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Abstract: This study discusses the global asymptotical synchronization of fractional-order multi-
delay coupled neural networks (FMCNNs) via hybrid control schemes. In addition to internal delays
and different coupling delays, more importantly, multi-link complicated structures are introduced
into our model. Unlike most existing works, the synchronization target is not the special solution of
an isolated node, and a more universally accepted synchronization goal involving the average neuron
states is introduced. A generalized multi-delay impulsive comparison principle with fractional order
is given to solve the difficulties resulting from different delays and multi-link structures. To reduce
control costs, a pinned node strategy based on the principle of statistical sorting is provided, and
then a new hybrid impulsive pinning control method is established. Based on fractional-order im-
pulsive inequalities, Laplace transforms, and fractional order stability theory, novel synchronization
criteria are derived to guarantee the asymptotical synchronization of the considered FMCNN. The
derived theoretical results can effectively extend the existing achievements for fractional-order neural
networks with a multi-link nature.

Keywords: coupled neural network; synchronization; multi-link structure; impulsive pinning control

MSC: 37N35

1. Introduction

In recent decades, the exploration of complex networks has gradually become a hot
topic in various fields of science and engineering [1–6]. Generally speaking, complex
networks are composed of a great deal of highly interrelated fundamental units and often
exhibit complex and diverse dynamics [7,8]. Among those dynamic behaviors, the synchro-
nization state that exists in many natural and artificial systems has become an important
indicator for improving some specific performance of the networks. Various kinds of
synchronization modes have aroused considerable concerns from research communities
due to their potential applications in different aspects [9–11]. For instance, Sheng et al. [11]
investigated the finite-time outer synchronization for discrete-time stochastic complex net-
works under the case of communication delays and possible information loss and applied
the derived synchronization results to image encryption.

It is a noteworthy fact that plenty of complex networks in reality, such as traffic
networks, social relation networks, and communication networks, are rarely single-link
networks [12]. For example, social relationships can be divided into blood relationships,
geographical relationships, and occupational relationships based on different classification
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standards. If we take each type of relationship as a single-link subnetwork, social relation
networks can be better modeled by multi-link complex networks. A multi-link neural
network contains multiple neural subnetworks, which can enhance its parallel processing
ability. By providing redundant paths for signal transmission, the robustness and fault
tolerance of the network can be enhanced. Hence, it is valuable to consider the impact
of multi-link complicated structures when studying the synchronization ability of neural
networks. Up to now, some impressive achievements concerning the dynamic behaviors
of multi-link complex networks have been derived [13–15]. Tang et al. [13] formulated
a general model of couple-delayed complex networks involving multi-link natures. By
utilizing pinning control, the output synchronization and H∞ output synchronization
issues for multi-link complex networks are investigated in [14]. Zheng et al. [15] studied
the synchronization of complex multi-link networks including or not including internal
delays using intermittent control schemes.

However, most works mainly focus on multi-link complex networks with integer-
order calculus. Fractional calculus, as an extension of derivatives and integrals to arbitrary
orders, has an advantage over integer calculus in describing real natural phenomena. It
not only enriches degrees of freedom but also has several distinct properties incorporating
infinite memory and heredity that the integer calculus operator does not possess [16,17].
Moreover, the fundamental feature of the extension operator is nonlocality, which means
its future information depends on the current communication and the past communica-
tion simultaneously [18]. Until now, multifarious applications of fractional calculus have
involved many aspects, such as viscoelastic systems [19,20], applied mathematics [21],
and biomedicine [22]. Especially in terms of memory description and genetic characteris-
tics, fractional calculus also plays a positive role in the study of neural networks [23,24].
Recently, several remarkable synchronization outcomes about multi-link networks with
fractional order have been obtained [25–28]. For instance, Xu et al. [25] explored the
global asymptotic synchronization problem of multi-link impulsive neural networks with
a fractional-order Caputo derivative by feedback control schemes under the assumption
of no time delays in signal transmission. Yao et al. [26] focused on the synchronization
of fractional-order multi-link complex systems based on Lyapunov direct methods and
linear matrix inequalities. Jia et al. [27] explored the synchronization of fractional-order
multi-link complex networks including uncertainties in finite time. Sakthivel et al. [28]
obtained the synchronization criteria for fractional-order multi-link dynamical networks
with disturbances by feedback control strategies.

Various time delays unavoidably exist in complex networks due to the limited switch-
ing speed and the inherent communication bandwidth between neurons. To obtain a more
realistic synchronization result, Velmurugan et al. [29] considered the projective synchro-
nization issues of fractional-order single-link neural networks with a constant delay by
using stability theories and linear feedback control methods. Wang et al. [30] studied the
existence, uniqueness, and global asymptotic stability of equilibrium points for delayed
fractional-order complex networks. In [31], the global synchronization criteria for fractional-
order memristive neural networks including time delays was derived by establishing a new
fractional-order delayed inequality without impulses. Ramasamy et al. [32] analyzed the
dynamic influence of hypergraph links in fractional-order complex systems and obtained
that the high-order interaction was conducive to the early synchronization of networks.
Peng et al. [33] discussed the global synchronization problem of fractional-order inertial
neural networks including time delays by discontinuous feedback control and adaptive con-
trol. Based on the quaternion sign function and some new lemmas, Shang et al. [34] studied
the synchronization of fractional-order delayed quaternion neural networks in finite time.
Pratap et al. [35] analyzed the synchronization condition of fractional-order multi-link
neural networks including internal delays and coupling delays by a feedback controller.
Existing works [25–28,35] on fractional-order multi-link neural networks assume that there
are no coupling delays or possess the same coupling delays for different topologies under
continuous feedback control. Due to the impact of multiple different internal and coupling
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time delays as well as multi-link complicated structures on the stability of fractional-order
systems, it is difficult to achieve synchronization goals for such fractional-order systems
using discontinuous impulse control, which is also the key issue and the main challenge of
this study. Naturally, how to establish the new impulsive delayed comparison principle
and design a reasonable hybrid impulsive control strategy to overcome these unfavorable
impacts and reduce control costs has become a key issue that needs to be considered in
this article.

In view of the preceding discussion, this paper aims to study the synchronization
issue of FMCNNs with multi-link complicated structures. The first mission is to construct
an appropriate pinned-node strategy and hybrid impulsive control schemes to obtain the
global asymptotical synchronization of the comprehensive neural model under discussion
in this paper. In addition, there is a great demand for establishing new impulsive compari-
son principles to overcome difficulties caused by multi-delays and multi-link complicated
structures. The contributions of this article can be summarized below. First, the fractional-
order neural networks considered in this study include multi-link complicated structures
and internal delays as well as coupling delays, and each coupling structure corresponds to
a different coupling time delay, which shows our neural model is more generalized than
existing works [25–28,35]. Second, a generalized fractional impulsive comparison principle
including multi-delays is established to overcome the influence of multiple time delays and
multi-link structures on network synchronization. Third, compared with continuous feed-
back control in [29,31,33,34], a selection strategy for pinned nodes is given by utilizing the
principle of statistical sorting, and a novel hybrid impulsive control scheme is established
in this paper, which increases communication security and saves control costs. Lastly, novel
synchronization criteria are derived under hybrid impulsive pinning control methods to
ensure the more universally accepted synchronization of the concerned FMCNN.

Notation 1. In denotes the n-dimensional identity matrix. Rn denotes the n-dimensional real space.
diag{· · · } represents a diagonal matrix. For matrices P ∈ Rn×m and F ∈ Rr×q, P⊗ F ∈ Rnr×mq

can be calculated by

P⊗ F =


p11F p12F · · · p1mF
p21F p22F · · · p2mF

...
...

. . .
...

pn1F pn2F · · · pnmF

.

2. Preliminary Knowledge and Network Model

This part first introduces some important definitions and lemmas, then gives a gener-
alized multi-link network model.

Definition 1. The fractional integral for a function g(t) is defined by

Iµ
t g(t) =

1
Γ(µ)

∫ t

t0

(t− τ̄)µ−1g(τ̄)dτ̄,

where t ≥ t0, Γ(·) is the Gamma function and µ > 0 represents the order.

Definition 2. The Caputo fractional derivative for a function g(t) is defined by

cDµ
t g(t) =

1
Γ(n− µ)

∫ t

t0

(t− τ̄)n−µ−1g(n)(τ̄)dτ̄,

where t ≥ t0, 0 ≤ n− 1 < µ < n, and n ∈ Z+. When 0 < µ < 1, one can derive

cDµ
t g(t) =

1
Γ(1− µ)

∫ t

t0

(t− τ̄)−µg′(τ̄)dτ̄.
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Lemma 1 ([36]). Assume that all eigenvalues of C + M meet |arg(λ)| > π
2 and the characteristic

equation det(∆(s)) = 0 has no purely imaginary solutions for ∀ τij > 0, i, j = 1, 2, ..., n, one can
derive that the zero solution of the system below

cDµ
t Y(t) = MY(t) + Y(tτ), µ ∈ (0, 1),

is globally asymptotically stable, where M = (mij) ∈ Rn×n, C = (cij) ∈ Rn×n, Y(t) =

(y1(t), y2(t) , ..., yn(t))T , Y(tτ) = (∑n
j=1 c1jyj(t − τ1j), ∑n

j=1 c2jyj(t − τ2j), ..., ∑n
j=1 cnjyj(t −

τnj))
T , G = (gij) = (cije

−sτij + mij) ∈ Rn×n, i, j = 1, 2, ..., n and ∆(s) = sµ In − G.

Lemma 2 ([37]). Suppose that x(t) ∈ C([t0,+∞), R) is differentiable and 0 < µ < 1. If there
exists a point t? > t0 such that x(t?) = 0 and x(t) < 0 for t0 ≤ t < t?, then cDµ

t?x(t?) > 0.

Lemma 3 ([38]). Let w(t) ∈ Rn be a derivable function, then one can derive

cDµ
t wT(t)w(t) ≤ 2wT(t)cDµ

t w(t), t ≥ t0, 0 < µ < 1.

Lemma 4. Assume that functions u(t) ≥ 0 and y(t) ≥ 0 satisfy
cDµ

t u(t) ≤ −au(t) + b1u(t− τ1(t)) + b2u(t− τ2(t)) + · · ·+ bαu(t− τα(t))
+c
∫ t

t−τ(t) u(s)ds, t 6= tσ,

u(tσ) ≤ εσu(t−σ ), σ ∈ Z+,
u(t) = θ(t), t ∈ [t0 − τ, t0],

(1)

and 
cDµ

t y(t) = −ay(t) + b1y(t− τ1(t)) + b2y(t− τ2(t)) + · · ·+ bαy(t− τα(t))
+c
∫ t

t−τ(t) y(s)ds, t 6= tσ,

y(t) = ϑ(t), t ∈ [t0 − τ, t0],

(2)

where 0 < µ < 1, 0 ≤ τ(t) ≤ τ, 0 ≤ τi(t) ≤ τ(i = 1, 2, · · · , α), 0 < εσ ≤ 1, a ∈ R, and
bi ≥ 0(i = 1, 2, · · · , α). Then, θ(t) ≤ ϑ(t) for t0 − τ ≤ t ≤ t0 gives that u(t) ≤ y(t) for t ≥ t0.

Proof. Utilizing mathematical induction, we first demonstrate that u(t) ≤ y(t) for
t ∈ [t0, t1). Clearly, u(t) ≤ y(t) is equivalent to u(t) < ςy(t) if ς > 1 represents an
arbitrary scalar. Assume u(t) ≤ y(t) for t ∈ [t0, t1) is not right. Since θ(t) ≤ ϑ(t) for
t ∈ [t0− τ, t0] and the continuity of u(t) and y(t) on [t0, t1), one can find a point t? ∈ [t0, t1)
such that {

u(t) < ςy(t), t ∈ [t0 − τ, t?),
u(t?) = ςy(t?),

(3)

where ς > 1 denotes an arbitrary scalar. By Lemma 2, we have

cDµ
t?u(t

?) > ςcDµ
t?y(t

?). (4)

However, it derives from Equations (1)–(3) that
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cDµ
t?u(t

?) ≤− au(t?) + b1u(t? − τ1(t?)) + b2u(t? − τ2(t?)) + · · ·+ bαu(t? − τα(t?))

+ c
∫ t?

t?−τ(t?)
u(s)ds

≤− aςy(t?) + b1ςy(t? − τ1(t?)) + b2ςy(t? − τ2(t?)) + · · ·+ bαςy(t? − τα(t?))

+ cς
∫ t?

t?−τ(t?)
y(s)ds

=ςcDµ
t?y(t

?), (5)

which contradicts Equation (4), and this contradiction shows

u(t) < ςy(t), t ∈ [t0, t1). (6)

Setting ς → 1, one can derive that u(t) ≤ y(t) for t ∈ [t0, t1). Assume there exists
h ∈ Z+ such that u(t) ≤ y(t), t ∈ [tσ−1, tσ), σ = 2, 3, · · · , h, then we have u(t) ≤ y(t) for
t0 − τ ≤ t < th and u(th) ≤ εhu(t−h ) ≤ εhy(t−h ) ≤ y(t−h ) = y(th). Since y(t) is continuous
on [t0 − τ, ∞), repeating the similar proof stages for u(t) ≤ y(t) on the interval [t0, t1), we
can get u(t) ≤ y(t) for t ∈ [th, th+1). Consequently, we complete the proof of Lemma 4.

Consider the following fractional-order multi-delay neural networks including multi-
link complicated structures characterized by

cDµ
t uk(t) =− Buk(t) + A f (uk(t)) + Gh(uk(t− τ0)) +

N

∑
j=1

ε1V(1)
kj Γ1uj(t− τ1)

+
N

∑
j=1

ε2V(2)
kj Γ2uj(t− τ2) + · · ·+

N

∑
j=1

εαV(α)
kj Γαuj(t− τα), (7)

where k = 1, 2, ..., N, and uk(t) = (uk1(t), uk2(t), ..., ukn(t))T ∈ Rn represents the state of
neuron k. B = diag{b1, b2, ..., bn} denotes a diagonal matrix with bi > 0. A = (akj)n×n and
G = (gkj)n×n represent the non-delay and delayed connection strength matrices, respec-
tively. 0 < τ0 ≤ τ and 0 < τm ≤ τ(m = 1, 2, ..., α) represent the internal delay and coupling
delays, respectively. f (uk(t)) = ( f1(uk1(t)), f2(uk2(t)), ..., fn(ukn(t)))T and h(uk(t− τ0)) =
(h1(uk1(t− τ0)), h2(uk2(t− τ0)), ..., hn(ukn(t− τ0)))

T represent the non-delay and delayed
activation functions at time t and t− τ0, respectively. εm > 0(m = 1, 2, ..., α) is the coupling
strength for the mth coupling structure. Γm = diag{γm1, γm2, ..., γmn} > 0(m = 1, 2, ..., α)

represents the mth inner-link matrix. V(m)= (V(m)
kj )N×N (m = 1, 2, ..., α) denotes the mth

coupling configuration matrix, where V(m)
kj is decided as follows: if there exists an edge

between neuron k and neuron j, then V(m)
kj 6= 0; otherwise, V(m)

kj = 0(k 6= j). Furthermore,

V(m) conforms to the diffusive coupling requirement V(m)
kk = −∑N

j=1,j 6=k V(m)
kj (k = 1, 2, ..., N).

Define ū(t) = 1
N

N
∑

k=1
uk(t), then we can obtain
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cDµ
t ū(t) =

1
N

N

∑
k=1

cDµ
t uk(t)

=
1
N

N

∑
k=1

[
− Buk(t) + A f (uk(t)) + Gh(uk(t− τ0)) +

N

∑
j=1

ε1V(1)
kj Γ1uj(t− τ1)

+
N

∑
j=1

ε2V(2)
kj Γ2uj(t− τ2) + · · ·+

N

∑
j=1

εαV(α)
kj Γαuj(t− τα)

]
=− B

N

N

∑
k=1

uk(t) +
1
N

N

∑
k=1

A f (uk(t)) +
1
N

N

∑
k=1

Gh(uk(t− τ0))

+
1
N

N

∑
j=1

ε1
( N

∑
k=1

V(1)
kj
)
Γ1uj(t− τ1) +

1
N

N

∑
j=1

ε2
( N

∑
k=1

V(2)
kj
)
Γ2uj(t− τ2)

+ · · ·+ 1
N

N

∑
j=1

εα

( N

∑
k=1

V(α)
kj
)
Γαuj(t− τα)

=− B
N

N

∑
k=1

uk(t) +
1
N

N

∑
k=1

A f (uk(t)) +
1
N

N

∑
k=1

Gh(uk(t− τ0)). (8)

It is clear that 1
N

α

∑
m=1

N
∑

j=1
εm
( N

∑
k=1

V(m)
kj
)
Γmuj(t− τm) = 0 on the basis of the definition

of V(m), that is
N
∑

k=1
V(m)

kj = 0, m = 1, 2, ..., α, j = 1, 2, ..., N.

Let error vector zk(t) = uk(t)− 1
N

N
∑

k=1
uk(t), then one can obtain

cDµ
t zk(t) =− Bzk(t) + A f (uk(t))−

1
N

N

∑
k=1

A f (uk(t)) + Gh(uk(t− τ0))

− 1
N

N

∑
k=1

Gh(uk(t− τ0)) +
α

∑
m=1

εm

N

∑
j=1

V(m)
kj Γmzj(t− τm). (9)

Assumption 1. For activation functions fi(·) and hi(·), there exist constants ψi > 0, φi > 0
such that

| fi(χ1)− fi(χ2)| ≤ ψi|χ1 − χ2|, i = 1, 2, . . . , n, χ1 ∈ R, χ2 ∈ R,

|hi(χ1)− hi(χ2)| ≤ φi|χ1 − χ2|, i = 1, 2, . . . , n, χ1 ∈ R, χ2 ∈ R,

where |(·)| represents the absolute value.

Definition 3. Fractional-order neural network Equation (7) realizes synchronization if

lim
t→∞
‖uk(t)−

1
N

N

∑
k=1

uk(t)‖ = 0, k = 1, 2, · · · , N.

Remark 1. Fractional-order neural networks have unique non-locality and finite memory properties,
which integer-order systems do not have. For this reason, fractional-order differential systems can
better describe various natural phenomena, as they fully utilize all historical information from initial
to current states.

Remark 2. Existing fractional-order neural networks mainly focus on synchronization with single
time delay or a simple single-link structure, and impulsive synchronization issues of fractional-order
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multi-delay coupling neural networks including multi-link complicated structures are rare. The
main reason is that multiple delays and multi-link complicated structures significantly impact
the system’s stability. This study presents a generalized fractional-order impulsive comparison
principle including multiple hybrid delays and utilizes hybrid impulsive control schemes to overcome
this difficulty.

To achieve the synchronization target of fractional-order dynamical system (7), con-
sider the following hybrid impulsive pinning controller

Uk(t) = U0,k(t) + U1,k(t), k = 1, 2, . . . , N, (10)

where the state feedback control item U0,k(t) is

U0,k(t) = −Fkzk(t), k = 1, 2, . . . , N, (11)

and the impulsive control item U1,k(t) is

U1,k(t) =


+∞
∑

σ=1
βσzk(t)δ(t− tσ), k ∈ D(tσ),

0, k /∈ D(tσ).
(12)

Here, Fk is the feedback control gain and βσ denotes the impulsive strength at tσ.
δ(·) is the Dirac delta function. The impulsive sequences {tσ} meet tσ −→ +∞ as
σ −→ +∞. D(tσ) = {k1, k2, · · · , kl} ⊂ {1, 2, · · · , N} represents the set of pinned neu-
rons at t = tσ. To obtain concrete D(tσ), one can reorder the errors z1(t), z2(t), · · · , zN(t)
by ‖zθ1(t)‖ ≥ ‖zθ2(t)‖ ≥ · · · ≥ ‖zθl (t)‖ ≥ · · · ≥ ‖zθN (t)‖, then D(tσ) = {θ1, θ2, · · · , θl}.
By Equations (9)–(12), one can further derive that

cDµ
t zk(t) = −Bzk(t)− Fkzk(t) + A f (uk(t))− 1

N

N
∑

k=1
A f (uk(t)) + Gh(uk(t− τ0))

− 1
N

N
∑

k=1
Gh(uk(t− τ0)) +

α

∑
m=1

εm
N
∑

j=1
V(m)

kj Γmzj(t− τm), t ∈ [tσ−1, tσ),

zk(t+σ )− zk(t−σ ) = βσzk(t−σ ), k ∈ D(tσ), ]D(tσ) = l, σ ∈ Z+.

(13)

3. Main Results
Theorem 1. Under Assumption 1 and −2 < βσ < 0(σ ∈ Z+), if there exist constants ξm > 0,
η1 > 0, and matrix F > 0, such that the inequalities below

(i) IN ⊗ (−2B + AAT + Ψ + GGT + η1 In) + ∑α
m=1 ξ−1

m εm(V(m)V(m)T ⊗ ΓmΓm)− 2F⊗ In ≤ 0,
(ii)
√

2 ∑α
m=0 ρm < η1,

hold, where Ψ = diag{ψ2
1, ψ2

2, . . . , ψ2
n}, F = diag{F1, F2, . . . , FN}, ρ0 = λmax(IN ⊗ Φ),

ρm = ξmεm, m = 1, 2, . . . , α, and Φ = diag{φ2
1 , φ2

2 , . . . , φ2
n}, then neural network Equation (7) is

asymptotically synchronized via hybrid impulsive controller Equation (10).

Proof. Consider the following function

V(t) =
N

∑
k=1

zT
k (t)zk(t) = zT(t)z(t). (14)

When t ∈ [tσ−1, tσ), using Lemma 3, one can obtain that
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cDµ
t V(t) ≤2

N

∑
k=1

zT
k (t)

cDµ
t zk(t)

=2
N

∑
k=1

zT
k (t)

[
− Bzk(t)− Fkzk(t) + A f (uk(t))−

1
N

N

∑
k=1

A f (uk(t))

+ Gh(uk(t− τ0))−
1
N

N

∑
k=1

Gh(uk(t− τ0)) +
α

∑
m=1

N

∑
j=1

εmV(m)
kj Γmzj(t− τm)

]
. (15)

From
N
∑

k=1
zT

k (t) = 0, one has
N
∑

k=1
zT

k (t)A
[

f (ū(t))− 1
N

N
∑

k=1
f (uk(t))

]
= 0 and

N
∑

k=1
zT

k (t)G[
h(ū(t− τ0))− 1

N

N
∑

k=1
h(uk(t− τ0))

]
= 0. Utilizing Assumption 1, we can then derive the

following inequalities

2
N

∑
k=1

zT
k (t)

[
A f (uk(t))−

1
N

N

∑
k=1

A f (uk(t))

]

=2
N

∑
k=1

zT
k (t)A[ f (uk(t))− f (ū(t))] + 2

N

∑
k=1

zT
k (t)A

[
f (ū(t))− 1

N

N

∑
k=1

f (uk(t))

]

≤
N

∑
k=1

zT
k (t)AATzk(t) +

N

∑
k=1

zT
k (t)Ψzk(t)

=zT(t)
[

IN ⊗ (AAT + Ψ)
]
z(t). (16)

2
N

∑
k=1

zT
k (t)

[
Gh(uk(t− τ0))−

1
N

N

∑
k=1

Gh(uk(t− τ0))

]

=2
N

∑
k=1

zT
k (t)G[h(uk(t− τ0))− h(ū(t− τ0))]

+ 2
N

∑
k=1

zT
k (t)G

[
h(ū(t− τ0))−

1
N

N

∑
k=1

h(uk(t− τ0))

]

≤
N

∑
k=1

zT
k (t)GGTzk(t) +

N

∑
k=1

zT
k (t− τ0)Φzk(t− τ0)

=zT(t)(IN ⊗ GGT)z(t) + zT(t− τ0)(IN ⊗Φ)z(t− τ0). (17)

Moreover, using the properties of the Kronecker product of matrices, one can get

2
N

∑
k=1

zT
k (t)

α

∑
m=1

N

∑
j=1

εmV(m)
kj Γmzj(t− τm)

=2
α

∑
m=1

εm

[
N

∑
k=1

N

∑
j=1

V(m)
kj zT

k (t)Γmzj(t− τm)

]

=2
α

∑
m=1

εmzT(t)(V(m) ⊗ Γm)z(t− τm)

≤
α

∑
m=1

ξ−1
m εmzT(t)(V(m)V(m)T ⊗ ΓmΓm)z(t) +

α

∑
m=1

ξmεmzT(t− τm)z(t− τm). (18)

Substituting Equations (16)–(18) into Equation (15) yields
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cDµ
t V(t) ≤zT(t)

[
IN ⊗ (−2B + AAT + Ψ + GGT + η1 In) +

α

∑
m=1

ξ−1
m εm(V(m)V(m)T ⊗ ΓmΓm)

− 2F⊗ In

]
z(t) + zT(t− τ0)(IN ⊗Φ)z(t− τ0) +

α

∑
m=1

ξmεmzT(t− τm)z(t− τm)

− zT(t)(IN ⊗ η1 In)z(t)

≤− η1V(t) + ρ0V(t− τ0) +
α

∑
m=1

ρmV(t− τm), (19)

where ρ0 = λmax(IN ⊗Φ) and ρm = ξmεm(m = 1, 2, . . . , α).
When t = tσ, σ ∈ Z+, we can obtain that

V(t+σ ) = ∑
k∈D(tσ)

zT
k (t

+
σ )zk(t+σ ) + ∑

k/∈D(tσ)

zT
k (t

+
σ )zk(t+σ )

= ∑
k∈D(tσ)

(1 + βσ)
2zT

k (t
−
σ )zk(t−σ ) + ∑

k/∈D(tσ)

zT
k (t
−
σ )zk(t−σ ). (20)

Let βσ ∈ (−2, 0), Wσ = N+lβσ(βσ+2)
N ∈ (0, 1), then one can derive

(N − l)(1−Wσ) =
[
Wσ − (1 + βσ)

2
]
l ≥ 0. (21)

Denote Π1(t−σ ) = min{‖zk(t−σ )‖ : k ∈ D(tσ)}, Π2(t−σ ) = max{‖zk(t−σ )‖ : k /∈ D(tσ)},
one can further get

(1−Wσ) ∑
k/∈D(tσ)

zT
k (t
−
σ )zk(t−σ ) ≤ (1−Wσ)(N − l)Π2

2(t
−
σ )

≤ (1−Wσ)(N − l)Π2
1(t
−
σ )

= [Wσ − (1 + βσ)
2]lΠ2

1(t
−
σ )

≤ [Wσ − (1 + βσ)
2] ∑

k∈D(tσ)

zT
k (t
−
σ )zk(t−σ ). (22)

Combining Equations (20) and (22) yields that

V(t+σ ) = ∑
k∈D(tσ)

[(1 + βσ)
2 −Wσ]zT

k (t
−
σ )zk(t−σ ) + ∑

k∈D(tσ)

WσzT
k (t
−
σ )zk(t−σ )

+ ∑
k/∈D(tσ)

zT
k (t
−
σ )zk(t−σ )

≤(Wσ − 1) ∑
k/∈D(tσ)

zT
k (t
−
σ )zk(t−σ ) + ∑

k∈D(tσ)

WσzT
k (t
−
σ )zk(t−σ ) + ∑

k/∈D(tσ)

zT
k (t
−
σ )zk(t−σ )

=Wσ

N

∑
k=1

zT
k (t
−
σ )zk(t−σ ) = WσV(t−σ ), (23)

where Wσ ∈ (0, 1). Combining Equations (19) and (23) givescDµ
t V(t) ≤ −η1V(t) + ρ0V(t− τ0) +

α

∑
m=1

ρmV(t− τm), t ∈ [tσ−1, tσ),

V(t+σ ) ≤WσV(t−σ ).
(24)
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Consider a multi-delay differential system below

cDµ
t X (t) = −η1X (t) + ρ0X (t− τ0) +

α

∑
m=1

ρmX (t− τm), (25)

where X (t) is continuous on [t0 − τ,+∞) and it possesses the same initial condition as
V(t). Based on Lemma 4 and 0 < Wσ < 1, we have

0 ≤ V(t) ≤ X (t). (26)

Utilizing the Laplace transformation for fractional system Equation (25) gives

sµX (s)− sµ−1X (t0)

=− η1X (s) + ρ0

∫ +∞

t0

e−stX (t− τ0)dt + ρ1

∫ +∞

t0

e−stX (t− τ1)dt + · · ·

+ ρα

∫ +∞

t0

e−stX (t− τα)dt

=− η1X (s) + ρ0

∫ +∞

t0−τ0

e−s(t+τ0)X (t)dt + ρ1

∫ +∞

t0−τ1

e−s(t+τ1)X (t)dt + · · ·

+ ρα

∫ +∞

t0−τα

e−s(t+τα)X (t)dt

=− η1X (s) + ρ0e−sτ0

[∫ t0

t0−τ0

e−stX (t)dt +
∫ +∞

t0

e−stX (t)dt
]
+ ρ1e−sτ1

[∫ t0

t0−τ1

e−stX (t)dt

+
∫ +∞

t0

e−stX (t)dt
]
+ · · ·+ ραe−sτα

[∫ t0

t0−τα

e−stX (t)dt +
∫ +∞

t0

e−stX (t)dt
]

=− η1X (s) + ρ0e−sτ0X (s) + ρ1e−sτ1X (s) + · · ·+ ραe−sταX (s)

+ ρ0e−sτ0

∫ t0

t0−τ0

e−stX (t)dt + ρ1e−sτ1

∫ t0

t0−τ1

e−stX (t)dt + · · ·+ ραe−sτα

∫ t0

t0−τα

e−stX (t)dt. (27)

By Lemma 1 and Equation (27), one can get

det(∆(s))X (s) = sµ−1X (t0) + ρ0e−sτ0

∫ t0

t0−τ0

e−stX (t)dt + · · ·+ ραe−sτα

∫ t0

t0−τα

e−stX (t)dt, (28)

where the characteristic polynomial det(∆(s)) = sµ + η1− (ρ0e−sτ0 + ρ1e−sτ1 + · · ·+ ραe−sτα).
The next goal is to demonstrate that det(∆(s)) = 0 has no pure imaginary solutions. Assume
s = bi = |b|(cos π

2 + i sin(±π
2 )), where b ∈ R. Substituting s into det(∆(s)) = 0 gives

(bi)µ + η1 =
α

∑
m=0

ρme−τmbi. (29)

Then, one can further derive

|(bi)µ + η1|2 = |
α

∑
m=0

ρme−τmbi|2, (30)

which yields that

|b|2µ + 2η1 cos
µπ

2
|b|µ + η2

1 = (
α

∑
m=0

ρm cos bτm)
2 + (

α

∑
m=0

ρm sin bτm)
2

≤ 2(
α

∑
m=0

ρm)
2. (31)
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Let Υ(d) = d2 + 2η1 cos µπ
2 d+ η2

1 − (
α

∑
m=0

ρm cos bτm)2 − (
α

∑
m=0

ρm sin bτm)2. It is not

difficult to derive that Υ(0) = η2
1 − (

α

∑
m=0

ρm cos bτm)2 − (
α

∑
m=0

ρm sin bτm)2 > 0, since

√
2

α

∑
m=0

ρm < η1 and ρm > 0. Note that Υ(d) represents a second-order polynomial,

and one has Υ(|b|µ) > 0, which indicates the equation in (31) has no solution. Hence,

det(∆(s)) = 0 has no pure imaginary solutions. Moreover, when
√

2
α

∑
m=0

ρm < η1, we

have | arg(−η1 +
α

∑
m=0

ρm)| > π
2 . Using Lemma 1, the zero solution of Equation (25) is

asymptotically stable and limt→+∞ X (t) = 0. Then one can get limt→+∞ V(t) = 0 by
inequality Equation (26). Hence, the synchronization of multi-link system Equation (7) can
be achieved via hybrid impulsive controller Equation (10).

Remark 3. Compared with the existing literature concerning fractional-order multi-link
systems [25–28,35], our model not only considers internal and coupling time delays but also
has different coupling time delays for each coupling structure.

Based on the theoretical analysis of Theorem 1, when V(2) = V(3) = · · · = V(m) = 0,
fractional-order multi-link network Equation (7) is simplified to the following single-
link version:

cDµ
t uk(t) =− Buk(t) + A f (uk(t)) + Gh(uk(t− τ0)) +

N

∑
j=1

ε1V(1)
kj Γ1uj(t− τ1), (32)

where k = 1, 2, · · · , N. Accordingly, the hybrid impulsive controller for this model is still
as shown in Equation (10), then one can derive the following useful corollary.

Corollary 1. Under Assumption 1 and −2 < βσ < 0(σ ∈ Z+), if there exist constants
ξ1 > 0, η1 > 0, and matrix F > 0, such that the inequalities below

(i) IN ⊗ (−2B + AAT + Ψ + GGT + η1 In) + ξ−1
1 ε1(V(1)V(1)T ⊗ Γ1Γ1)− 2F⊗ In ≤ 0,

(ii) ρ0 + ρ1 < η1 sin
µπ

2
,

hold, where Ψ = diag{ψ2
1, ψ2

2, . . . , ψ2
n}, F = diag{F1, F2, . . . , FN}, ρ0 = λmax(IN ⊗ Φ),

ρ1 = ξ1ε1, and Φ = diag{φ2
1, φ2

2, . . . , φ2
n}, then single-link neural network Equation (32) is

asymptotically synchronized via hybrid impulsive controller Equation (10).

Proof. Similarly to Equation (29), it is not difficult to get the following characteristic equation

(bi)µ + η1 = ρ0e−τ0bi + ρ1e−τ1bi. (33)

Substituting s = bi = |b|(cos π
2 + i sin(±π

2 )) into Equation (33), one can derive{
|b|µcos µπ

2 + η1 = ρ0cos(τ0b) + ρ1cos(τ1b),
|b|µsin(± µπ

2 ) = −ρ0sin(τ0b)− ρ1sin(τ1b),
(34)

which gives

|b|2µ + 2η1|b|µcos
µπ

2
+ η2

1 − (ρ2
0 + ρ2

1 + 2ρ0ρ1cosb(τ0 − τ1)) = 0. (35)

Let Υ(d) = d2 + 2η1 cos µπ
2 d+ η2

1 − (ρ2
0 + ρ2

1 + 2ρ0ρ1cosb(τ0− τ1)). It is not difficult to
derive that Υ(0) = η2

1 − (ρ2
0 + ρ2

1 + 2ρ0ρ1cosb(τ0 − τ1)) > 0, since ρ0 + ρ1 < η1 sin µπ
2 , 0 <
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µ < 1, and η1 > 0. By utilizing the properties of Υ(d) as a second-order polynomial,
one can obtain Υ(|b|) > 0, which shows Equation (35) has no solution and characteristic
Equation (33) has no pure imaginary solutions. The remaining proof process is similar to
Theorem 1 and we finish the proof of this corollary.

Remark 4. Theorem 1 and Corollary 1 are also correct for µ = 1, namely, the synchronization
results obtained in this article still hold for integer-order neural networks.

Remark 5. According to the results in Theorem 1 and Corollary 1, one can summarize the algorithm
steps of the hybrid impulsive control below.
Step 1. Initialize the system parameters B, A, G, µ, τ0, τm, εm, Γm, V(m).
Step 2. Compute the parameters φi, ψi based on Assumption 1.
Step 3. Choose an appropriate impulse gain βσ and impulse interval tk − tk−1.
Step 4. Determine the feedback gain Fk and constant parameters η1, ξm based on control conditions.

4. Numerical Examples

This part gives numerical simulations to test the rationality of the achieved theoreti-
cal results.

Example 1. Consider fractional-order multi-delay coupled neural networks including multi-link
complicated structures consisting of six neurons, which can be described as

cDµ
t uk(t) =− Buk(t) + A f (uk(t)) + Gh(uk(t− τ0)) +

6

∑
j=1

ε1V(1)
kj Γ1uj(t− τ1)

+
6

∑
j=1

ε2V(2)
kj Γ2uj(t− τ2) +

6

∑
j=1

ε3V(3)
kj Γ3uj(t− τ3), (36)

where ε1 = 0.5, ε2 = 0.6, ε3 = 0.7, µ = 0.99, τ0 = 0.05, τ1 = 0.06, τ2 = 0.08, and τ3 = 0.10.
The self-feedback weight matrix and the connection strength matrices are selected as

B =

[
7.0 0
0 7.0

]
, A =

[
1.2 −0.3
−1.0 1.2

]
, G =

[
0.7 0.8
0.6 −1.0

]
,

respectively. The inner coupling matrices are chosen as

Γ1 =

[
0.5 0
0 0.5

]
, Γ2 =

[
1.0 0
0 1.0

]
, Γ3 =

[
1.2 0
0 1.2

]
.

Moreover, the coupling configuration matrices of fractional-order multi-link system Equation (36)
are defined as

V1 =



−0.7 0.1 0 0.3 0 0.4
0.1 −0.9 0.6 0 0.2 0
0 0.6 −1.4 0.7 0 0.1

0.3 0 0.7 −1.1 0.1 0
0 0.2 0 0.1 −0.6 0.3

0.4 0 0.1 0 0.3 −0.8

,

V2 =



−0.8 0.25 0 0 0.2 0.35
0.25 −0.7 0.15 0.3 0 0

0 0.15 −0.85 0.2 0.1 0.4
0 0.3 0.2 −1.0 0.5 0

0.2 0 0.1 0.5 −1.15 0.35
0.35 0 0.4 0 0.35 −1.1

,
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V3 =



−1.1 0.25 0.15 0.4 0.3 0
0.25 −1.25 0.25 0.35 0 0.4
0.15 0.25 −1.7 0.55 0.65 0.1
0.4 0.35 0.55 −2.5 0.85 0.35
0.3 0 0.65 0.85 −2.25 0.45
0 0.4 0.1 0.35 0.45 −1.3

.

The non-delay and delayed activation functions are fi(x) = hi(x) = tanh(x). It is
clear that Assumption 1 holds when φi = ψi = 1(i = 1, 2). Let η1 = 4.25, Fk = 4.78,
tσ − tσ−1 = 0.05, and ξm = 1(m = 1, 2, 3). A simple calculation gives that

√
2 ∑α

m=0 ρm −
η1 = −0.2902 < 0, and the maximum eigenvalue of matrix Ω = IN ⊗ (−2B + AAT + Ψ +
GGT + η1 In) + ∑α

m=1 ξ−1
m εm(V(m)V(m)T ⊗ ΓmΓm)− 2F⊗ In is −0.4353 < 0. Consequently,

the above parameters fulfill all the requirements in Theorem 1. The initial values of multi-
link network Equation (36) are randomly chosen within the real interval [−5 5]. Utilizing
the hybrid impulsive control methods, the time evolution processes of uk(t) and zk(t) can be
seen in Figure 1a,b under the above control parameters. The horizontal ordinate in the figure
represents the system’s evolution time. Figure 1a displays that the two dimension states
of vectors uk(t) of all neurons tend to converge to completely consistent states over time.
Figure 1b displays that the error norm of neurons gradually approaches zero as the control
duration increases. Based on the definition of global synchronization, Figure 1 shows that
the controlled multi-link network can achieve global asymptotical synchronization, which
means the theoretical analysis of Theorem 1 is correct.
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Figure 1. The time evolution processes of uk(t) and ‖zk(t)‖ under hybrid impulsive control in
Example 1. (a) uk(t); (b) ‖zk(t)‖.

Remark 6. In contrast to the continuous feedback control in [29,31,33,34], hybrid impulsive
control, as a class of discontinuous control methods, can carry on impulse stimulation at impulse
instants and feedback stimulation within the impulse interval, which possesses the merits of simple
implementation and increased safety during signal transmission. Comparing pure impulsive
control [7,9,16] with the method presented in this article, if pure impulsive control is used instead of
hybrid impulsive control, one can find that condition (i) in Theorem 1 is always untenable, since the
feedback part F⊗ In is the key factor in the validity of condition (i).

Remark 7. Considering the nonlocality of fractional differential equations, a typical predictor-
corrector scheme called Adams–Bashforth–Moulton [39] has been used for solving multi-delay
fractional-order differential equations in a numerical simulation in Matlab R2020b (see Appendix A).
We should point out that one can apply the product trapezoidal quadrature rule for the corrector
term and use the product rectangle rule to evaluate the predictor term. Hence, with the help of these
two rules and the given algorithm steps, the entire numerical method is easy to implement.
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Example 2. Consider fractional-order coupled neural networks including single-link topological
structures described as

cDµ
t uk(t) =− Buk(t) + A f (uk(t)) + Gh(uk(t− τ0)) +

6

∑
j=1

ε1V(1)
kj Γ1uj(t− τ1), (37)

where ε1 = 0.8, µ = 0.95, τ0 = 0.03, and τ1 = 0.04. The self-feedback weight matrix and the
connection strength matrices are selected as

B =

[
4.0 0
0 15

]
, A =

[
1.6 −1.8
1.8 1.4

]
, G =

[
−1.0 1.0
3.0 −3.0

]
,

respectively. The inner coupling matrix and the coupling configuration matrix are chosen as

Γ1 =

[
1.0 0
0 1.0

]
, V1 =



−1.4 0.2 0.4 0.3 0.1 0.4
0.2 −1.8 0.6 0.2 0.5 0.3
0.4 0.6 −1.6 0.3 0.1 0.2
0.3 0.2 0.3 −1.9 0.9 0.2
0.1 0.5 0.1 0.9 −2.0 0.4
0.4 0.3 0.2 0.2 0.4 −1.5

,

respectively.

The non-delay and delayed activation functions are fi(x) = hi(x) = 0.5 tanh(x). It is
clear that Assumption 1 holds when φi = ψi = 0.5. Let η1 = 1.61, Fk = 6.26, tσ − tσ−1 = 0.1,
and ξ1 = 1. A simple calculation gives that ρ0 + ρ1− η1sin µπ

2 = −0.3050 < 0, and the maxi-
mum eigenvalue of matrix Ω = IN⊗ (−2B+ AAT +Ψ+GGT + η1 In)+ ξ−1

1 ε1(V(1)V(1)T⊗
Γ1Γ1)− 2F ⊗ In is −0.2812 < 0. Hence, the above parameters guarantee all the require-
ments in Corollary 1 are fulfilled. The initial states of fractional-order single-link network
Equation (37) are randomly selected within the interval [−5 5]. Under the hybrid impul-
sive control schemes, the simulation results of uk(t) and zk(t) in Equation (37) are given in
Figure 2a,b. The abscissa in the figure also stands for the system’s evolution time. Figure 2a
indicates that the two-dimensional state vectors uk(t) of all network nodes tend to con-
verge to a completely consistent state over control time. Figure 2b indicates that the error
norm of all network nodes gradually approaches zero as the control duration increases.
Figure 2 shows that single-link neural network Equation (37) can achieve asymptotical
synchronization under the proposed hybrid control schemes, which validates Corollary 1.
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Figure 2. The time evolution processes of uk(t) and ‖zk(t)‖ under hybrid impulsive control in
Example 2. (a) uk(t); (b) ‖zk(t)‖.
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5. Conclusions

This article analyzed and validated the global asymptotical synchronization of fractional-
order multi-delay coupled neural networks (FMCNNs). Due to the impact of various time
delays and multi-link structures on the stability of fractional-order complex systems, this
paper addressed these difficulties by establishing a generalized fractional-order compar-
ison lemma and a hybrid impulsive pinning control strategy, and some new sufficient
conditions were acquired to ensure the global synchronization of the concerned multi-delay
coupled neural networks. We will combine event-triggering strategies and impulsive
pinning control technologies to achieve the selection of impulse instants and network
nodes in the future. In addition, as an important tool, the theory of fixed points could be
applied to impulsive synchronization analyses. This is also a worthwhile direction for our
future research.
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Appendix A

To facilitate the readers’ understanding of the solution of the fractional-order differen-
tial equation in this paper, we have provided the following relevant code, which is named
fo_solution.m.
function [t,y] = fo_solution(step,tfinal,ini_value,mu,delay)
len = length(ini_value);
N = tfinal/step;
t = linspace(0,N,N + 1)*step;
k = delay/step;
y0 = ini_value;
y = zeros(len,N);
for n = 0:N − 1
disp([’execution number:’, num2str(n), ’t = ’, num2str(n*step)]);
b=@(j) stepmu/mu ∗ ((n + 1− j)mu − (n− j)mu );
s = zeros(len,1);
f or j = 0 : n
i f j− k <= 0
xjk = y0;
else
xjk = y(:, j− k);
end
i f j == 0
xj = y0;
else
xj = y(:, j);
end
s = s + b(j) ∗ equ(j ∗ step, xj, xjk);
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end
yp = y0 + s/gamma(mu);
a = @(j)(n− j + 2)(mu+1) + (n− j)(mu+1) − 2 ∗ (n− j + 1)(mu+1);
SUM0 = (n(mu+1) − (n−mu) ∗ (n + 1)mu) ∗ equ(0, y0, y0);
SUM1 = zeros(len, 1);
f or j = 1 : n
i f j− k <= 0
xjk = y0;
else
xjk = y(:, j− k);
end
xj = y(:, j);
SUM1 = SUM1 + a(j) ∗ equ(j ∗ step, xj, xjk);
end
SUM = SUM0 + SUM1;
i f n + 1− k <= 0
xnk = y0;
else
xnk = y(:, n + 1− k);
end
y(:, n + 1) = y0 + stepmu/gamma(mu + 2) ∗ equ(n ∗ step, yp, xnk) + SUM ∗ stepmu/
gamma(mu + 2);
end
y = [y0, y];
end
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