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Abstract: Accurate measurement of micro-climates that include temperature and relative humidity
is the bedrock of the control and management of plant life in protected cultivation systems. Hence,
the use of a large number of sensors distributed within the greenhouse or mobile sensors that can be
moved from one location to another has been proposed, which are both capital and labor-intensive.
On the contrary, accurate measurement of micro-climates can be achieved through the identification
of the optimal number of sensors and their optimal locations, whose measurements are representative
of the micro-climate in the entire greenhouse. However, given the number of sensors, their optimal
locations are proven to vary from time to time as the outdoor weather conditions change. Therefore,
regularly shifting the sensors to their optimal locations with the change in outdoor conditions is cost-
intensive and may not be appropriate. In this paper, a framework based on the dense neural network
(DNN) is proposed to predict the measurements (temperature and humidity) corresponding to the
optimal sensor locations, which vary relative to the outdoor weather, using the measurements from
sensors whose locations are fixed. The employed framework demonstrates a very high correlation
between the true and predicted values with an average coefficient value of 0.91 and 0.85 for both
temperature and humidity, respectively. In other words, through a combination of the optimal
number of fixed sensors and DNN architecture that performs multi-channel regression, we estimate
the micro-climate of the greenhouse.

Keywords: greenhouse; temperature; relative humidity; optimal sensor locations; multi-channel
regression; dense neural network

MSC: 68T20

1. Introduction

Agricultural products are crucial to the sustenance of humans and livestock. However,
their production is faced with several challenges such as extreme weather conditions,
soil erosion, pests, and disease outbreaks, which all have far-reaching effects on crop
productivity and growth rate [1,2]. Protected cultivation systems such as greenhouses
offer optimal production of agricultural products throughout the year by the appropriate
control of micro- and macro-environments suitable for plant growth [3]. Furthermore,
protected cultivation systems result in higher income compared to open-field cultivation as
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a result of their higher returns per unit area [4]. Hence, their adoption is increasing across
continents [5]. Despite these benefits, the operation of greenhouses is non-linear in nature
due to changing atmospheric conditions [6] and therefore requires intricate monitoring
and control to obtain optimal yield. In other words, maintaining suitable temperature,
which directly affects the humidity, is essential in greenhouse environmental control as
these affect crop growth as well as quality and quantity [7–9]. Specifically, while effective
temperature control improves plant growth and minimizes the energy consumed by the
system, an appropriate relative humidity range is required to prevent fungal infection and
control transpiration [10].

To facilitate monitoring and control in protected cultivation systems, the integration
of different advanced sensing technologies becomes eminent [4,11,12]. Basically, sensors
installed in greenhouses range from those used to monitor and control micro-climatic
conditions such as temperature and relative humidity to soil-related parameters such as
moisture, PH, and several others, which are vital for maintaining optimal conditions for
favorable crop productivity and growth. In terms of micro-climates, previous studies have
shown that monitoring and controlling the temperature and relative humidity within a
greenhouse is complex and challenging due to drastic variations in daily and seasonal
atmospheric conditions [13].

Generally, sensors are installed arbitrarily in protected systems based on factors such
as grower resources, the size of the facility, and technical know-how [14]. Furthermore,
in conventional settings, as many sensors as possible are usually installed to facilitate
the necessary measurements. However, the use of multiple randomly/inappropriately
placed sensors fails to provide measurements that are true estimates of greenhouse micro-
climates. In addition, employing a large number of sensors results in large quantities of
data that require efficient data management. In other words, the quality of information
and consequently the estimation accuracy of micro-climates depend heavily on the number
of sensors and their locations/placements. Therefore, optimizing the number of sensors
and their locations, though a challenging task, is crucial as it forms the basis for accurate
measurement of micro-climates and consequently optimal control of the cultivation system.
Additionally, it reduces the overall operating cost of protected cultivation systems.

In the literature, methods have been proposed based on approximate models of partial
differential equations (PDEs), such as the error covariance matrix of the Kalman filter
or the finite difference method [15,16]. However, these methods were applied without
any general systematic procedure to linear systems modeled based on a small number
of sensors. Meanwhile, it is important to know that distributed processes, such as in
protected cultivation systems, are intrinsically non-linear with infinite dimensions. There-
fore, such methods are not appropriate for highly non-linear protected cultivation systems
that feature high-dimensional representations. Consequently, different methods, such as
genetic algorithms [17,18], Harris hawks optimization [19], the Fisher information ma-
trix [20], the exponential-time exact algorithm [21], the system reliability criterion [22], and
Bayesian optimization [23], have been proposed for optimal sensor placement in different
application domains.

In terms of optimal sensor placement in protected cultivation systems (greenhouses),
Yeon Lee et al. [14] proposed a combination of an error-based and entropy-based approach
for the optimal location of temperature sensors. In the work, based on the reference tem-
perature obtained by averaging the temperature data obtained from all the measurement
locations, sensor locations with measurements statistically close to reference values were
selected. Furthermore, the entropy method was used to realize locations that are greatly
influenced by external environmental conditions. Based on these two methods, optimal
sensor locations that provide representative data of the entire greenhouse condition, as well
as understanding regions with high variations in temperature, were realized. In order to
maximize the coverage area (a non-occlusion coverage scheme) in a vegetable-cultivating
greenhouse, Wu et al. [24] proposed a hierarchical cooperative particle swarm optimiza-
tion algorithm for directional sensor placement. Specifically, the decision variables were



Mathematics 2023, 11, 3052 3 of 14

modeled in terms of the global effective coverage of each sensor and consequently the
orientation angles of each sensor. The model demonstrated the capability to avoid occlu-
sion between covered objects and also improved sensor utilization in general. However,
the limitation of the aforementioned works is that their investigations were performed for
a limited period of time and do not capture all the different planting seasons as well as
different weather conditions. Recently, Uyeh et al. [25] proposed a reinforcement learning
(RL)-based approach for optimal sensor location in greenhouses using a robust dataset
that covers different planting seasons. From the analysis, it was evident that the optimal
locations for temperature and relative humidity are different. Specifically, the RL-based
model was able to rank the sensor locations based on their importance in estimating the
greenhouse micro-climates, for each temperature and relative humidity. However, it was
also reported that the ranking of sensor locations for effective measurement of greenhouse
micro-climates varies during the different months of the year with the change in the external
weather conditions.

Although the assertion that the optimal sensor locations change from month to month
is intuitive and supported by a number of recent literature [26,27], the implication is
that it would be required to move the sensors every month throughout the growing
seasons or to have a huge number of sensors within the cultivation system. This need
to relocate the sensors every month is tedious, expensive, and not ideal for a typical
grower. Hence in this paper, based on the data collected from a greenhouse used to
cultivate strawberries in [25], a framework based on the multi-channeled dense neural
network (DNN) is proposed to be used to predict temperature and relative humidity
values corresponding to the optimal sensor locations of each month without the need of
moving the sensor from one location to another. Specifically, temperature and relative
humidity values measured from the fixed locations (say the optimal locations of February)
are used to predict the temperature and relative humidity values corresponding to the
optimal locations of the other months referred to as target months (March, April, May,
June, July, and October). The prediction of the temperature and relative humidity values
corresponding to the optimal locations corresponding to the target month will help better
estimate the micro-climates of the greenhouse. The effectiveness of the proposed model
to predict temperature and relative humidity is demonstrated in terms of the resulting
RMSE values. Furthermore, it is shown that the true and predicted sensor values are
highly correlated based on Pearson’s correlation coefficient. Overall the results obtained
show that the proposed framework is efficient and applicable in predicting micro-climates
within protected cultivation systems and also comes with the advantage of cost reduction.In
addition, as the prediction is performed for each month using the same fixed locations,
the proposed framework alleviates the issue related to shifting of the sensors with the
change in the external weather conditions. In other words, the novel framework proposed
in this paper becomes an initiative basis in the research community for modeling dynamic
optimal sensor placement in cultivation systems based on fixed sensors. Finally, it is
important to note that the choice of the multi-channel DNN employed in this work is
motivated by its simplicity in terms of implementation and deployment since it is well
suited to several low-precision hardware for deep learning compared to other variants.

The rest of this paper is organized as follows: In Section 2, a review of related works
is presented. Section 3 gives a brief description of the dataset and the associated pre-
processing stages. In Section 4, the proposed framework and the associated model are
presented. Section 5 presented the results and discussions, and finally, in Section 6 conclu-
sions and future works are highlighted.

2. Review of Related Works

The prediction of micro-climates in protected cultivation systems under different
setups has been studied in the literature [9,28–30]. The prediction models often employed
range from very basic deterministic models [28] to more advanced learning networks such
as ANN [9], multi-layer perceptron neural network (MLP-NN) [29], and extreme learning
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machine (ELM) [30]. Although these works propose the use of learning or determinis-
tic models for micro-climate predictions, most of them applied these models to achieve
different goals. For example, the deterministic model proposed in [28] was aimed at pre-
dicting crop temperature from measured air temperature, air density, and other related
sensor-measured environmental conditions. The authors argued that rather than the air
temperature, the crop temperature is responsible for crop growth and development. In [31],
a dynamic model based on energy and mass transport processes, such as the mechanism of
conduction, convection, radiation, etc., was employed to realize a prediction model capable
of predicting the temperature of air in plant communities. Although the use of such models
is very dependent on the structure of the greenhouse model, the authors claimed that
the proposed model can be extended for a general greenhouse micro-climate prediction
model. In terms of the use of learning networks, Liu et al. [30] proposed the use of ELM
for predicting temperature and relative humidity from historical samples of indoor tem-
perature and humidity. In order words, the learning model is aimed at predicting current
micro-climates based on previously sampled or measured micro-climates. This is beneficial
in situations where the cost of continually measuring micro-climates in terms of energy and
communication protocols is high and needs to be minimized. In [9,29], where MLP-NN
and ANN were employed, respectively, the aim of the models was to predict indoor or
internal micro-climates based on measured external micro-climates such as temperature,
relative humidity, wind speed, etc. Although the aforementioned works have considered
the prediction of micro-climates in the greenhouse setting, the aims of their predictions
are different from ours, where we predict the measurements of micro-climates at varying
optimal sensor locations using input data from fixed-placed sensors.

Generally, it can be observed that most of the aforementioned models are relatively
not computationally expensive. This is because the choice of model or learning networks
for such applications is usually motivated by the nature of the underlying data (real-valued
vectors) and the need for quick prediction or low inference time. In a similar fashion, we
employ a simple multi-channel learning model that extracts global features from all the
input data, which are consequently fed into the channels’ response for extracting local
features corresponding to micro-climate measurements from different sensor locations.

3. Data Description and Pre-Processing

The dataset [25] employed in the current work contains sensor readings corresponding
to internal temperature and relative humidity from 56 two-in-one sensors distributed
within a greenhouse used to cultivate strawberries in Daegu, South Korea. The readings
were collected for seven months (February, March, April, May, June, July and October).
In [25], the same dataset was used to rank the sensor locations corresponding to each of the
seven months. A more detailed description of the protected cultivation facility in terms of
size and materials from which the data were collected, the type of sensors used, and how
the 56 sensors were distributed within the greenhouse are provided in [25].

In Figure 1, the overall layout of the sensors in the considered greenhouse is provided.
In addition, the sensor locations corresponding to temperature (T) and relative humidity
(RH) corresponding to each month are ranked based on their ability to estimate the micro-
climates of the greenhouse [25]. Due to space constraints, we only present the top 10 ranked
sensor locations for each month in Table 1. A detailed ranking of the 56 sensors for each
month can be found in [25].

In the current work, we assume that N1 sensors are fixed at N1 top-ranked locations
(referred to as optimal locations) corresponding to the month of February, as shown in
Table 1. It should be noted that the optimal locations corresponding to temperature
and relative humidity are different. Therefore, the fixed sensor locations for measuring
temperature and relative humidity would be different. By observing the measurements
obtained at these fixed locations, the goal is to develop a model that can predict the
measurements corresponding to the N2 optimal locations of the target month (say March).
By doing so, the micro-climates of the greenhouse in the month of March, the target month,
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is accurately estimated without shifting the locations of the sensors. In other words, one
prediction model is developed corresponding to each target month (March, April, May,
June, July, and October). Therefore, the prediction accuracy of the models determines the
precision of micro-climates estimation.

Table 1. Locations of 10 top-ranked sensors corresponding to different months for temperature (T)
and relative humidity (RH).

Rank

Optimal Locations

February March April May June July October

T RH T RH T RH T RH T RH T RH T RH

1 E3 B4 G1 D6 A4 E4 D1 B2 E7 E2 B4 D3 A4 E4
2 F7 F5 C7 G6 E7 D2 B2 A3 C7 E6 D5 B6 E7 D2
3 D1 A1 B6 C4 F7 E3 F5 F6 F6 B2 G7 C3 F7 E3
4 D7 C1 A3 A2 A1 A2 C1 F7 D7 F7 G6 D6 A1 A2
5 E2 C5 D1 D3 E6 E6 D7 G6 G1 H3 E1 D7 E6 E6
6 C4 F2 E2 E6 D2 E5 A7 E3 E1 G6 E7 F5 D2 E5
7 H2 F3 D2 E1 F6 A4 C5 B4 G7 H1 D7 A3 F6 A4
8 E7 H5 B3 F4 G7 D3 F2 H1 B2 B1 G1 C2 G7 D3
9 G1 E2 C1 B4 G6 A5 F3 B1 A2 A6 F7 F4 G6 A5
10 E1 F1 E1 A5 D6 F2 A3 D7 E3 E4 A1 G3 D6 F2

Figure 1. Layout of the 56 two-in-one sensors within the greenhouse: (a) Front view; (b) Side view.

Since the model is expected to predict the values corresponding to the sensors at
the N2 optimal locations in the target months based on measurements from February, it
is important to ensure consistency in comparison across the various months. Therefore,
considering that the number of days in February is less, the length of the entire data samples
is limited to those available in the month of February. Furthermore, the rows with missing
sensor values were removed across all corresponding input and target months.

In terms of implementing the learning networks, the datasets were divided into train-
ing, validation, and test sets. The training and test set consists of 80 percent and 20 percent
of the entire data, respectively, and 20 percent of the training data were used as the vali-
dation set. In order words, the dataset was divided, with 64%, 16%, and 20% of the entire
dataset used for training, validation, and testing, respectively. Table 2 provides a summary
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of the length of the training, test, and validation dataset. Furthermore, to ensure a faster
convergence of the model, normalization of the input data based on the mean and standard
deviation was performed. In the context of predicting sensor values, the input variable x is
a N1-dimensional vector comprising readings from N1 temperature or relative humidity
sensors for each case. The output y are N2 real values corresponding to temperature or
relative humidity values for the target months.

Table 2. Number of instances in train, validation, and test data.

Predicted Month
Temperature Data Humidity Data

Train Test Validate Train Test Validate

March 16,711 5223 4178 16,252 5080 4064
April 16,283 5089 4071 16,516 5162 4130
May 16,639 5200 4160 16,343 5108 4086
June 15,264 4771 3816 15,270 4772 3818
July 14,954 4674 3739 15,160 4738 3791
October 15,549 4860 3888 16,031 5010 4008

4. Methodology
4.1. Dense Neural Network (DNN)-Based Regression Model

Considering that the output is an N2-dimensional vector where each element repre-
sents the sensor values corresponding to each of the N2 optimal locations for the target
month, a multi-channel DNN regression model is employed. In [32], a generalized ap-
proach to formalize any NN-based model can be found. In Figure 2, a generalized overview
of the DNN architecture, where N1 and N2 are corresponding to the number of sensor
locations considered at the input and output, respectively, is presented. Based on the
target month, say March, the input to the networks is the temperature or relative humidity
measurements taken at the N1 optimal locations of February, which are considered as
the fixed locations throughout the whole study. The input is passed through a series of
4 dense layers, namely, dense_0, dense_1 dense_2, and dense_3, as shown in Figure 2,
which extract global features from all the N1 input sensor values. These global features are
then fed into N2 different dense channels, the output of which represents the predicted
sensor values corresponding to the N2 optimal locations of the target month, March. Each
of these N2 dense channels helps extract the local features corresponding to each of the
sensor locations. These dense channels consist of a single dense layer of 64 units with Relu
activation functions and, consequently, a single-unit, dense layer as the output layer. Using
the N1 fixed locations, the learning model corresponding to each target month is trained
for 200 epochs with a batch size of 64. The predicted values based on the proposed model
are favorably compared with the real values corresponding to the target month in terms of
the root mean square error (RMSE) and correlation coefficients.

4.2. Evaluation Metrics

To evaluate the proposed framework, we used two metrics, namely, root mean -squared
error (RMSE) and Pearson’s correlation coefficient (R), as expressed in Equations (1) and (2),
respectively.

RMSE =

√√√√ 1
N

N

∑
j=1

(et)
2 (1)

where N is the number of test samples and et is the error between the true and predicted
sensor values.

R =
∑(xi − x̄)(yi − ȳ)√
∑(xi − x̄)2(yi − ȳ)2

(2)

where xi is the ith true sensor value, x̄ is the mean of the true sensor values, yi is the ith
predicted sensor value, and ȳ is the mean of the predicted sensor values.
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Figure 2. Architecture of proposed deep-neural-network-based multi-channel regression model for
efficient micro-climate prediction using fixed sensor locations.

In addition, to evaluate the efficiency of the proposed framework, we provide RMSE
values between the measured values (temperature and relative humidity) from the fixed
sensor locations and the true measurements corresponding to the N2 optimal sensors of
the target month. In other words, we present the RMSE values, assuming that there exists
no prediction model, as the one proposed in the current work. In addition, we present the
percentage reduction in the RMSE values by comparing the RMSE values with and without
the proposed DNN model.

5. Results and Discussion

The proposed model in this work was implemented and evaluated using Python
and Keras installed on a computer with an Intel(R) Core(TM) i7, 2.60 GHz, 16 GB RAM,
running Windows 10, 64-bit. The results from the experiments are presented in this
section accordingly.

5.1. Temperature and Humidity Prediction RMSE

Based on different values of N1 and N2, the results of temperature prediction for all the
six months are presented in Table 3 in terms of RMSE. Furthermore, the table includes the
resulting RMSE of the sensor readings without the DNN model as well as the percentage
error margin incurred with the DNN model compared with those without the DNN model.
The resulting RMSE values, as presented in Table 3, is indicative that the error associated
with the proposed DNN-based prediction of the temperature values from the optimal
sensor locations in each month is significantly lower than those measured without the
DNN model. Specifically, the proposed framework, which is based on the DNN model
results in a 68.67% reduction in the average RMSE over all the five months compared to
those obtained without the DNN model.
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In [25], the optimal sensor locations were identified based on the ranking of all the 56
sensors distributed within the greenhouse. Consequently, N2 = 10 sensors were selected.
However, there was no clear analysis to justify why only N2 = 10 sensors were selected
as the optimal number of sensors. Since the DDN-based prediction of the greenhouse
micro-climates is superior to those without the DNN model, we provide further analysis
based on the DNN model. Specifically, to show the effect of using different numbers of
input (N1) and output (N2) sensors, we present a graphical illustration of the percentage
reduction in error incurred with the DNN model for N1 = N2 = 1, 5, 10, 15, and 20 for each
month, respectively, in Figure 3. From the figure, it is clear from the error curves that the
knee or saturation point is the N1 = N2 = 10 for all the months. This is because a drastic
increase in error reduction is observed from N1 = N2 = 1 to N1 = N2 = 10. However, as the
values of N1 = N2 > 10, the percentage improvement saturates. This might be because of
the fact that adding more sensors may not provide any extra information that can help
better estimate the micro-climates of the greenhouse. This validates the selection of 10
highly ranked sensors as optimal in [25].

In Table 4, the results of humidity prediction for all the associated months are presented
in terms of RMSE. The table further includes the resulting RMSE of the sensor readings
obtained without the DNN model. In terms of the RMSE, the results show that there is
a 46.21% overall reduction in error of the predicted humidity values based on the DNN-
based framework compared to those obtained without the DNN model. In addition,
the percentage improvement in the measurement error of relative humidity follows a
similar pattern to the temperature, as shown in Figure 3.

(a) (b) (c)

(d) (e) (f)

Figure 3. Percentage reduction in error corresponding to temperature measurement using different
N1 and N2 for (a) March, (b) April, (c), May (d), June (e), July, and (f) October.
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Table 3. Comparison of temperature prediction with and without DNN model in terms of RMSE for different values of N1 and N2.

Predicted Month

RMSE

N1 = 1, N2 = 1 N1 = 5, N2 = 5 N1 = 10, N2 = 10 N1 = 15, N2 = 15 N1 = 20, N2 = 20

DNN Model W/O DNN Model RMSE Reduction (%) DNN Model W/O DNN Model RMSE Reduction (%) DNN Model W/O DNN Model RMSE Reduction (%) DNN Model W/O DNN Model RMSE Reduction (%) DNN Model W/O DNN Model RMSE Reduction (%)

March 3.4313 4.486 23.5 2.2177 4.3059 48.49 1.7744 4.295 58.69 1.7274 4.27676 59.61 1.813 4.253 57.37
April 3.769 4.7207 20.16 2.8217 5.2158 45.9 2.4798 5.0001 50.41 2.3984 5.0265 52.28 2.2835 4.9931 54.27
May 4.879 10.3591 52.9 3.6129 10.0993 64.22 2.8061 10.051 72.08 2.9978 10.2512 70.76 2.8256 10.3058 72.58
June 4.5209 16.91844 73.28 3.4017 16.2493 79.06 2.9317 16.4949 82.23 2.8681 16.1764 82.26 2.8209 16.1334 82.52
July 3.555 13.3485 73.37 3.0707 13.7859 77.72 2.7632 13.7796 79.95 2.5978 13.6444 80.96 2.528 13.6213 81.44

October 3.9781 7.2066 44.8 3.2783 7.5076 56.33 2.6372 7.5388 65.01 2.6396 7.4724 64.68 2.4957 7.4801 66.64

Table 4. Comparison of relative humidity prediction with and without DNN model in terms of RMSE for different values of N1 and N2.

Predicted Month

RMSE

N1 = 1, N2 = 1 N1 = 5, N2 = 5 N1 = 10, N2 = 10 N1 = 15, N2 = 15 N1 = 20, N2 = 20

DNN Model W/O DNN Model RMSE Reduction (%) DNN Model W/O DNN Model RMSE Reduction (%) DNN Model W/O DNN Model RMSE Reduction (%) DNN Model W/O DNN Model RMSE Reduction (%) DNN Model W/O DNN Model RMSE Reduction (%)

March 14.2951 16.6314 14.05 12.0131 16.1924 25.81 10.5982 16.1097 34.21 10.7687 16.13353 33.25 10.4168 16.0724 35.19
April 14.1778 22.7773 37.75 12.7681 22.8833 44.2 13.0693 22.18422 41.09 10.5447 21.63 51.25 10.8462 21.8471 50.35
May 17.6504 26.2172 32.68 17.0076 26.8919 36.76 15.3399 26.9629 43.11 14.4252 26.359 45.27 13.81256 26.35056 47.82
June 15.5105 32.1841 51.81 14.0204 32.4554 56.8 13.6979 32.4173 57.75 13.28 32.1747 58.73 13.4313 32.08896 58.14
July 11.7474 24.05563 51.17 11.77418 24.092 51.13 10.9207 24.2066 54.89 10.4535 23.9932 56.43 10.61337 23.9488 55.68

October 14.1119 23.4509 39.82 13.0888 23.126 43.4 12.363 23.1641 46.63 12.677 23.6228 46.34 12.6537 23.714 46.64
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5.2. Correlation Coefficients

Correlation results based on Pearson’s correlation coefficients between the real sensor
value readings and predicted sensor value readings are shown in Table 5. From the
table, it can be observed that the predicted sensor values are highly correlated with the
true sensor values by an average correlation value of 0.91 and 0.85 for temperature and
humidity, respectively. These average correlation values are comparable with those from
the literature, where the correlation coefficients generally range between 0.977 to 0.980 and
0.825 to 0.967 for temperature and relative humidity, respectively [9,33].

Table 5. Performance comparison of proposed DNN framework for different N1 and N2 in terms of
Pearson correlation coefficient.

Predicted Month

Correlation Coefficients

N1 = 1, N2 = 1 N1 = 5, N2 = 5 N1 = 10, N2 = 10 N1 = 15, N2 = 15 N1 = 20, N2 = 20

Temperature Humidity Temperature Humidity Temperature Humidity Temperature Humidity Temperature Humidity

March 0.87 0.85 0.93 0.93 0.96 0.94 0.96 0.94 0.95 0.95
April 0.82 0.89 0.92 0.91 0.95 0.93 0.95 0.95 0.95 0.94
May 0.69 0.76 0.82 0.78 0.89 0.82 0.89 0.84 0.9 0.86
June 0.79 0.76 0.87 0.80 0.92 0.81 0.92 0.82 0.91 0.82
July 0.56 0.66 0.78 0.72 0.82 0.75 0.85 0.79 0.84 0.78

October 0.73 0.8 0.85 0.83 0.911 0.84 0.92 0.84 0.92 0.84

Furthermore, both temperature and humidity show a similar correlation trend, where
the highest values of 0.95 and 0.94 are obtained in the month of March, while the lowest
values of 0.82 and 0.75 are obtained in the month of July, respectively. This can be attributed
to how the optimal sensor locations of March and July are distributed relative to the fixed
sensor locations. In Figure 4, the fixed sensor locations (green) and optimal sensor locations
of target months (March and July) are highlighted (glue) for both temperature and humidity
to show the effect of the respective locations in the overall percentage of error reduction.
In addition, the optimal locations of the target month (March and July) that overlap with
some of the fixed locations are depicted in red.

As depicted in Figure 4a,b, the target months of March and July have four and five
overlapping temperature sensor locations with respect to the fixed locations, respectively.
Furthermore, as shown in the figure, the sensor locations of March compared to the fixed
locations are closer, and for each of the fixed locations, there are also representative locations
in March in the same region. However, in July, the sensor locations are much farther from
those of the fixed locations when compared with those in March. Therefore, the proximity
of the optimal sensor locations of the target month March with respect to the fixed locations
resulted in a higher correlation compared to that of July.

Similarly, in terms of humidity, although both March and July have only one over-
lapping sensor location with fixed locations, as shown in Figure 4c,d, it is clear that the
high correlation in March can be associated with the observation that the sensors are well
distributed in regions close to the fixed locations. On the other hand, the sensor locations
of July are simply packed in regions where none of the fixed sensors are located.

5.3. Effect of Number of Fixed Sensor Locations on the Prediction Accuracy of DNN Model

In the previous section, the analysis was conducted considering that the input and
output dimensions, N1 and N2, respectively, are equal (N1 = N2). However, it would
be interesting to investigate instances where N1 < N2 as this would help to facilitate
decisions related to the trade-off between cost and accuracy of estimation. Specifically,
the input dimension N1 is directly related to cost, while the output dimension N is directly
proportional to the accuracy of prediction, thus providing a better estimation of micro-
climates. In other words, since N1 is the number of sensors that would be installed, as the
number of N1 sensors increases, the cost also increases. On the other hand, as the number
of N1 increases, the accuracy of prediction tends to increase until saturation is reached.

Table 6 summarizes the RMSE values for different combinations of the input and
output number of sensors. From Table 6, we can observe that the prediction accuracy of the
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DNN model, where the input of 10 sensors is provided is better compared to the prediction
of the DNN model with only 5 input measurements. However, the prediction accuracy of
the DNN model that employs five input measurements is better than the measurements
taken from fixed sensors (or without the DNN model). In other words, it is intuitive that
installing more sensors can help estimate the environment better, as clearly depicted in
Figure 5, but it is expensive. Therefore, the best way is to use fewer sensors and use the
model proposed so that the environment can be better estimated by predicting the values
of the sensors at top preferred locations.

The above analysis was conducted with respect to the temperature measurement in
the greenhouse. However, a similar observation was made with respect to the measurement
of relative humidity in the greenhouse.

(a)

(b)

(c)

(d)

Figure 4. Layout of greenhouse showings fixed sensor locations (green) as well as optimal sensor
locations corresponding to the target months of (a) March (blue), and overlapped locations (red) for
temperature measurement (b) July (blue), and overlapped locations (red) for temperature measure-
ment (c) March (blue), and overlapped locations (red) for relative humidity measurement (d) July
(blue), and overlapped locations (red) for relative humidity measurement.



Mathematics 2023, 11, 3052 12 of 14

Figure 5. Effect of number of input sensors (N1) on the prediction accuracy of temperature.

Table 6. Effect of number of sensors (N1) on the temperature prediction accuracy of DNN model in
terms of RMSE.

Predicted Month

RMSE

N1 = 5, N2 = 10 N1 = 10, N2 = 10

DNN Model DNN Model W/O DNN Model

March 2.1337 1.7744 4.295
April 2.811 2.4798 5.0001
May 3.5302 2.8061 10.051
June 3.5121 2.9317 16.4949
July 3.2077 2.7632 13.7796

October 3.305 2.6372 7.5388

6. Conclusions

In order to alleviate the need to move sensors from one dynamic optimal sensor lo-
cation to another due to changes in the external weather condition, this study proposes a
framework based on multi-channel dense neural network regression model for predicting
micro-climates corresponding to changing sensor locations using measurements from fixed
sensors. Results of micro-climate predictions obtained based on the proposed framework
were comparable with the true sensor measurements corresponding to the dynamic sensor
locations. Specifically, the proposed framework in terms of RMSE achieved a 68.67% reduc-
tion in error for temperature and 46.21% overall reduction in error for relative humidity
compared with a setup without the proposed models. In terms of the Pearson correlation
coefficient, the result showed a high correlation, with an average of 0.91 and 0.85 for tem-
perature and relative humidity, respectively. The highest correlation values of 0.95 and 0.94
for temperature and relative humidity, respectively, obtained in the month of March and
lowest values of 0.82 and 0.75 for temperature and relative humidity obtained in the month
of July, can be explained as a result of the distance between the test month’s (February)
data and the respective predicted months. The deployment of the proposed framework
would generally facilitate accurate monitoring and control of micro-climates in protected
cultivation systems. Although the current work is limited to monthly variations of optimal
sensor locations, investigating the proposed framework for intraday variations would be
of interest in the future.

Author Contributions: Conceptualization, O.S.A. and R.M.; methodology, O.S.A. and R.M.; formal
analysis, O.S.A., M.J.U., E.A. and R.M.; data curation, D.D.U., Y.H. and T.P.; writing—original draft
preparation, O.S.A., M.J.U., E.A. and R.M.; writing—review and editing, O.S.A., M.J.U., E.A., D.D.U.,
Y.H., T.P. and R.M.; supervision, R.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A3049810) and
the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry



Mathematics 2023, 11, 3052 13 of 14

(IPET) through the Agriculture, Food and Rural Affairs Convergence Technologies Program for
Educating Creative Global Leader, funded by the Ministry of Agriculture, Food and Rural Affairs
(MAFRA) (320001-4), Republic of Korea.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Godde, C.; Mason-D’Croz, D.; Mayberry, D.; Thornton, P.; Herrero, M. Impacts of climate change on the livestock food supply

chain; a review of the evidence. Glob. Food Secur. 2021, 28, 100488. [CrossRef] [PubMed]
2. Kumar, L.; Chhogyel, N.; Gopalakrishnan, T.; Hasan, M.K.; Jayasinghe, S.L.; Kariyawasam, C.S.; Kogo, B.K.; Ratnayake, S.

Chapter 4—Climate change and future of agri-food production. In Future Foods; Bhat, R., Ed.; Academic Press: Cambridge, MA,
USA, 2022; pp. 49–79. [CrossRef]

3. Reddy, P.P. Sustainable Crop Protection under Protected Cultivation; Springer: Singapore, 2016.
4. Zhang, W.; Xia Dou, Z.; He, P.; Ju, X.; Powlson, D.S.; Chadwick, D.R.; Norse, D.; Lu, Y.; Zhang, Y.; Wu, L.; et al. New technologies

reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [CrossRef]
[PubMed]

5. Research and Markets. Agricultural Films Market by Type (LLDPE, LDPE, Reclaim, EVA, HDPE), Application ((Greenhouse Films
(Classic Greenhouse, Macro Tunnels), Silage Films (Silage Stretch Wraps), and Mulch Films (Transparent, Clear Mulches)), and
Region—Global Forecast to 2028. 2022. Available online: https://www.marketsandmarkets.com/Market-Reports/agricultural-
mulch-films-market-741.html. (accessed on 4 July 2022).

6. Zeng, S.; Hu, H.; Xu, L.; Li, G. Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network. Sensors
2012, 12, 5328–5348. [CrossRef] [PubMed]

7. Takahata, K.; Miura, H. Effects of Growth Period and Air Temperature on the Position of the Inflorescence on the Stem of Tomato
Plants. Hortic. J. 2017, 86, 70–77. [CrossRef]

8. Syed, A.M.; Hachem, C. Review of Construction, Geometry, Heating, Ventilation, and Air-Conditioning, and Indoor Climate
Requirements of Agricultural Greenhouses. J. Biosyst. Eng. 2019, 23, 18–27. [CrossRef]

9. Singh, V.K. Prediction of Greenhouse Micro-Climate Using Artificial Neural Network. Appl. Ecol. Environ. Res. 2017, 15, 767–778.
[CrossRef]

10. Vox, G.; Teitel, M.; Pardossi, A.; Minuto, A.; Tinivella, F.; Schettini, E. Sustainable Greenhouse Systems. In Sustainable Agriculture:
Technology, Planning and Management; Nova Science Publishers, Inc.: New York, NY, USA, 2010.

11. Harjunowibowo, D.; Ding, Y.; Omer, S.; Riffat, S. Recent Active Technologies of Greenhouse Systems—A Comprehensive Review.
Bulg. J. Agric. Sci. 2018, 24, 158–170.

12. Bhujel, A.; Basak, J.K.; Khan, F.; Arulmozhi, E.; Jaihuni, M.; Sihalath, T.; Lee, D.; Park, J.; Kim, H.T. Sensor Systems for Greenhouse
Microclimate Monitoring and Control: A Review. J. Biosyst. Eng. 2020, 45, 341–361. [CrossRef]

13. Fen-FangHe, C.M. Modeling greenhouse air humidity by means of artificial neural network and principal component analysis.
Comput. Eng. Agric. 2010, 71, 9–23.

14. Yeon Lee, S.; Bok Lee, I.; Hyeon Yeo, U.; Woo Kim, R.; Gyu Kim, J. Optimal sensor placement for monitoring and controlling
greenhouse internal environments. Biosyst. Eng. 2019, 188, 190–206. [CrossRef]

15. Kubrusly, C.S.; Malebranche, H. Sensors and controllers location in distributed systems—A survey. Automatica 1985, 21, 117–128.
[CrossRef]

16. Alonso, A.A.; Kevrekidis, I.G.; Banga, J.R.; Frouzakis, C.E. Optimal sensor location and reduced order observer design for
distributed process systems. Comput. Chem. Eng. 2004, 28, 27–35. [CrossRef]

17. Yi, T.; Li, H.; Gu, M. Optimal Sensor Placement for Health Monitoring of High-Rise Structure Based on Genetic Algorithm. Math.
Probl. Eng. 2011, 2011, 395101. [CrossRef]

18. Liu, W.; Gao, W.; Sun, Y.; Xu, M. Optimal sensor placement for spatial lattice structure based on genetic algorithms. J. Sound Vib.
2008, 317, 175–189. [CrossRef]

19. Houssein, E.H.; Saad, M.R.; Hussain, K.; Zhu, W.; Shaban, H.; Hassaballah, M. Optimal Sink Node Placement in Large Scale
Wireless Sensor Networks Based on Harris’ Hawk Optimization Algorithm. IEEE Access 2020, 8, 19381–19397. [CrossRef]

20. Castro-Triguero, R.; Murugan, S.; Gallego, R.; Friswell, M.I. Robustness of optimal sensor placement under parametric uncertainty.
Mech. Syst. Signal Process. 2013, 41, 268–287. [CrossRef]

21. Sun, Y.; Halgamuge, S. Minimum-Cost Heterogeneous Node Placement in Wireless Sensor Networks. IEEE Access 2019,
7, 14847–14858. [CrossRef]

22. Duan, R.; Lin, Y.; Feng, T. Optimal Sensor Placement Based on System Reliability Criterion Under Epistemic Uncertainty. IEEE
Access 2018, 6, 57061–57072. [CrossRef]

23. Flynn, E.B.; Todd, M.D. A Bayesian approach to optimal sensor placement for structural health monitoring with application to
active sensing. Mech. Syst. Signal Process. 2010, 24, 891–903. [CrossRef]

24. Wu, H.; Li, Q.; Zhu, H.; Han, X.; Li, Y.; Yang, B. Directional sensor placement in vegetable greenhouse for maximizing target
coverage without occlusion. Wirel. Netw. 2020, 26, 4677–4687. [CrossRef]

http://doi.org/10.1016/j.gfs.2020.100488
http://www.ncbi.nlm.nih.gov/pubmed/33738188
http://dx.doi.org/10.1016/B978-0-323-91001-9.00009-8
http://dx.doi.org/10.1073/pnas.1210447110
http://www.ncbi.nlm.nih.gov/pubmed/23671096
https://www.marketsandmarkets.com/Market-Reports/agricultural-mulch-films-market-741.html
https://www.marketsandmarkets.com/Market-Reports/agricultural-mulch-films-market-741.html
http://dx.doi.org/10.3390/s120505328
http://www.ncbi.nlm.nih.gov/pubmed/22778587
http://dx.doi.org/10.2503/hortj.MI-110
http://dx.doi.org/10.1007/s42853-019-00005-1
http://dx.doi.org/10.15666/aeer/1501_767778
http://dx.doi.org/10.1007/s42853-020-00075-6
http://dx.doi.org/10.1016/j.biosystemseng.2019.10.005
http://dx.doi.org/10.1016/0005-1098(85)90107-4
http://dx.doi.org/10.1016/S0098-1354(03)00175-3
http://dx.doi.org/10.1155/2011/395101
http://dx.doi.org/10.1016/j.jsv.2008.03.026
http://dx.doi.org/10.1109/ACCESS.2020.2968981
http://dx.doi.org/10.1016/j.ymssp.2013.06.022
http://dx.doi.org/10.1109/ACCESS.2019.2894117
http://dx.doi.org/10.1109/ACCESS.2018.2873420
http://dx.doi.org/10.1016/j.ymssp.2009.09.003
http://dx.doi.org/10.1007/s11276-020-02370-8


Mathematics 2023, 11, 3052 14 of 14

25. Uyeh, D.D.; Bassey, B.I.; Mallipeddi, R.; Asem-Hiablie, S.; Amaizu, M.; Woo, S.; Ha, Y.S.; Park, T. A Reinforcement Learning
Approach for Optimal Placement of Sensors in Protected Cultivation Systems. IEEE Access 2021, 9, 100781–100800. [CrossRef]

26. Ajani, O.S.; Aboyeji, E.; Mallipeddi, R.; Dooyum Uyeh, D.; Ha, Y.; Park, T. A genetic programming-based optimal sensor
placement for greenhouse monitoring and control. Front. Plant Sci. 2023, 14, 1152036. [CrossRef] [PubMed]

27. Uyeh, D.D.; Iyiola, O.; Mallipeddi, R.; Asem-Hiablie, S.; Amaizu, M.; Ha, Y.; Park, T. Grid Search for Lowest Root Mean Squared
Error in Predicting Optimal Sensor Location in Protected Cultivation Systems. Front. Plant Sci. 2022, 13, 920284. [CrossRef]
[PubMed]

28. Körner, O.; Aaslyng, J.M.; Andreassen, A.U.; Holst, N. Microclimate Prediction for Dynamic Greenhouse Climate Control.
HortScience 2007, 42, 272–279. [CrossRef]

29. Petrakis, T.; Kavga, A.; Thomopoulos, V.; Argiriou, A.A. Neural Network Model for Greenhouse Microclimate Predictions.
Agriculture 2022, 12, 780. [CrossRef]

30. Liu, Q.; Jin, D.; Shen, J.; Fu, Z.; Linge, N. A WSN-based prediction model of microclimate in a greenhouse using extreme learning
approaches. In Proceedings of the 2016 18th International Conference on Advanced Communication Technology (ICACT),
PyeongChang, Republic of Korea, 31 January–3 February 2016; pp. 730–735. [CrossRef]

31. Singh, M.C.; Singh, J.; Singh, K. Development of a microclimate model for prediction of temperatures inside a naturally ventilated
greenhouse under cucumber crop in soilless media. Comput. Electron. Agric. 2018, 154, 227–238. [CrossRef]

32. Bishop, C.M. Pattern Recognition and Machine Learning; Information Science and Statistics; Springer: Berlin/Heidelberg, Germany,
2006.

33. Chakir, S.; Bekraoui, A.; Zemmouri, E.M.; Majdoubi, H.; Mouqallid, M. Prediction of Olive Cuttings Greenhouse Microclimate
Under Mediterranean Climate Using Artificial Neural Networks. In Digital Technologies and Applications, Proceedings of the Digital
Technologies and Applications, Fez, Morocco, 28–30 January 2022; Motahhir, S., Bossoufi, B., Eds.; Springer: Cham, Switzerland, 2022;
pp. 63–69.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2021.3096828
http://dx.doi.org/10.3389/fpls.2023.1152036
http://www.ncbi.nlm.nih.gov/pubmed/37360731
http://dx.doi.org/10.3389/fpls.2022.920284
http://www.ncbi.nlm.nih.gov/pubmed/35873973
http://dx.doi.org/10.21273/HORTSCI.42.2.272
http://dx.doi.org/10.3390/agriculture12060780
http://dx.doi.org/10.1109/ICACT.2016.7423609
http://dx.doi.org/10.1016/j.compag.2018.08.044

	Introduction
	Review of Related Works
	Data Description and Pre-Processing
	Methodology
	Dense Neural Network (DNN)-Based Regression Model
	Evaluation Metrics

	Results and Discussion
	Temperature and Humidity Prediction RMSE
	Correlation Coefficients
	Effect of Number of Fixed Sensor Locations on the Prediction Accuracy of DNN Model

	Conclusions
	References

