left or left-to-right). To mitigate this, two
bi-directional passes would be employed in both the vertical and horizontal directions of
the images.

In temporal filtering, the same EMA smoothing was employed in the time domain.
Similar to the spatial filter, α was used to represent the extent of the temporal history that
should be averaged. The advantage of this approach is that it allows fractional frames
to be effectively averaged. By setting α = 1, there would be no filtering, while α = 0
would increase the averaging effect and result in a smoother output, allowing fine-grained
smoothing beyond simple discrete frame averaging. Moreover, it is also important to
incorporate the delta threshold, δthresh, to reduce the temporal smoothing effects near edges
and ensure that missing depth information is not included in the averaging. We applied
RealSense SDK default values for α and δthresh, where α = 0.5 and δthresh = 20 for the spatial
filter, and α = 0.4 and δthresh = 20 for the temporal filter. Since image reconstruction of
the stereo depth camera is based on a triangulation technique, the noise would appear
at a level correlated with the squared rate of the camera–subject distance. In this context,
α and δ would need to be adjusted based on the camera–subject distance, such that over-
smoothing of near-range data and under-smoothing of far-range data could be avoided.
We adopted a simpler approach by transforming the data into disparity domains before
applying the filter.

After the filtering process, the images (frames) were back-transformed to the depth
domain. We applied the hole-filling filter (boundary fill from Realsense SDK) to gaps or
missing regions in depth maps that might result from occlusions and reflections. Sub-
sequently, we removed the image background by zeroing the data with depth values
larger than 60 cm and segmenting the silhouette of the subject. The region of interest
(ROI) was located by first identifying the centroid of the silhouette (x, y) based on the
image moment, the weighted averages of the image pixels’ values, which are defined in
Equations (2) and (3).

Image moment = Mij = ∑
x

∑
y

xiyj I(x, y) (2)

Centroid = (x, y) =
(

M10

M00
,

M01

M00

)
(3)

where i and j constitute the order of the moment, and I(x,y) represents the pixel value of
row x and column y. The first-order moments M10 and M01 normalized by the zero-order
moment M01 would yield the centroid of the silhouette (x, y) and crop out a 224 × 224 pixel
region from (x − 112, y − 168) to (x + 112, y + 56).
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This setting was assigned based on our pilot analysis to ensure that the throat,
mandibular (jaw), and lip regions were covered. To avoid excessive memory and com-
putational requirements associated with utilizing the entire sequence of video frames in
training, frames were sampled from the video using the temporal segment network [40]. As
shown in Figure 1c, depth video frames were sampled by dividing the entire footage into
several snippets, followed by a random selection of frames from each snippet. In our case,
we decided to divide the depth videos into four snippets and randomly sample two frames
from each snippet, as determined by our pilot analysis. The approach could ensure that
every part of the video was representative of the loaded frames, and the method would be
flexible enough to accommodate arbitrary and varying video lengths [40]. The pseudocode
of the process is illustrated in Algorithm A1.

2.5. Activation Functions

While ReLU was the default activation function for X3D, Slowfast, and R(2+1)D,
GELU was utilized by ViViT and TimeSFormer. In this study, we tested five activation
functions, including ReLU [42], LeakyReLU [43], GELU [44], ELU [45], a Sigmoid-weighted
Linear Unit (SiLU) [46], and a Gated Linear Unit (GLU) [47], on the model with the best
performance. For the best-performing activation function, we would further conduct
hyperparameter tuning of the activation function. The formulations with an input to a
neuron (x) for all activation functions are illustrated in Equations (4)–(9) and compared
in Figure 2.
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ReLU is a piecewise linear function that outputs the input directly if it is positive, and
zero if it is negative, which is the default for most of networks due to its simplicity and
high performance.

ReLU(x) = x+ = max(0, x) =
{

x if x ≥ 0
0 if x < 0

(4)

LeakyReLU(x) =
{

x if x ≥ 0
α·x if x < 0

(5)
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LeakyReLU (a particular kind of Parametric ReLU) is based on ReLU but returns
a small negative value or slope (default α = 0.01) if the input is negative to account for
the situation in which a large number of neuron inputs are negatives. Therefore, some
information is “leaked” to prevent information loss (dead neurons) [48]. The ELU adopted
a similar strategy but introduced exponential nonlinearity on negative inputs to mitigate
the vanishing gradient problem (α default is one), whilst the SiLU utilized a Sigmoid
function (σ). Vanishing gradient problems appear when lower layers of a network have
gradients that are close to zero because higher layers are virtually saturated at −1 or 1 due
to the tanh function [49].

ELU(x) =
{

x if x > 0
α(exp (x)− 1) if x ≤ 0

α > 0 (6)

SiLU(x) = x·σ(x) =
x

1 + e−x (7)

GELU multiplies the input neuron by a random value from 0 to 1, calculated by the
cumulative distribution function of the Gaussian distribution Φ(x). When the value of the
input neuron is small, there is a large likelihood that the function’s output would be zero
(i.e., Pr(X ≤ x)). GeLU is based on the assumption that the input neuron follows a normal
distribution, especially after batch normalization.

GELU(x) = xPr(X ≤ x) = x·Φ(x) ∼= 0.5x(1 + tanh
[√

2
π

(
x + 0.044715x3)]

X ∼ N(0, 1)
(8)

GLU(X) = (X·W + b)⊗ σ(X·V + c)

X ∈ Rk×m, W ∈ Rk×m×n, V ∈ Rk×m×n, b ∈ Rn, c ∈ Rn
(9)

where k is the patch size, and m and n are the number of input and output feature maps,
respectively.

The GLU is constructed by the linear project of the neuron input (x·W + b), multiplied
by the Sigmoid gates σ(x·V + c). The element-wise multiplication of the gates on the input
projection matrices could control the information passed on the hierarchy.

2.6. Model Training

Five cutting-edge deep learning models were trained for swallowing/non-swallowing
classification, including two models of the Transformer class (TimeSFormer [50], Video Vi-
sion Transformer (ViViT) [51],) and three models of the CNN class (SlowFast [52], X3D [53]
and R(2+1)D [54]). Model architectures are illustrated in Figure 3. Explanations of the
models were provided in the discussion section. The models were trained using a com-
putational unit with Intel Core i7 12700 and Nvidia RTX 4090. The total parameters and
training time referenced to our computer are provided in Table 1.

Table 1. Total parameters and training time of models.

X3D SlowFast R(2+1)D TimeSFormer ViViT

Total parameters 2.99 M 6.19 M 31.51 M 121.26 M 3.05 M
Training speed 35 s/epoch 51 s/epoch 70 s/epoch 94 s/epoch 37 s/epoch
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We split the data into training, validation, and testing datasets at a ratio of 7:2:1.
The models were trained using the training datasets. The performance of the model on
the validation set during training was monitored to prevent overfitting. We performed
200 training epochs, with early stopping if the best performance did not improve in the next
20 iterations. The Adam optimizer was used for all models at a 0.0001 learning rate using
cross entropy as the loss function. The pseudocode for the Adam optimizer is included in
Algorithm A2.

The training batch size was set to four. We performed 100 training epochs, with
early stopping if the best validation loss value did not improve in the next 20 iterations.
For hyperparameters, TimeSFormer’s attention mechanism was divided into space-time
attention, where temporal attention and spatial attention were separately applied one
after the other [50]. The patch size of ViViT was set to eight. The ResNet101 backbone
was employed in the SlowFast model. All other unspecified hyperparameters were set to
default, corresponding to each of the models. All processes were implemented using the
PyTorch library [55].

2.7. Outcome Measures and Data Analysis (Model Evaluation)

Model evaluation was conducted by making predictions by inputting testing datasets
onto the models. The primary analysis involved the overall performance in classifying
the swallowing and non-swallowing tasks (i.e., coarse classification). Thereupon, two
fine-grained classifications (subgroup analyses) on four classes and eight classes were
performed. The former involved vowel pronunciation, deep breathing, eating, and drinking,
while the latter involved the eight swallowing and non-swallowing tasks. On the best
model, the same analysis would be conducted to compare the performance of various
activation functions.

The F1-score was used as the primary outcome, which was believed to be less prone
to an imbalanced class bias [56]. It is the harmonic mean of precision and recall, which is
calculated by reciprocating the arithmetic mean of the reciprocals of precision and recall,
as shown in Equations (10)–(12). Precision was defined as the proportion of positive
predictions that were correct, while recall was the proportion of true positives that were
correctly identified [57]. These outcome measures were derived from the confusion matrix
(i.e., contingency table) that visualized the relationship between the predicted and actual
(ground truth) class labels for the testing dataset. The cells of the table consisted of counts
of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). The
confusion matrix of the best-performing model was presented, in addition to the precision
and recall for the other models and subgroup analyses. The counts were also used to
analyze the source of the misclassification. Moreover, the Area under the receiver-operating
characteristics curve (AUC) was used to evaluate the discrimination power of a binary
classifier model. As a rule-of-thumb, we considered an F1-score over 0.70 as acceptable,
0.85 as good, and 0.9 as excellent.

The F1-score was calculated in Equations (10)–(12).

F1 =
2

1
Pc +

1
Rc

=
2× Pc× Rc

Pc + Rc
(10)

Pc =
TP

TP + FP
(11)

Rc =
TP

TP + FN
(12)

where Pc is precision and Rc is recall. TP, FP, and FN are true positive, false positive, and
false negative, respectively.
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For model evaluation, an adjustment of the F1-score, precision, and recall were sup-
plemented by bootstrapping (n = 26) on the major class to accommodate the imbalance in
class size because of multiclass subgroup analyses (Algorithm A3). Confidence intervals of
precision and recall for bootstrapping were estimated by their standard errors assuming a
binomial distribution.

3. Results
3.1. Model Performance

For the coarse classification of swallowing and non-swallowing, X3D was the best-
performing model with an average F1-score (adjusted F1-score) of 0.920 (0.885) (Figure 4a).
The F1-scores (adjusted F1-scores) for detecting swallowing and non-swallowing were 0.878
(0.880) and 0.962 (0.889), respectively. CNNs were apparently better than Transformers. The
other two CNNs, SlowFast and R(2+1)D, achieved average F1-scores (adjusted F1-scores)
of 0.902 (0.884) and 0.866 (0.863), respectively, whereas the F1-scores (adjusted F1-scores)
of TimeSFormer and ViViT were 0.648 (0.707) and 0.683 (0.766), as shown in Figure 4a).
The adjusted F1-scores are shown in Table 2, calculated by the bootstrapped precision
and recall.
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Table 2. Adjusted F1-score of the five models, calculated by bootstrapping.

X3D SlowFast R(2+1)D TimeSFormer ViViT

Coarse Classification

Swallowing 0.880 0.875 0.844 0.667 0.739
Non-swallowing 0.889 0.893 0.881 0.746 0.793
Coarse Average: 0.885 0.884 0.863 0.707 0.766
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Table 2. Cont.

X3D SlowFast R(2+1)D TimeSFormer ViViT

Fine-grained Classification

Eating 0.711 0.769 0.783 0.650 0.294
Drinking 0.732 0.556 0.364 0.476 0.412

Deep Breathing 0.894 0.939 0.939 0.894 0.488
Vowel Pronunciation 0.926 0.923 0.889 0.755 0.720

Pronouncing “/eI/” 0.809 0.809 0.727 0.564 0.462
Pronouncing “/i:/” 0.756 0.683 0.389 0.756 0.188
Pronouncing “/aI/” 0.800 0.564 0.353 0.333 0.242
Pronouncing “/oU/” 0.783 0.207 0.444 0.526 0.343
Pronouncing “/u:/” 0.894 0.863 0.585 0.714 0.194

4-class Average: 0.816 0.797 0.744 0.694 0.479
8-class Average: 0.797 0.674 0.573 0.614 0.328

As shown in Figure 5, fine-grained classification imposed additional challenges to
the model prediction accuracy. X3D remained the best-performing model and produced
average F1-scores (adjusted F1-scores) of 0.762 (0.816) and 0.649 (0.797), respectively, for
the four-class and eight-class analyses (Figure 4b,c). Although the Transformers performed
worse, their average F1-scores managed to get over the probability of random guess in four
classes (0.250) and eight classes (0.125).
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3.2. Task Prediction Performance

The prediction performance for non-swallowing was better than swallowing in coarse
classification. The average F1-score across models for non-swallowing was 0.903, with a
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range from 0.834 to 0.962 (adjusted F1-score: 0.840, range from 0.746 to 0.893), compared to
that of swallowing, which was 0.704, with a range from 0.458 to 0.878 (adjusted F1-score:
0.801, range from 0.667 to 0.880). Among the eight swallowing and non-swallowing
tasks, deep breath was the most distinctive, and the best model for this event, R(2+1)D
attained an F1-score of 0.902. However, the highest adjusted F1-score for deep breath was
0.939, achieved by both SlowFast and R(2+1)D models. It was simpler to recognize vowel
pronunciation from other tasks, but it was more difficult to pinpoint each individual vowel
pronunciation. X3D attained an F1-score of 0.959 in classifying vowel pronunciation, but
that of recognizing each vowel ranged from 0.542 to 0.824. The SlowFast model tended to
misclassify “/oU/” as “/u:/” with a low F1-score of 0.061 for this event. On the other hand,
it was also difficult to classify eating and drinking. For X3D, the F1-score (adjusted F1-score)
to identify eating was 0.667 (0.711), while that of drinking was 0.600 (0.732). Figure 6 details
the precision and recall for each model and task.
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3.3. Evaluation of Activation Functions on the Best Model

Evaluation of activation functions was performed on the X3D model. The default
activation function, ReLU, produced the best overall performance (F1-score: 0.920), fol-
lowed by LeakyReLU. Nevertheless, LeakyReLU, GELU, and ELU had higher F1-scores in
recognizing non-swallowing events, which were 0.927, 0.911, and 0.899, respectively.

For fine-grained classification (Table 3), ReLU and LeakyReLU fared similarly, al-
though LeakyReLU performed slightly better. Their F1-scores for four-class classification
were 0.711 and 0.718, respectively, while those for eight-class classification were 0.649 and
0.656. The ReLU appeared to outperform the other functions in articulating the pronuncia-
tion of “/i:/” (F1-score: 0.731) and “/u:/” (F1-score: 0.824). However, the ReLU had the
lowest performance (F1-score: 0.619) among the functions for identifying breathing, which
was largely improved by using LeakyReLU (F1-score: 0.816).

Table 3. F1-score of X3D on different activation functions.

ReLU
(Default) LeakyReLU GELU ELU GLU SiLU

Coarse Classification

Swallowing 0.962 0.807 0.681 0.673 0.906 0.925
Non-swallowing 0.878 0.927 0.911 0.899 0.763 0.750
Coarse Average: 0.920 0.867 0.796 0.786 0.835 0.838

Fine-grained Classification

Eating 0.667 0.551 0.418 0.407 0.488 0.593
Drinking 0.600 0.578 0.458 0.462 0.250 0.429

Deep Breathing 0.619 0.816 0.760 0.627 0.800 0.857
Vowel Pronunciation 0.959 0.925 0.895 0.839 0.895 0.924

Pronouncing “/eI/” 0.644 0.644 0.543 0.462 0.654 0.538
Pronouncing “/i:/” 0.731 0.596 0.519 0.545 0.596 0.378
Pronouncing “/aI/” 0.567 0.723 0.578 0.585 0.510 0.500
Pronouncing “/oU/” 0.542 0.591 0.474 0.500 0.511 0.341
Pronouncing “/u:/” 0.824 0.750 0.506 0.516 0.588 0.429

4-class Average: 0.711 0.718 0.633 0.584 0.608 0.701
8-class Average: 0.649 0.656 0.532 0.513 0.550 0.508

Subsequently, we further evaluated LeakyReLU with different α values (Table 4).
α of Tan12◦ and Tan6◦ produced better performances. Their average F1-scores for eight-
class classification were 0.697 and 0.691, respectively. In addition, the α of Tan6◦ showed
higher performance in recognizing eating and drinking events (F1-scores of 0.692 and 0.652,
respectively), whereas the α of Tan12◦ was superior in identifying non-swallowing events.

Table 4. Evaluation of hyperparameter, α, on the performance of LeakyReLU.

Tan18◦ Tan15◦ Tan12◦ Tan9◦ Tan6◦ Tan3◦ Tan0◦

F1

Pronouncing “/eI/” 0.585 0.585 0.667 0.548 0.543 0.677 0.644
Pronouncing “/i:/” 0.577 0.510 0.750 0.578 0.605 0.681 0.731
Pronouncing “/aI/” 0.711 0.627 0.846 0.621 0.698 0.650 0.567
Pronouncing “/oU/” 0.667 0.625 0.708 0.486 0.625 0.679 0.542
Pronouncing “/u:/” 0.742 0.632 0.691 0.698 0.808 0.727 0.824

Deep breathing 0.939 0.826 0.830 0.894 0.902 0.816 0.619
Eating 0.691 0.607 0.571 0.679 0.692 0.571 0.667

Drinking 0.600 0.476 0.510 0.549 0.652 0.553 0.600
8-class Average 0.689 0.611 0.697 0.632 0.691 0.669 0.649
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Table 4. Cont.

Tan18◦ Tan15◦ Tan12◦ Tan9◦ Tan6◦ Tan3◦ Tan0◦

Precision

Pronouncing “/eI/” 0.487 0.487 0.588 0.472 0.400 0.583 0.576
Pronouncing “/i:/” 0.577 0.520 0.818 0.684 0.765 0.762 0.731
Pronouncing “/aI/” 0.842 0.640 0.846 0.562 0.882 0.929 0.500
Pronouncing “/oU/” 0.727 0.682 0.773 0.818 0.682 0.667 0.591
Pronouncing “/u:/” 0.639 0.581 0.655 0.595 0.808 0.690 0.840

Deep breathing 1.000 0.950 0.815 1.000 0.920 0.870 0.813
Eating 0.655 0.567 0.609 0.667 0.692 0.486 0.643

Drinking 0.857 0.625 0.520 0.560 0.750 0.619 0.625
8-class Average 0.723 0.632 0.703 0.670 0.737 0.701 0.665

Recall

Pronouncing “/eI/” 0.731 0.731 0.769 0.654 0.846 0.808 0.731
Pronouncing “/i:/” 0.577 0.500 0.692 0.500 0.500 0.615 0.731
Pronouncing “/aI/” 0.615 0.615 0.846 0.692 0.577 0.500 0.654
Pronouncing “/oU/” 0.615 0.577 0.654 0.346 0.577 0.692 0.500
Pronouncing “/u:/” 0.885 0.692 0.731 0.846 0.808 0.769 0.808

Deep breathing 0.885 0.731 0.846 0.808 0.885 0.769 0.500
Eating 0.731 0.654 0.538 0.692 0.692 0.692 0.692

Drinking 0.462 0.385 0.500 0.538 0.577 0.500 0.577
8-class Average 0.688 0.611 0.697 0.635 0.683 0.668 0.649

4. Discussion

The novelty of this research lies in the application of depth cameras, in addition to
state-of-the-art deep learning techniques including CNNs and Transformer models, to
analyze and classify swallowing and non-swallowing tasks, which paves the road towards
accessible instrumental dysphagia screening. We believed that this may be one of the first
works of its kind. Moreover, the swallow monitoring system could be expanded to evaluate
patients with eating behavioral and malnutritional problems and to facilitate biofeedback
training [58,59].

Five cutting-edge deep learning models were used and compared, including TimeSFormer,
ViViT, SlowFast, X3D, and R(2+1)D. These models were specialized in leveraging both
spatial and temporal information from video sequences to perform tasks such as action
recognition, object detection, and video segmentation, while addressing various challenges
unique to video analysis, such as the temporal variability and the need for efficient and
scalable architectures. [60]. The two Transformer models differed from one another in the
design of the attention scheme. TimeSformer embedded frame-level patches and learned
spatiotemporal features by dividing temporal and spatial attention schemes within each
block [50]. On the other hand, ViViT proposed multiple-head self-attention architectures
that accounted for the factorization of spatial and temporal dimensions of the input [51].

For the CNNs, SlowFast consisted of a slow and a fast pathway processing the same
input with different temporal resolutions. The slow pathway was a standard 3D CNN,
while the fast pathway integrated a 2D CNN with a temporal down-sampling unit. The two
pathways were joined with a Time-strided convolution (T-conv) [52]. X3D was built using
a ResNet structure and the Fast pathway of the SlowFast model, along with degenerated
(single frame) temporal input [53]. Moreover, the characteristics of R(2+1)D were the
utilization of a 2D convolutional filter with a 1D temporal convolutional filter, governed by
the hyperparameter related to the intermediate subspace between the spatial and temporal
convolutions [54].
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X3D was the best model in our study with good-to-excellent performance (F1-score:
0.920; adjusted F1-score: 0.885) in classifying swallowing and non-swallowing conditions
despite the fact that the performance was just acceptable. The model focused on one data
dimension at a time in building up the model blocks to accommodate the level of complex-
ity, which might be appropriate and efficient for our occasion. For the other two CNNs,
R(2+1)D manifested spatiotemporal representation through temporal convolutions, while
the SlowFast model captured high-level semantics and spatiotemporal information through
the slow and fast pathways. These approaches could be vulnerable to the predefined layer
size and number of layers, which might require strategies for extensive hyperparameter
optimization to arrest critical spatiotemporal features. The hyperparameter tuning process
could be very time-consuming and demanding of computational power because of the
higher dimensionality of video data, compared to those working on numeric and image
data. On the other hand, our initial hypothesis was that the Transformers could outperform
the CNNs because of their long-range capturing capacity and attention mechanism. Never-
theless, Transformers exhibited poor performance in our study because of the small dataset
size. In fact, Transformers placed a very high demand on the size of the dataset [61]. We
did not pre-train the Transformers because a large-depth video dataset was not available in
the public domain.

The classification of the depth camera relied on manifested morphological motions
of the lip (mouth), mandibular (jaw), and neck (throat) regions. Swallowing and non-
swallowing could be easier to classify because of the discernible depth of the throat,
with and without bolus. Although eating behaviors can be represented by “periodic”
mandibular (jaw) activities (i.e., chewing) [62], our study found it difficult to discriminate
between eating and drinking, probably due to their comparable lip and throat motions.
Capturing hand movements might help distinguish the type of foods/liquids. On the
other hand, while pronunciation could be recognized by lip movements, some vowels
had subtle lip apertures and might vary depending on individuals’ speaking habits or
speaking countries [63]. This could be the reason for the low accuracy in the fine-grained
classification of vowel pronunciation. Nevertheless, the success in recognizing talking
(pronunciation), breathing, and eating/drinking might facilitate monitoring systems for
sleep apnea and somniloquy.

Real-time and continuous extraction and identification of high-level spatial and tem-
poral features were the challenges in this study. The experimental protocol itself might
confound the data features. In particular, swallowing tasks generally had a shorter duration
than non-swallowing tasks. We endeavored to apply the temporal segment network [40]
to equalize the amount of information in the temporal domain to ensure that the model
was analyzing the spatiotemporal features of the data instead of the length of the recording.
Nevertheless, the approach might not account for the dynamic time wrapping issue [64].
For example, the variations on the start/stop instants of the recording and features might
fail to “synchronize and align” the temporal features corresponding to each task. These
would lead to bias during random sampling within the temporal segment network.

The optimal training/validation/testing ratio for machine learning was mostly em-
pirical and lacked precise recommendations [65,66]. While Joseph [65] and Dubbs [66]
suggested that the number of parameters and the size of the dataset could be used to
estimate the splitting ratio for linear models and Ridge and Lasso regression, a general
law for the splitting ratio, determined analytically or asymptotically for all models, has
not yet been established [66]. A rule of thumb was to divide the data in an 80/20 ratio
based on the Pareto principle, while some advised allocating 70% of data for model training
and distributing the remaining data evenly for model validation and testing. Reducing
the size of the training dataset, especially for small datasets, would increase the variance
of the parameter estimates of the model, while the trade-off between the validation and
testing datasets was decided by the need to prevent over-fitting [67]. Guyon [68] proposed
that the training size determines the model inference, while the validation set (or cross-
validation) would serve to indicate which family of feature patterns (recognizer) works best.
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In this study, we adopted a 70/20/10 approach because our dataset was small, and a larger
training set ratio was preferred. In fact, an optimal splitting ratio may also depend on the
type of models, data dimensionality, and validation methods, such as cross-validation and
bootstrapping [69,70], posing difficulties for deep learning models with complex model
architecture and high data dimensionality, and warranting further investigations on the
theories behind hunches.

Activation functions contribute to the advance in deep learning [71] and have a sub-
stantial effect on the behavior and performance of deep learning models [72–74]. However,
numerous studies overlooked the activation function and associated hyperparameters
(e.g., slope coefficient, α) [48,75] and relied on model defaults. In fact, selecting the ac-
tivation function is exceedingly difficult and typically requires extensive trial-and-error
attempts. It depends on the dataset and the problem at hand [75,76]. From a different point
of view, it is dependent on the input-output relationship of each node and each layer, but it
is hard to trace since the neural network may be a direct rich space of ill-posed functions [77].
The challenge is exacerbated by the notion of the “edge of chaos”, which states the model
should neither run in an overly ordered nor overly random state [78]. Several studies
attempted to offer solutions to this issue. Dushkoff and Ptucha [79] employed more than
one activation function depending on the classification error. Jagtap, et al. [76] integrated
a basic activation function, using a gated or hierarchical structure to adapt to the inputs,
while Li et al. [80] utilized a differential evolution algorithm to determine the activation
function based on the input data. Through a “smart search” method, Marchisio et al. [74]
realized an automatic selection of the best possible activation functions for each layer.
Nevertheless, the optimization of activation functions and associated hyperparameters
requires considerable computing power and time.

Imbalanced classes were one of the challenges in different fields using machine learn-
ing/deep learning, including medical imaging [81,82], digital health [83–85], and machine
learning-driven instruments [19,86]. In fact, imbalanced class scenarios often skew towards
the negative cases, since disease cases (positives) are generally rarer than non-disease cases
(negatives). Models tend to predict “negative” in a highly imbalanced class problem in
order to maximize their probability of making a correct “guess” [87]. In such cases, the loss
function of the models could be penalized using a class-weighted inverse proportion of
the class size [88]. Nevertheless, we avoid the imbalanced class problem on the training
dataset by collecting the same amount of data for each task. For the multiclass issue in
the subgroup analysis [89], we mitigate the imbalanced class problem in testing with a
bootstrapping approach.

There were some limitations in this research. Firstly, the relatively small size of the test-
ing set may restrict the robustness of the model. In our study, a single incorrect prediction of
the testing data would deflate the model accuracy by about 0.5%. A k-fold cross-validation
could improve the model robustness upon deployment [90]. Secondly, our protocol de-
sign did not purport to cover every swallowing task. While we took reference from the
comprehensive assessment protocol for swallowing (CAPS) [91], identifying the fewest
swallowing tasks necessary to accurately depict swallowing functions would be helpful to
develop the instrument for dysphagia screening and lessen the time and inconvenience
during the assessment, which warrant further investigations. The inclination of the camera
was determined based on our pilot experiment that better captured the frontal view of the
neck area. We believed that our model would be insensitive to the variations of the camera
orientation since the model could accommodate the variations by the affine transformation
nature of the convolutional layer. Moreover, with respect to subject recruitment, gender
could be a significant confounder and critical feature in the study because of the larger
Adam’s apple in males that might need to be input into the model. Secondly, the duration
of the data samples (i.e., sample/sequence length) was about 1.0 to 1.5 s. To learn the
temporal features effectively and produce accurate predictions, some models, especially
Transformers, need sufficient temporal duration for each data sample [37,92]. Although the
sample length requirement could be task-specific, longer data sequences provide more con-
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text for the model to learn complex relationships between inputs and outputs [37,92]. Data
augmentation techniques might be used to prolong the data sequences [93]. For example,
repeating the short video frames to lengthen the video clip. Moreover, data augmentation
could help resolve the demand for large datasets in Transformers. Data augmentation for
depth frames could be achieved by adding rotations about the three-dimensional axes to
simulate different orientations or viewpoints of the depth camera [94]. Alternatively, the
Synthetic Minority Over-sampling Technique (SMOTE) could be one way to create synthetic
samples by interpolating neighboring instances of that class, which could also be used to
resolve the imbalanced class problem [95]. Lastly, we have not constructed explainability
maps to understand the attention of the network on salient features and locations since
there are no available libraries that could be applied directly to four-dimensional data in
our cases, which warrants further investigations.

5. Conclusions

In this study, we developed a stereo-depth camera system to recognize swallowing
and non-swallowing through deep learning models. The innovation paves the way to-
wards accessible instrumental dysphagia assessment by expanding our data collection on
dysphagic and non-dysphagic populations. Our study determined that X3D was the best
model with good-to-excellent performance (F1-score: 0.920; adjusted F1-score: 0.885) in
classifying swallowing and non-swallowing conditions using its default activation function.
However, the model was only marginally acceptable if individual tasks (fine-grained classi-
fication) needed to be recognized (F1-score: 0.649, adjusted F1-score: 0.797). Changing the
activation function to LeakyReLU might enhance the classification performance on deep
breathing and pronouncing “/aI/” tasks. A large dataset, hyperparameter tuning on the
activation function, and extensive hyperparameter optimization across high dimensionality
are necessary to further improve the system performance.
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Appendix A

The pseudocodes used in the study are included in Algorithms A1–A3.

Algorithm A1: The pseudocode of the video frame sampling

1: Input: V, the input video withNVnumber of frames
2: s, the number of segments
3: n, the number of frames per segments
4: Output: Array of sampled video frames

5:
d ← f loor((Nv − n + 1) / s) (Compute distance between segments that are approximately

evenlyspread across the video frames)
6: Initialized array A [0 . . . s*n]
7: for each segment in video segment V[k× d] to V[i + 1)×d] where k from 0. s do
8: i ← k× d + rand(d) (Get the start index of the segment)
9: for j in 0 . . . n do
10: A[n× s + j] ← V[i + j] (Append sampled frames to the array)
11: end for
12: end for
13: return A

Algorithm A2: The pseudocode of Adam optimization method

1: Input: α, learning rate
2: β1, β2 ∈ [0, 1), exponential decay rates for the moment estimates
3: f (θ), stochastic objective function with parameters θ

4: θ0, initial parameter vector
5: ε, small value to prevent division by zero
6: Output: θt, resulting parameter vector after t timesteps
7: m0 ← 0
8: v0 ← 0
9: t← 0
10: while θt not converged do
11: t← t + 1
12: gt ← ∇θ ft(θt−1) (Compute gradient for the parameters)
13: mt ← β1·mt−1 + (1− β1)·gt (Update biased first moment estimate)
14: vt ← β2·vt−1 + (1− β2)·g2

t (Update biased second raw moment estimate)
15: m̂t ← mt/

(
1− βt

1
)

(Compute bias-corrected first moment estimate)
16: v̂t ← vt/

(
1− βt

2
)

(Compute bias-corrected second raw moment estimate)
17: θt ← θt−1 − α·m̂t/

(√
v̂t + ε ) (Update parameters)

18: end while
19: return θt

Algorithm A3: The pseudocode of Bootstrapping

1: Input: D(Va), dataset of depth videos with label a
2: D(V∼a), dataset of depth videos without label a
3: n, size of each bootstrap sample
4: Output: B, array containing the bootstrap samples
5: Initialize empty array B
6: For t from 0 to n − 1 do
7: Randomly select an index from D(Va)
8: Add the depth video with index i in D(Va) to B
9: Randomly select an index from D(V∼a)
10: Add the depth video with index i in D(V∼a) to B
11: end for
12: return B
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