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Abstract: An initial boundary value problem is considered for one-dimensional isothermal equations
of the dynamics of viscous compressible multicomponent media, which are a generalization of the
Navier–Stokes equations. The stabilization of the solution to the initial boundary value problem
is proven while the time tends to infinity, without simplifying assumptions for the structure of the
viscosity matrix, except for the standard physical requirements of symmetry and positive definiteness.
It is shown that the stabilization of the solution is exponential.
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1. Introduction

Both physics and mathematics are concerned with constructing models for the motion
of multicomponent media and solving mathematical problems that arise. Nowadays,
this is a relevant area of research, yet the field is little studied. No unified approach has
been developed so far, and there is no advanced mathematical theory about the existence,
uniqueness, and properties of solutions to initial boundary value problems that arise in
constructing models. A detailed review of this problem can be found in monographs [1,2]
and in papers [3,4]. This paper is aimed at a mathematical study, but in view of the physical
grounds of the problem it is necessary to give some brief explanations of the mechanical
meaning of certain assertions.

In this work, one of the numerous options for constructing models of movement of
multicomponent media, namely a multi-velocity model, is chosen. This means that at
each point of space there are all components of the medium that are in the same phase,
but each has its own local velocity. The interaction between the components can occur
through viscous friction and exchange of momentum, as well as through heat transfer, in
the heat conductive version. The model mentioned represents a certain generalization of
the well-known system of Navier–Stokes equations of the dynamics of a one-component
viscous compressible medium and includes the equations of continuity and momentum, as
well as the energy equation in the heat conductive case. The characteristic feature of these
equations, in addition to their nonlinearity, is the presence of higher order derivatives of the
velocities of all components in the momentum (and energy) equations, due to the composite
structure of the viscous stress tensors [1,2,5–9]. This specificity of multicomponent media
can be described by means of the concept of viscosity matrices. Unlike the one-component
case in which the viscosities are scalars, in the multicomponent case they form matrices
whose entries describe viscous friction. Diagonal entries describe viscous friction within
each component, and non-diagonal entries describe friction between the components. In
the case of diagonal viscosity matrices, the momentum equations are probably connected
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via the lower order terms only. In this paper, the more complicated case of off-diagonal
(filled) viscosity matrices is under consideration.

There are several important technological problems where multicomponent media
with off-diagonal viscosity matrices are used. For example, one can mention a variety
of problems involving lubrication in machining operations such as cold rolling, milling,
cutting and grinding. Mixture theory has been used to study a variety of lubrication
problems: the problem of cold rolling by Wang et al. [10], lubrication with bubbly oils
(i.e., oil–gas mixtures) by Chamniprasart et al. [11], lubrication of an elastohydrodynamic
conjunction by Wang et al. [12] and the flow of oil–water mixtures in a journal bearing by
Al-Sharif et al. [13]. A detailed discussion of lubrication with liquid–liquid and liquid–gas
mixtures can be found in the book by Szeri [14]. The goal of this research is to conduct a
mathematical study of the problem for the equations of the multicomponent media dynam-
ics with off-diagonal viscosity matrices, that is, to investigate the asymptotic behavior of a
non-stationary solution as t→ +∞ to the initial boundary value problem for isothermal
(non heat conductive) equations of viscous compressible multicomponent media in the
case of one-dimensional movement in a bounded domain with impenetrable boundaries.
Therefore, known results in this area should be discussed.

As mentioned above, the multi-velocity model of the viscous compressible multi-
component media dynamics under consideration is a certain generalization of the well-
known Navier–Stokes system of equations, which describes flows of viscous compressible
one-component media and, of course, mathematical results for the viscous compressible
multicomponent media appeared after a certain progress for the Navier–Stokes equations
had been made. The stabilization of solutions to one-dimensional Navier–Stokes equations
is studied in [15–22]. The unique solvability and asymptotic behavior (as t→ +∞) of the
solution to the considered one-dimensional equations of viscous compressible multicom-
ponent media in the polytropic case are studied in [23–25]. Similar questions for related
one-dimensional models of multicomponent media are discussed in [26–36]. Thus, the
novelty of the paper consists of the immediate consideration of such diverse factors as
multicomponent medium, viscosity, compressibility and intercomponent viscous friction
with off-diagonal viscosity matrices. Additional information and prospects can be taken
from [37–39].

Notations of functional spaces [40,41] are standard; Lp(a, b) is the Banach space which
consists of all functions measurable on (a, b) which are integrable on (a, b) with the power
p normed as

‖u‖Lp(a,b) =

 b∫
a

|u|p dx


1
p

;

W l
p(a, b) is the Banach space which consists of all elements of Lp(a, b) which possess

distributional derivatives up to order l integrable on (a, b) with the power p normed as

‖u‖W l
p(a,b) =

 l

∑
i=0

b∫
a

∣∣∣∣∂iu
∂xi

∣∣∣∣p dx


1
p

;

◦
W l

p(a, b) is the set of elements of W l
p(a, b) supported in (a, b); Ck[a, b] is the Banach space

which consists of all functions continuous in [a, b] and which possess derivatives up to
order k, continuous in [a, b] and normed as

‖u‖Ck [a,b] =
k

∑
i=0

sup
[a,b]

∣∣∣∣∂iu
∂xi

∣∣∣∣,
and, C0[a, b] is denoted as C[a, b].

The structure of the work is as follows. Section 2 contains the statement of the initial
boundary value problem and the formulation of the result of the article, namely, Theorem 1
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on the stabilization of a non-stationary solution. In Section 3, a priori estimates that are not
dependent on the time are constructed, on the basis of which, in Section 4, the stabilization
of the solution is proved and the proof of Theorem 1 is completed. In Section 5, estimates
of the rate of stabilization of the solution to the non-stationary solution are made and
Theorem 2 is formulated, which states that the rate of stabilization is exponential. Section 6
presents a summary of the results of the work.

2. Statement of the Initial Boundary Value Problem and Formulation of the Result

The paper is aimed at a mathematical study of the asymptotic behavior of the solution
at t → +∞ of the following initial boundary value problem for isothermal equations of
viscous compressible multicomponent media in the case of one-dimensional movement in
a bounded domain with impenetrable boundaries [1–4]:

∂ρ

∂t
+

∂(ρv)
∂x

= 0, (1)

ρ
∂ui
∂t

+ ρv
∂ui
∂x

+ K
∂ρ

∂x
=

N

∑
j=1

νij
∂2uj

∂x2 , i = 1, . . . , N, (2)

ρ|t=0 = ρ0(x), ui|t=0 = u0i(x), i = 1, . . . , N, (3)

ui|x=0 = ui|x=1 = 0, i = 1, . . . , N, (4)

where ρ, ui, i = 1, . . . , N are the density and velocity of the medium components, respec-
tively, and they are the sought functions of time t ∈ [0, T], 0 < T < +∞, and of the point

x of the flow domain Ω = {x ∈ R | 0 < x < 1}, v =
1
N

N

∑
i=1

ui is the average velocity of

the medium, N > 2 is the number of components, K = const > 0, and constant viscosity
coefficients νij, i, j = 1, . . . , N form a symmetric matrix N > 0.

The proof of the existence and uniqueness of the regular generalized solution to
problem (1)–(4) in the domain (0, T) × (0, 1) with any final T > 0, for ρ0 ∈ W1

2 (0, 1),

ρ0 > const > 0, u0i ∈
◦

W1
2 (0, 1), i = 1, . . . , N, repeats, step by step, the proof of the

unique solvability of the initial boundary value problem for the one-dimensional equations
of viscous compressible multicomponent media in a polytropic case, presented in the
works [23,24], taking into account the further a priori estimates.

It will be useful to resort to mass Lagrangian coordinates in the study of Equations (1)

and (2). Let us consider t and y(x, t) =
x∫

0

ρ(s, t) ds as new independent variables. Then,

Equations (1) and (2) take the form

∂ρ

∂t
+ ρ2 ∂v

∂y
= 0, v =

1
N

N

∑
j=1

uj, (5)

∂ui
∂t

+ K
∂ρ

∂y
=

N

∑
j=1

νij
∂

∂y

(
ρ

∂uj

∂y

)
, i = 1, . . . , N. (6)

After that, the flow domain Ω transforms to the domain Ω̃ = {y ∈ R | 0 < y < d},

where d =

1∫
0

ρ0(x) dx > 0, and the initial and boundary conditions arrive at the form

ρ|t=0 = ρ̃0(y), ui|t=0 = ũ0i(y), i = 1, . . . , N, (7)

ui|y=0 = ui|y=d = 0, i = 1, . . . , N. (8)
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The result of the article is the following assertion.

Theorem 1. Assume that ρ0 ∈ W1
2 (0, 1), ρ0 > const > 0, u0i ∈

◦
W1

2 (0, 1), i = 1, . . . , N. Then,
ρ→ d, ui → 0, i = 1, . . . , N, as t→ +∞, in the norm of the space W1

2 (0, 1).

Proof. Let us obtain a priori estimates for the solution to the problem (1)–(4), which would
be uniform in t, and from which the stabilization of the solution follows.

3. A Priori Estimates

Let us multiply Equation (2) by ui, summarize in i and integrate in y; thus, using (1),
the equality

1
2

d
dt

N

∑
i=1

1∫
0

ρu2
i dx +

N

∑
i,j=1

νij

1∫
0

(∂ui
∂x

)(∂uj

∂x

)
dx = −K

N

∑
i=1

1∫
0

ui

( ∂ρ

∂x

)
dx (9)

is obtained. Since N > 0, the second summand in the left-hand side of (9) satisfies the
inequality (everywhere, Ck, k ∈ N stand for various positive constants which depend on
the values given in brackets, but do not depend on t)

N

∑
i,j=1

νij

1∫
0

(∂ui
∂x

)(∂uj

∂x

)
dx > C1(N)

N

∑
i=1

1∫
0

(∂ui
∂x

)2
dx. (10)

Multiplying (1) by ln ρ− ln d and integrating in x, we obtain for the right-hand side
of (9)

−K
N

∑
i=1

1∫
0

ui

( ∂ρ

∂x

)
dx = KN

N

∑
i=1

1∫
0

ρ
( ∂v

∂x

)
dx = −KN

d
dt

1∫
0

(ρ ln ρ− (ln d + 1)ρ + d) dx. (11)

Thus, using (10) and (11), from (9) we derive

1
2

d
dt

N

∑
i=1

1∫
0

ρu2
i dx + KN

d
dt

1∫
0

(ρ ln ρ− (ln d + 1)ρ + d) dx + C1

N

∑
i=1

1∫
0

(∂ui
∂x

)2
dx 6 0. (12)

In the Lagrangian coordinates (t, y), the formula (12) looks like

1
2

d
dt

N

∑
i=1

d∫
0

u2
i dy + KN

d
dt

d∫
0

1
ρ
(ρ ln ρ− (ln d + 1)ρ + d) dy + C1

N

∑
i=1

d∫
0

ρ
(∂ui

∂y

)2
dy 6 0. (13)

From (13), after integration in t, we obtain the estimate

N

∑
i=1

d∫
0

u2
i dy +

d∫
0

ρ ln ρ− (ln d + 1)ρ + d
ρ

dy +
N

∑
i=1

t∫
0

d∫
0

ρ
(∂ui

∂y

)2
dydτ 6 C2, (14)

where C2 = C2
(
C1, K, N, d, inf

(0,d)
ρ̃0, sup

(0,d)
ρ̃0,
{
‖ũ0i‖L2(0,d)

})
. Note that all terms in the left-

hand side of (14) are nonnegative.
Let us rewrite Equation (6) as

1
N

N

∑
j=1

ν̃ij
∂uj

∂t
+

K
N

(
N

∑
j=1

ν̃ij

)
∂ρ

∂y
=

1
N

∂

∂y

(
ρ

∂ui
∂y

)
, i = 1, . . . , N, (15)
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where ν̃ij, i, j = 1, . . . , N are the entries of the matrix Ñ = N−1. Summing (15) in i, we obtain

1
N

N

∑
i,j=1

ν̃ij
∂uj

∂t
+ K̃

∂ρ

∂y
=

∂

∂y

(
ρ

∂v
∂y

)
, (16)

where K̃ =
K
N

(
N

∑
i,j=1

ν̃ij

)
> 0. Equation (5) implies that

ρ
∂v
∂y

= −∂ ln ρ

∂t
. (17)

Substituting ρ
∂v
∂y

from (17) into the equality (16), we arrive at the relation

∂2 ln ρ

∂t∂y
+ K̃

∂ρ

∂y
= − 1

N

N

∑
i,j=1

ν̃ij
∂uj

∂t
. (18)

Let us multiply (18) by
∂ ln ρ

∂y
and integrate in y, then we obtain the equality

1
2

d
dt

d∫
0

(∂ ln ρ

∂y

)2
dy + K̃

d∫
0

ρ
(∂ ln ρ

∂y

)2
dy = − 1

N

N

∑
i,j=1

ν̃ij

d∫
0

(∂uj

∂t

)(∂ ln ρ

∂y

)
dy. (19)

The right-hand side of (19) can be converted via integration by parts and
using (8) and (17):

− 1
N

N

∑
i,j=1

ν̃ij

d∫
0

(∂uj

∂t

)(∂ ln ρ

∂y

)
dy = − d

dt

 1
N

N

∑
i,j=1

ν̃ij

d∫
0

uj

(∂ ln ρ

∂y

)
dy


+

1
N

N

∑
i,j=1

ν̃ij

d∫
0

ρ
(∂uj

∂y

)(∂v
∂y

)
dy. (20)

Hence, from (19), it follows that

1
2

d
dt

d∫
0

(∂ ln ρ

∂y

)2
dy + K̃

d∫
0

ρ
(∂ ln ρ

∂y

)2
dy = − d

dt

 1
N

N

∑
i,j=1

ν̃ij

d∫
0

uj

(∂ ln ρ

∂y

)
dy


+

1
N

N

∑
i,j=1

ν̃ij

d∫
0

ρ
(∂uj

∂y

)(∂v
∂y

)
dy. (21)

Let us integrate (21) in t:

1
2

d∫
0

(∂ ln ρ

∂y

)2
dy + K̃

t∫
0

d∫
0

ρ
(∂ ln ρ

∂y

)2
dydτ

=
1
2

d∫
0

1
ρ̃2

0

(∂ρ̃0

∂y

)2
dy− 1

N

N

∑
i,j=1

ν̃ij

d∫
0

uj

(∂ ln ρ

∂y

)
dy

+
1
N

N

∑
i,j=1

ν̃ij

d∫
0

ũ0j

ρ̃0

(∂ρ̃0

∂y

)
dy +

1
N

N

∑
i,j=1

ν̃ij

t∫
0

d∫
0

ρ
(∂uj

∂y

)(∂v
∂y

)
dydτ.

The last equality and (14) lead to the estimate



Mathematics 2023, 11, 3065 6 of 11

d∫
0

(∂ ln ρ

∂y

)2
dy +

t∫
0

d∫
0

ρ
(∂ ln ρ

∂y

)2
dydτ 6 C3, (22)

where C3 = C3

(
C2, Ñ, K̃, N, inf

(0,d)
ρ̃0, ‖ρ̃0‖W1

2 (0,d), {‖ũ0i‖L2(0,d)}
)

.

Let us note that Equation (5) implies, for every t ∈ [0, T], the existence of a point
ỹ(t) ∈ [0, d] such that

ρ(t, ỹ(t)) = d. (23)

Since

ln ρ(t, y) = ln ρ(t, ỹ(t)) +

y∫
ỹ(t)

∂(ln ρ(t, s))
∂s

ds,

then by the Hölder inequality, taking into account (22) and (23), we deduce that

| ln ρ(y, t)| 6 | ln d|+
√

d
∥∥∥∥∂ ln ρ

∂y

∥∥∥∥
L2(0,d)

6 C4(C3, d),

and we immediately conclude that

0 <
1

C5
6 ρ(t, y) 6 C5 < +∞, C5 = C5(C4). (24)

Thus, from (14), (22) and (24), we obtain the estimate

N

∑
i=1

t∫
0

d∫
0

(∂ui
∂y

)2
dydτ +

d∫
0

(∂ρ

∂y

)2
dy +

t∫
0

d∫
0

(∂ρ

∂y

)2
dydτ 6 C6(C2, C3, C5). (25)

In order to derive the next group of estimates, we multiply (6) by
∂2ui
∂y2 and integrate

in y; thus, we obtain

1
2

d
dt

d∫
0

(∂ui
∂y

)2
dy +

N

∑
j=1

νij

d∫
0

ρ
(∂2ui

∂y2

)(∂2uj

∂y2

)
dy = −

N

∑
j=1

νij

d∫
0

(∂ρ

∂y

)(∂2ui
∂y2

)(∂uj

∂y

)
dy

+ K
d∫

0

(∂ρ

∂y

)(∂2ui
∂y2

)
dy. (26)

Let us sum Equation (26) over i and integrate over t, then we obtain

1
2

N

∑
i=1

d∫
0

(∂ui
∂y

)2
dy +

N

∑
i,j=1

νij

t∫
0

d∫
0

ρ
(∂2ui

∂y2

)(∂2uj

∂y2

)
dydτ =

1
2

N

∑
i=1

d∫
0

(∂ũ0i
∂y

)2
dy

−
N

∑
i,j=1

νij

t∫
0

d∫
0

(∂ρ

∂y

)(∂2ui
∂y2

)(∂uj

∂y

)
dydτ + K

N

∑
i=1

t∫
0

d∫
0

(∂ρ

∂y

)(∂2ui
∂y2

)
dydτ. (27)

The left-hand side of (27) satisfies the estimate

1
2

N

∑
i=1

d∫
0

(∂ui
∂y

)2
dy +

N

∑
i,j=1

νij

t∫
0

d∫
0

ρ
(∂2ui

∂y2

)(∂2uj

∂y2

)
dydτ

> C7(C1, C5)
( N

∑
i=1

d∫
0

(∂ui
∂y

)2
dy +

N

∑
i=1

t∫
0

d∫
0

(∂2ui
∂y2

)2
dydτ

)
. (28)
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Due to (25) and the inequalities (i = 1, . . . , N)∥∥∥∥∂ui
∂y

∥∥∥∥2

C[0,d]
6 2

∥∥∥∥∂ui
∂y

∥∥∥∥
L2(0,d)

∥∥∥∥∂2ui
∂y2

∥∥∥∥
L2(0,d)

, (29)

the second summand in the right-hand side of (27) satisfies the estimate

−
N

∑
i,j=1

νij

t∫
0

d∫
0

(∂ρ

∂y

)(∂2ui
∂y2

)(∂uj

∂y

)
dydτ 6

C7

4

N

∑
i=1

t∫
0

d∫
0

(∂2ui
∂y2

)2
dydτ + C8, (30)

where C8 = C8(C6, C7, N, N). The third summand in the right-hand side of (27) can be
estimated as follows:

K
N

∑
i=1

t∫
0

d∫
0

(∂ρ

∂y

)(∂2ui
∂y2

)
dydτ 6

C7

4

N

∑
i=1

t∫
0

d∫
0

(∂2ui
∂y2

)2
dydτ + C9(C6, C7, K, N). (31)

Thus, from (27), due to (28), (30) and (31), the estimate

N

∑
i=1

d∫
0

(∂ui
∂y

)2
dy +

N

∑
i=1

t∫
0

d∫
0

(∂2ui
∂y2

)2
dydτ 6 C10

(
C7, C8, C9,

{
‖ũ0i‖W1

2 (0,d)

})
(32)

follows. Finally, integrating (26) in t, we arrive at the inequalities

t∫
0

∣∣∣∣∣∣ d
dτ

d∫
0

(∂ui
∂y

)2
dy

∣∣∣∣∣∣dτ 6 C11(C5, C6, C10, N, K, N), i = 1, . . . , N. (33)

4. Stabilization of the Solution with an Unlimited Increase in Time

From (25) and (33), the following convergence follows∥∥∥∥∂ui
∂y

∥∥∥∥
L2(0,d)

→ 0, i = 1, . . . , N (34)

as t → +∞. Differentiating (5) with respect to y and multiplying by
∂ρ

∂y
, using (29), we

arrive at the estimate
t∫

0

∣∣∣∣∣∣ d
dτ

d∫
0

(∂ρ

∂y

)2
dy

∣∣∣∣∣∣dτ 6 C12(C5, C6, C10, N). (35)

Hence, as t→ +∞, ∥∥∥∥∂ρ

∂y

∥∥∥∥
L2(0,d)

→ 0. (36)

Thus, it is proved that (see (23)) in the norm of W1
2 (0, d)

ui → 0, i = 1, . . . , N, ρ→ d (37)

as t → +∞. Now, it can be easily verified that the same convergence takes place in the
Euler variables in the norm of the space W1

2 (0, 1). Theorem 1 is proved.

5. Estimation of the Stabilization Rate

The estimates obtained above prove the fact of stabilization of the solution to
problem (1)–(4), but do not give information about the rate of convergence. Since
Equations (1) and (2) are a generalization of one-dimensional Navier–Stokes equations, for
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which the exponential stabilization rate is well known [18,19,22], it is reasonable to expect
the same stabilization rate for the solution to the problem (1)–(4), i.e., in the multicompo-
nent case.

In order to verify this hypothesis, Equation (2) is multiplied by −σ

ρ

x∫
0

(ρ − d) ds,

σ = const > 0, summed in i and integrated by x, and after that, using the relations

−σ
N

∑
i=1

1∫
0

(
∂ui
∂t

) x∫
0

(ρ− d) ds

dx = −σ
d
dt

N

∑
i=1

1∫
0

ui

 x∫
0

(ρ− d) ds

dx− σN
1∫

0

ρv2 dx,

−σ
N

∑
i=1

1∫
0

v
(

∂ui
∂x

) x∫
0

(ρ− d) ds

dx =
σN
2

1∫
0

(ρ− d)v2 dx,

−σ
N

∑
i=1

1∫
0

K
(

1
ρ

)(
∂ρ

∂x

) x∫
0

(ρ− d) ds

dx = σKN
1∫

0

(ln ρ− ln d)(ρ− d) dx,

− σ

1∫
0

(
1
ρ

)( N

∑
i,j=1

νij
∂2uj

∂x2

) x∫
0

(ρ− d) ds

dx = σ
N

∑
i,j=1

νij

1∫
0

(
1
ρ

)(
∂uj

∂x

)
(ρ− d) dx

+ σ
N

∑
i,j=1

νij

1∫
0

(
∂

∂x

(
1
ρ

))(
∂uj

∂x

) x∫
0

(ρ− d) ds

dx,

the equality

− σ
d
dt

N

∑
i=1

1∫
0

ui

 x∫
0

(ρ− d) ds

dx− σN
2

1∫
0

(ρ + d)v2 dx

+ σKN
1∫

0

(ln ρ− ln d)(ρ− d) dx− σ
N

∑
i,j=1

νij

1∫
0

(
1
ρ

)(
∂uj

∂x

)
(ρ− d) dx

− σ
N

∑
i,j=1

νij

1∫
0

(
∂

∂x

(
1
−ρ

))(
∂uj

∂x

) x∫
0

(ρ− d) ds

dx = 0 (38)

is obtained. Summing (12) and (38), the inequality

dF(t)
dt

+ G(t) 6 0 (39)

is obtained, where

F(t) = −σ
N

∑
i=1

1∫
0

ui

 x∫
0

(ρ− d) ds

dx +
1
2

N

∑
i=1

1∫
0

ρu2
i dx

+ KN
1∫

0

(ρ ln ρ− (ln d + 1)ρ + d) dx, (40)
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G(t) = −σN
2

1∫
0

(ρ + d)v2 dx + σKN
1∫

0

(ln ρ− ln d)(ρ− d) dx

− σ
N

∑
i,j=1

νij

1∫
0

(
1
ρ

)(
∂uj

∂x

)
(ρ− d) dx

− σ
N

∑
i,j=1

νij

1∫
0

(
∂

∂x

(
1
ρ

))(
∂uj

∂x

) x∫
0

(ρ− d) ds

dx + C1

N

∑
i=1

1∫
0

(
∂ui
∂x

)2
dx. (41)

In view of the estimates (see (24) and (25))

1
C13

(ρ− d)2 6 ln ρ− ln d +
d
ρ
− 1 6 C13(ρ− d)2, C13 = C13(C5, d), (42)

1
C14

(ρ− d)2 6 (ln ρ− ln d)(ρ− d) 6 C14(ρ− d)2, C14 = C14(C5, d), (43)

σ

∣∣∣∣∣∣
N

∑
i=1

1∫
0

ui

 x∫
0

(ρ− d) ds

dx

∣∣∣∣∣∣ 6 1
4

N

∑
i=1

1∫
0

ρu2
i dx + σ2C15(C5, N)

1∫
0

(ρ− d)2 dx, (44)

σN
2

1∫
0

(ρ + d)v2 dx 6 σC16(C5, d)
N

∑
i=1

1∫
0

(
∂ui
∂x

)2
dx, (45)

σ

∣∣∣∣∣∣
N

∑
i,j=1

νij

1∫
0

(
1
ρ

)(
∂uj

∂x

)
(ρ− d) dx

∣∣∣∣∣∣ 6 C1

8

N

∑
i=1

1∫
0

(
∂ui
∂x

)2
dx

+ σ2C17(C1, C5, N, N)

1∫
0

(ρ− d)2 dx, (46)

σ

∣∣∣∣∣∣
N

∑
i,j=1

νij

1∫
0

(
∂

∂x

(
1
ρ

))(
∂uj

∂x

) x∫
0

(ρ− d) ds

dx

∣∣∣∣∣∣ 6 C1

8

N

∑
i=1

1∫
0

(
∂ui
∂x

)2
dx

+ σ2C18(C1, C5, C6, N, N)

1∫
0

(ρ− d)2 dx, (47)

it follows that, for all σ ∈
(

0, min

(√
KN

C13C15
,

C1

4C16
,

KN
2C14(C17 + C18)

))
, the following

information for F(t) and G(t) is valid:

1
C19

 1∫
0

(ρ− d)2 dx +
N

∑
i=1

1∫
0

u2
i dx

 6 F(t) 6 C19

 1∫
0

(ρ− d)2 dx +
N

∑
i=1

1∫
0

u2
i dx

, (48)

G(t) > C20

 1∫
0

(ρ− d)2 dx +
N

∑
i=1

1∫
0

u2
i dx

, (49)

where C19 = C19(C5, C13, C15), C20 = C20(C1, C14, C16, C17, C18, σ, K, N). Then, from (39),
taking into account (48) and (49), we have

dF(t)
dt

+ κF(t) 6 0, κ = κ(C19, C20) = const > 0, (50)
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since G(t) > κF(t). From (50), the estimate

1∫
0

(ρ− d)2 dx +
N

∑
i=1

1∫
0

u2
i dx 6 e−κtC21(C19)

 1∫
0

(ρ0 − d)2 dx +
N

∑
i=1

1∫
0

u2
0i dx

 ∀ t > 0, (51)

immediately follows, which confirms the validity of our hypothesis about the exponential
rate of stabilization. Hence, the following assertion has been proven.

Theorem 2. Let the conditions of Theorem 1 be valid. Then, the solution to problem (1)–(4) satisfies
the estimate (51) for the rate of convergence.

6. Conclusions

For the system of differential equations of isothermal viscous compressible multicom-
ponent media with a non-diagonal, symmetric and positive-definite viscosity matrix, the
asymptotic behavior (as t→ +∞) of the solution to the initial boundary value problem has
been analyzed in the case of one spatial variable. The main difficulty was to obtain a priori
estimates. To overcome this, the mass Lagrangian coordinates were used. As a result, new
a priori estimates are obtained and the stabilization of the solution to the initial boundary
value problem is proven. In addition, the rate of convergence of the solution was estimated,
which allows us to argue that the stabilization rate is exponential.
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