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Abstract: Gaussian process-based Bayesian optimization (GPBO) is used to search parameters in
machine learning, material design, etc. It is a method for finding optimal solutions in a search space
through the following four procedures. (1) Develop a Gaussian process regression (GPR) model using
observed data. (2) The GPR model is used to obtain the estimated mean and estimated variance for
the search space. (3) The point where the sum of the estimated mean and the weighted estimated
variance (upper confidence bound, UCB) is largest is the next search point (in the case of a maximum
search). (4) Repeat the above procedures. Thus, the generalization performance of the GPR is directly
related to the search performance of the GPBO. In procedure (1), the kernel parameters (KPs) of
the GPR are tuned via gradient descent (GD) using the log-likelihood as the objective function.
However, if the number of iterations of the GD is too high, there is a risk that the KPs will overfit
the observed data. In this case, because the estimated mean and variance output by the GPR model
are inappropriate, the next search point cannot be properly determined. Therefore, overtuned KPs
degrade the GPBO search performance. However, this negative effect can be mitigated by changing
the parameters of the GPBO. We focus on the weight of the estimated variances (exploration weight)
of the UCB as one of these parameters. In a GPBO with a large exploration weight, the observed
data appear in various regions in the search space. If the KP is tuned using such data, the GPR
model can estimate the diverse regions somewhat correctly, even if the KP overfits the observed data,
i.e., the negative effect of overtuned KPs on the GPR is mitigated by setting a larger exploration
weight for the UCB. This suggests that the negative effect of overtuned KPs on the GPBO search
performance may be related to the UCB exploration weight. In the present study, this hypothesis was
tested using simple numerical simulations. Specifically, GPBO was applied to a simple black-box
function with two optimal solutions. As parameters of GPBO, we set the number of KP iterations
of GD in the range of 0–500 and the exploration weight as {1, 5}. The number of KP iterations
expresses the degree of overtuning, and the exploration weight expresses the strength of the GPBO
search. The results indicate that, in the overtuned KP situation, GPBO with a larger exploration
weight has better search performance. This suggests that, when searching for solutions with a small
GPBO exploration weight, one must be careful about overtuning KPs. The findings of this study are
useful for successful exploration with GPBO in all situations where it is used, e.g., machine learning
hyperparameter tuning.

Keywords: machine learning; Bayesian optimization; Gaussian process; overfitting

MSC: 68T01; 62J02

1. Introduction

Gaussian process-based Bayesian optimization (GPBO) optimizes black-box functions
and is adopted to save time and/or reduce costs. For example, it is used for concrete
design [1,2], material design [3–5], and tuning hyperparameters in machine learning (for
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support vector machines [6–8], random forest models [9,10] and neural networks [9,11,12],
etc.). Appropriate parameters can be obtained more rapidly using GPBO compared with
simple methods such as grid search. For example, Wu et al. [9] reported that the compu-
tation time of hyperparameter tuning in machine learning can be reduced significantly
using GPBO. Snoek et al. [11] reported that when GPBO was used for tuning, the devel-
oped convolutional neural networks had higher generalization scores than networks with
parameters tuned by an expert of machine learning.

To perform GPBO, a Gaussian process regression (GPR) model must be developed, which
is computationally expensive. The computational cost of the kernel inverse matrix required in
GPBO isO(n3) for a data size of n [13]. Due to the fact that n increases with each successive
GPBO iteration, the computational cost increases. Therefore, sparse matrix methods [13–16]
and mini-batch methods [17] have been proposed for reducing the computational cost.

In the log-likelihood-based objective function, the kernel inverse matrix is used to
tune the hyperparameters of the GPR model [18]. Gradient-based methods [17,19,20],
evolutionary algorithms [21,22], and Markov chain Monte Carlo methods [23] have been
adopted for hyperparameter tuning of the GPR model. Cross-validation [18] is adopted
for tuning the kernel parameters (KPs) to avoid overfitting to the observed data. However,
because the size of the observed data gradually increases, performing cross-validation
at the beginning of GPBO is difficult. Therefore, we cannot perform cross-validation
at the beginning of GPBO to tune the hyperparameters of the GPR model. Moreover,
cross-validation increases the computational cost [18].

In the early stages of GPBO, the sample size is insufficient. Additionally, it is difficult
to properly tune a GPR model by a small sample size [24,25]. Therefore, consider the
situation wherein the KPs are tuned using all samples instead of using a method that
reduces the number of data, such as cross-validation. In this case, because there are no data
for validation, it is not known to what extent the KPs should be fitted to the observed data.
Thus, there is a risk of overtuning the GPR model. Overtuned GPR models can correctly
estimate observed regions but cannot properly estimate unobserved regions [26]. GPBO
is an algorithm that searches for the optimal solution in unobserved regions. Therefore,
if unobserved areas cannot be correctly estimated, a proper search cannot be performed.
From this viewpoint, the search performance of Bayesian optimization using an overfitted
GPR model is expected to be poor.

The negative effect of overtuned KPs on the search performance depends on other
parameters of GPBO. We focus on the exploration weight of the upper confidence bound
(UCB) [27,28], which is a GPBO parameter. Generally, when the exploration weight is set
to a large value, the next search point tends to be selected from regions with insufficient
observations; therefore, the observed samples appear in various areas. In this case, even if
the KPs are overfitted to the observed samples, the GPR model can correctly estimate the
various input domains. In contrast, with a small exploration weight, because the observed
samples appear in only limited regions, the overfitted GPR model only estimates limited
regions; therefore, its generalization score is worse.

This implies that the risk of overtuned KPs degrading the search performance depends
on the exploration weight. We verified this hypothesis by analyzing the relationships
among the overtuned KPs, exploration weight, and GPBO search performance. The results
indicated that, for GPBO, more attention must be paid to the overtuning of the KPs in the
case of smaller exploration weights. Additionally, it is necessary to pay attention to avoid
overtuning KPs when searching for the solution via GPBO with a small exploration weight.
These findings are useful for successful exploration with GPBO in all situations where it is
used, e.g., hyperparameter tuning in machine learning.

As indicated by previous studies [21,24,25], the likelihood function in GPR may have
multiple minimal solutions, making it difficult to find a globally optimal solution. Therefore,
we focused on gradient descent (GD), which can rapidly obtain a local minimal solution,
as a method for tuning the KPs. This method is widely used for tuning the KPs of GPR
models [17,19,20].
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2. Gaussian Process-Based Bayesian Optimization
2.1. Surrogate Model

In this study, we use the GPR model as a surrogate model for Bayesian optimization,
which we call GPBO. This method outputs the estimated average and variance by assuming
a Gaussian distribution from the dataset D consisting of pairs of observed input and
output values.

Here, the output value y is obtained as

y = f (x) + ε, (1)

where x = [x1 · · · xD]
> is the D-dimensional input vector, f (x) is a black-box function,

and ε denotes observation noise. In addition, we consider a situation in which a dataset

D = {(xn, yn)|n = 1, · · · , N} (2)

is collected via N observations. In the case of GPR, assuming that the average of y is
zero, the average and variance values of the output y′ for the new input data x′ are given
as follows:

E[y′|x′,D, θ] = k′(θ)>K(θ)−1y, (3)

V[y′|x′,D, θ] = k′′(θ)− k′(θ)>K(θ)−1k′(θ) (4)

where y = [y1 · · · yN ]
>. K(θ) is a kernel matrix defined as follows:

K(θ) =
[
k(xi, xj; θ)

]
∈ RN×N

>0 (5)

where k(xi, xj; θ) denotes the kernel function. For Gaussian kernels, the kernel function is
defined as

k(xi, xj; θ) = θ1 exp

(
−
||xi − xj||22

θ2

)
+ θ3δ(i, j), δ(i, j) =

{
0, i 6= j
1, i = j

, θ ∈ R3
>0 (6)

where θ = (θ1, θ2, θ3) is a vector comprising three KPs. Due to the fact that the estimation
accuracy depends on the KPs, appropriate tuning is important. k′′(θ) and k′(θ) are the
kernels related to the observed samples xi and new sample x′, respectively, and are defined
as follows:

k′′(θ) = k(x′, x′; θ), k′(θ) =
[
k(xi, x′; θ)

]
∈ RN

>0. (7)

2.2. Tuning Kernel Parameters

As stated in the Introduction, the KP vector θ is tuned using GD. Due to the fact that
the θ that maximizes the generation probability of the observed output y is desirable, using
the log-likelihood, the objective function L is defined as

L(θ) = log p(y|θ)
= logN (0, K(θ)) (8)

= log

(
1√

(2π)N |K(θ)|
exp

(
−1

2
y>K(θ)−1y

))
∝ − log |K(θ)| − y>K(θ)−1y.

We assume that p(y|θ) is a Gaussian distribution consisting of the average 0 and the
covariance matrix K(θ). When we adopt the gradient method for the objective function, θ
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may be negative. Due to the fact that the Gaussian KP θ requires a plus (see Equation (6)),
θ is redefined as follows:

θ = g(θ′)

= exp(θ′), θ′ = [θ′1 θ′2 θ′3]
> (9)

where the map g is

g : R3 7→ R3
>0. (10)

Therefore, when the gradient method is run as the search target θ′ and the obtained
parameter is transformed into θ using Equation (9), θ will certainly be positive. Therefore,
we use the update equation for the KPs, as follows:

θ′(tg+1) = θ′(tg) + γ∇L
(

exp(θ′(tg))
)

(11)

where tg represents the iteration count, θ′(tg) is the tg-th specific value of θ′, and γ represents
the learning rate. This partial differentiation is as follows:

∇L
(
exp(θ′)

)
=− tr

(
K(exp(θ′))−1∇K(exp(θ′))

)
+
(

K(exp(θ′))−1y
)>
∇K(exp(θ′))

(
K(exp(θ′))−1y

)
. (12)

Due to the fact that K is the matrix consisting of kernel functions, i.e., ∇K(exp(θ′)), the
partial derivative of k(xi, xj; exp(θ′)) with respect to θ′1, θ′2, θ′3 is required, i.e.,

∂k(xi, xj; exp(θ′))
∂θ′1

= exp(θ′1) exp

(
−
||xi − xj||22

exp(θ′2)

)
, (13)

∂k(xi, xj; exp(θ′))
∂θ′2

=
exp(θ′1)
exp(θ′2)

||xi − xj||22 exp

(
−
||xi − xj||22

exp(θ′2)

)
, (14)

∂k(xi, xj; exp(θ′))
∂θ′3

= exp(θ′3)δ(i, j). (15)

This calculation technique was described by Mochihashi et al. [29].
After the parameter is updated Tg times, we obtain θ′(Tg). Substituting this into

Equation (9) yields the tuned KP θ(Tg). According to Equation (10), the obtained parameter
θ(Tg) satisfies the condition of R3

>0.

2.3. Optimization Algorithm for Experiments

Using Equations (3) and (4), the acquisition function of GPBO is defined as

A(x′; β, θ) = E[y′|x′,D, θ] + β
√
V[y′|x′,D, θ] (16)

and it is called the UCB [27,28]. Here, with N observed samples, the N + 1-th (next)
observation sample is determined as follows:

xN+1 = argmax
x′∈Ψ

A(x′; β, θ), (17)

yN+1 = f (xN+1) + ε (18)



Mathematics 2023, 11, 3067 5 of 13

where Ψ represents the domain of the input x′. The second term of the acquisition function,
which is defined in Equation (16), controls the search weight. When β is set to a large value,
exploration is emphasized. Subsequently, the observation dataset is updated as

D = D ∪ {(xN+1, yN+1)}. (19)

By performing this process Tb times, we obtain the maximum value ymax and the approxi-
mate solution xmax as follows:

ymax = maxDy, xmax = argmax
x∈Dx

Dy (20)

where Dy and Dx are the sets consisting of the output and input values, respectively, of the
set D. This procedure is presented in Algorithm 1.

Algorithm 1 Verification-targeted optimization algorithm

Input:
Initial observation dataset D, maximum number of BO iterations Tb,
maximum number of GD iterations Tg, GD learning rate γ, exploration weight β,
black-box function f (x), observation noise ε,
search space Ψ, initial KP θ(0) = exp(θ′(0))

Output:
Solution xmax and its value ymax
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1: for tb = 1 to Tb do
2: for tg = 0 to Tg − 1 do

3: θ′(tg+1) ← θ′(tg) + γ∇L
(

exp(θ′(tg))
)

4: end for
5: θ(Tg) ← exp

(
θ′(Tg)

)
6: xN+1 ← argmax

x′∈Ψ

A(x′; β, θ(Tg))

7: yN+1 ← f (xN+1) + ε
8: D ← D ∪ {(xN+1, yN+1)}
9: end for

10: ymax ← maxDy, xmax ← argmax
x∈Dx

Dy

11: return xmax, ymax
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notes:
· Lines 2–4: Tuning the KPs via GD;
· Lines 6–8: Decisions regarding the next search point and observation;
· Lines 10–11: Obtain an approximate solution.
“GD”: gradient descent, “BO”: Bayesian optimization

2.4. Indices

The GPBO search performance depends on the training and generalization errors of
the surrogate model. Therefore, the training and generalization errors are, respectively,
defined as

Et(θ) =
1
N

N

∑
n=1

(yn −E[yn|xn,D, θ])2, (21)

Ev(θ) =
1
|Ψ| ∑

x∈Ψ

( f (x)−E[y|x,D, θ])2. (22)

Moreover, the GPBO search performance depends on whether the next search point xN+1
and past observed points x1, · · · , xN are close, i.e., if the search is performed only near past
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observation points, the search performance is poor. Therefore, we determine whether they
are close to each other as follows:

min{||xN+1 − xn||2 | n = 1, · · · , N} < ω (23)

where ω denotes the threshold value. When the minimum distance on the left side is less
than ω, the next search point xN+1 is close to the previously observed points x1, · · · , xN .

Furthermore, whether the KP vector θ′(Tg) obtained as Tg times GD has converged is
determined as follows:

||θ′(Tg) − θ′(Tg−1)||2
||θ′(Tg−1)||2

< τ (24)

where τ is the threshold for the convergence criterion. The term on the left side is called the
“relative change in parameters,” and it is widely used as a convergence criterion [30–32].

Table 1. Input values for Algorithm 1. {·} is a set consisting of multiple elements, i.e., multiple
patterns were adopted.

Parameters Value(s)

Maximum number of GD iterations Tg {0, 50, 100, · · · , 500}
GD learning rate γ 0.01

Maximum number of BO iterations Tb 50
Exploration weight β {1, 5}

Initial KP θ(0) [1 1 1]>

Search space Ψ Equation (25)
Black-box function f (x) Equation (25)

Observation noise ε 0
Initial observation dataset D Four points randomly selected in Ψ

3. Experiments
3.1. Objective and Outline

From the definition of A(x′; β, θ), the search performance of GPBO depends on the
KP θ. Due to the fact that the KP is obtained via GD, the maximum number of iterations
for updating Tg significantly affects the GPBO search performance. When the number of
iterations Tg is too high, the surrogate model is overfitted to the observation samples. In
such cases, a relatively poor search performance is expected. When the exploration weight
is set to a large value, because the observed samples occur in various regions in the input
domain, the generalization error caused by overfitting may be mitigated. In contrast, when
a small value is used for the exploration weight, because observation samples only occur in
limited regions, the generalization error can be larger. Due to the fact that the generalization
performance of the surrogate model affects the GPBO search performance, we consider
that the negative effect of the overfitted KPs on the search performance depends on the
exploration weight β. This hypothesis was verified through a simple numerical simulation.

We adopted the black-box function f (x) and its search space Ψ as follows:

f (x) =
1
3

sin
x1

3
sin

x2

3
− (x1)

2

300
− (x2)

2

300
+

5
6

, x ∈ Ψ := [−10, 10]× [−10, 10]. (25)

For simplicity, we set the observation noise to ε = 0. The black-box function is shown
in Figure 1. The adopted black-box function had two optimal solutions.

We used GPBO based on Algorithm 1, and the values of the input parameters are
presented in Table 1. To verify the aforementioned hypothesis, the effects of the degree of
kernel-parameter tuning and the exploration weight on the GPBO search performance were
analyzed. Therefore, we adopted multiple values for the maximum number of GD iterations
Tg and exploration weight β. Moreover, the initial observation dataset D comprised four
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randomly selected points x1, · · · , x4 from the search space Ψ. To enhance the reliability of
the results, we performed 20 experiments in which the same parameter conditions were
used but the random seed identification was changed.

Figure 1. Adopted black-box function f (x) defined by Equation (25).

3.2. Results and discussions

The relationship between the maximum number of GD iterations and the kernel-
parameter tuning is presented in Figure 2A. The figure shows the rate at which the KPs
θ(Tg) obtained via the GD of each Bayesian optimization step of 50 iterations converged. We
investigated whether the convergence was determined by Equation (24) for τ = 0.01. The
results represent the averages of 20 trials with different seeds. For β = 1 and 5, Figure 2A
suggests that the log-likelihood converged when the maximum number of GD iterations
Tg was set as more than approximately 300. Therefore, we regarded the KPs as overtuned
at >300 GD iterations.

Figure 2. Relationships between the maximum number of GD iterations and other indices. Figure (A)
presents the convergence achievement rates for Equation (24). (First, we averaged the results of all
the Bayesian optimization steps (Tb = 50). Then, the averages and standard deviations of the results
for 20 seeds were calculated.) Figure (B) presents the rates of finding two optimal solutions (total
of 20 seeds). Figure (C) presents the average number of optimization steps needed for finding two
optimal solutions calculated with only the results where two optimal solutions were successfully
found (total of 20 seeds). The error bars indicate the standard deviations.

Figure 2B shows the rate of finding the two optimal solutions in 20 trials with different
seeds. The maximum number of GD iterations was the degree of kernel-parameter tuning
via GD. For β = 1, a larger maximum number of GD iterations corresponded to worse
search performance. In contrast, for β = 5, even when the maximum number of GD
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iterations was large, the rates of finding solutions remained high. Therefore, we consider
that even if KPs are overtuned to the observation dataset, in cases of a large exploration
weight, GPBO can adequately search for solutions (of course, it is desirable to avoid
overfitting). Figure 2C presents the average number of Bayesian optimization steps needed
for finding two optimal solutions calculated using only the results where two optimal
solutions were successfully found. As shown, for a smaller value of β and a larger number
of KPs tuned, the optimal solutions were found faster. However, as shown in Figure 2B,
the rate of correctly finding the optimal solutions was lower. Therefore, for a small β, the
KPs should not be excessively tuned. In contrast, for a large β, the negative effect caused
by the overtuned KPs was not observed.

Next, we verified the training error Et(θ) and generalization error Ev(θ) defined
by Equations (21) and (22) for analyzing the effect of the exploration weight β on the
GPBO search performance. Figure 3A,B show the training errors. Figure 3C,D show
the generalization errors. We transformed them into log errors, that is, using log Et(θ)
instead of Et(θ). As the maximum number of GD iterations Tg and number of Bayesian
optimization steps tb increased, the training errors decreased. In contrast, in the latter
half of the Bayesian optimization process, a higher number of tuned KPs (i.e., larger Tg)
corresponded to larger generalization errors. When the generalization error of the surrogate
model was large, because the reliability of the first term of the acquisition function defined
by Equation (16) was low, the GPBO search performance was poor. From these results, for
β = 1, we attribute the degradation of the GPBO search performance to the overtuning
of the KPs, which increased the generalization error. For β = 5, even when the KPs were
overtuned, there were many regions with small generalization errors. Therefore, in this
case, we consider that the GPBO search performance was not degraded.

When observation samples occur in a limited region, the generalization error is large,
because the surrogate model based on these data cannot correctly estimate the output values
of various regions in the search space. To verify this hypothesis, we used Equation (23) with
ω = 0.5 and calculated the rate at which the next search point determined by Equation (17)
and the observed points were close. The results are presented in Figure 3E,F. Figure 3E
suggests that, when the exploration weight was set as β = 1, the GPBO searched for areas
close to previously observed samples. This was particularly true when large numbers
of KPs were tuned. For example, in the case of β = 1 and Tg = 500, when the number
of Bayesian optimization steps exceeded approximately 35 (tb > 35), the search area of
GPBO remained close to the previously observed samples. This trend was weaker for a
smaller value of Tg. Thus, there was a stronger tendency to search close to the previously
observed samples when the KPs were overtuned. Therefore, we considered the GPBO
search performance to be poor. Figure 3F suggests that, for β = 5, the GPBO searched
various areas even if the KPs were overtuned. In summary, from Figure 3E,F, the degree
of kernel-parameter tuning affected whether GPBO searched areas close to previously
observed samples. Moreover, a smaller exploration weight β corresponded to a higher risk.
Thus, for a smaller value of β, there should be more focus on kernel-parameter tuning.

Next, we present the changes in the surrogate model for each Bayesian optimization
step in Figures 4 and 5. These values were β = 1, 5, respectively. Due to the fact that we
cannot show the results for all the seeds, the results for a specific seed are shown. In the
case where no KPs were tuned, that is, Tg = 0, appropriate searches were not performed
regardless of β. For Tg = 0, Figure 3A–D indicate that the training and generalization errors
were large. We believe that, because the surrogate model was inappropriate, the GPBO
search was inappropriate.

With a small number of KPs tuned, i.e., Tg = 50, the average E generated from the
surrogate model nearly succeeded in reproducing the black-box function f (x) regardless of
β. Therefore, the rate of correctly finding the optimal solution was high (see Figure 2B).

Figures 4 and 5 suggest that, when the number of iterations of KP tuning was Tg = 500,
the search results depended on the exploration weight β. For β = 1, because the GPBO
searched only the neighborhood of the best point from the initial solutions, even if the
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search progressed, the output from the surrogate model E could not reproduce the black-
box function f (x). In contrast, for β = 5, because observation samples appeared in various
areas, even if the KPs were overtuned, the output of the surrogate model E reproduced the
black-box function f (x). The results indicate that the negative effect of overtuning the KPs
on the GPBO search performance can be mitigated by increasing the exploration weight β.

However, in both the β = 1 and 5 cases, when the number of iterations of KP tuning
increased (Tg = 500), the surrogate model output was inappropriate when the number of
BO steps tb was approximately 30–35 (the cases of Tg = 500 are shown in Figures 4 and 5).
In general, overfitting parameters to observed data increases the risk of reduced estimation
performance in areas where there are no observed data. Therefore, overfitting can easily
occur with high Tg values. Due to the fact that this occurs in both the cases of β = 1 and 5,
it is important not to overtune the KPs, regardless of the exploration weight. Although the
negative effects of overtuned KPs can be mitigated by increasing the exploration weight,
they cannot be completely eliminated.

Figure 3. (A,B) Training errors of surrogate models calculated using Equation (21) for each maximum
number of GD iterations; (C,D) generalization errors calculated using Equation (22); (E,F) rates of
exploring the neighborhood of past observed samples. The values of (A–D) are the averages of
20 seeds, and those of (E,F) are the rates of 20 seeds. The white markers indicate the timings of
finding two optimal solutions, and the percentages are the success rates of finding them in 20 trials
with different seeds. These results are presented in Figure 2B,C. In the cases of β = 1, with a larger
maximum number of GD iterations, although a solution was found faster, the success rate was worse.
At β = 5, no such trend was observed.
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Figure 4. Average E, standard deviation
√
V of the surrogate model, and the acquisition function

E+ β
√
V for the maximum number of GD iterations Tg and exploration weight β = 1 calculated

using Equations (3), (4) and (16). The white circles represent initial points, and the black circles
represent observation points selected by the acquisition function.



Mathematics 2023, 11, 3067 11 of 13

Figure 5. Average E, standard deviation
√
V of the surrogate model, and the acquisition function

E+ β
√
V for the maximum number of GD iterations Tg and exploration weight β = 5 calculated

using Equations (3), (4) and (16). The white circles represent initial points, and the black circles
represent observation points selected by the acquisition function.

4. Conclusions

The exploration weight affects the degree of exploration of GPBO. Therefore, the
GPBO search performance depends on the exploration weight. In this study, we analyzed
the mitigation of the negative effect of overtuning KPs as another effect of the exploration
weight. The results indicate that we should pay attention to overtuning the KPs in the case
of Bayesian optimization with a small exploration weight. It is preferable to use methods
for avoiding the overtuning of KPs, e.g., early stopping of the GD. In contrast, for large
exploration weights, the solution discovery rate is high even when overtuning the KPs.
These findings are useful in all situations wherein GPBO is used, e.g., hyperparameter
tuning in machine learning.

The results and discussions presented in this paper are entirely based on the black-
box function defined by Equation (25). The function has two optimal solutions clearly
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visible in the domain. However, it is not known whether the results of this study would
be reproduced if flat functions such as the Beale function [33] or the Goldstein–Price
function [34] (the minimum search) were adopted. As shown in Figure 6, the structure of
these functions is apparent after log transformation. A similar result can be obtained with a
flat function, or a logarithmic transformation may have to be performed. These points are
unclear and will be discussed in a future work.

Figure 6. (A) Beale function [33], (B) log-transformed Beale function, (C) Goldstein–Price function [34],
and (D) log-transformed Goldstein–Price function. The white diamond mark represents the global
optimal solution.
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