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Abstract: This paper proposes a method for the stability analysis of dynamic neural networks.
The stability analysis of dynamic neural networks is a challenging task due to internal feedback
connections. In this research work, we propose an algorithm based on the Reduction of Dissipativity
Domain (RODD) algorithm. The RODD algorithm is a numerical technique for the detection of the
stability of nonlinear dynamic systems. The method works by using an approximation of the reachable
set. This paper proposes linear and quadratic approximations of reachable sets. RODD-LB uses a
linear approximation, RODD-EB uses a quadratic approximation, and the RODD-Hybrid algorithm
uses a combination of the linear and quadratic approximations. The accuracy and convergence of
these algorithms were derived through numerical dynamic systems.

Keywords: recurrent neural network; stability analysis; dissipativity domain; reachable set; linear
and quadratic approximation of reachable set
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1. Introduction

Recently, Recurrent Neural Networks (RNNs) have become more popular for solving
complex problems in time series prediction, natural language processing, speech recogni-
tion, associative networks [1] and image processing [2]. The calculus behind RNN is well
understood, and more research is taking place in this branch of artificial neural networks.
The power of RNNs comes from internal feedback connections, which makes the training
more challenging and may cause potential instabilities [3-5]. For this reason, the stability
analysis of RNNs is more challenging, and finding an efficient algorithm for determining
the stability of RNNs is more difficult. Suykens et al. [4-6] offered a new technique for
the stability analysis of RNNs. They investigated a particular representation of RNN,
which is denoted by NLq. In their Lyapunov-based algorithm, the stability of RNN is
investigated to identify the equilibrium point when ignoring all biases. Removing the
biases limits the power of RNN and also limits the stable ranges for the network weights.
The other technique to prove the stability of RRN is via Linear Matrix Inequalities (LMIs).
This method of stability analysis was introduced in [7] by Tanaka. Stability analysis via
LMI was also investigated by Barabanov and Prokharov [8]. They proved that the stability
algorithms derived in [6,7] are special cases of their method.

The stability of the origin of RNNs depends on the network weights and biases. Let M
denote a space of stable parameters for a specific RNN representation, and let it be defined
as the set of all weight and bias values for which a given RNN is stable. The main objective
here is to identify the largest possible subset of M. The exact determination of the full set M
is not possible, except in special cases. A stability algorithm is conservative to an extent
when it does not include the full set M. For example, the stability conditions developed
in [4] are believed to be more conservative than the conditions in [8], because several stable
systems have been found that the criterion in [8] can demonstrate are stable, but the criterion
in [4] cannot. The Reduction of Dissipativity Domain (RODD) algorithm, introduced in [9],
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has the potential to find the least conservative stability condition. In order to show the
application of the RODD method, we devote a section of this paper to investigating the
algorithm and to explaining how it might be modified. The main contribution of this
paper is the presentation of an efficient stability algorithm that is fast-converging and less
conservative compared to other stability analysis methods. The structure of this paper is
organized as follows: In Section 2, we describe the general recurrent network structure
that is considered in this paper. In Section 3, we introduce the concept of the reachable
set and the practical application of importance in real-world problems. In Section 4 of
this paper, we introduce linear and nonlinear estimations of reachable sets. In Section 5,
the RODD-LBL algorithm (linear approximation of the reachable set for stability analysis)
is investigated. The development of RODD-LB2 is given in Section 6. The main goal of
the paper is described in Sections 7 and 8—the RODD-EB and RODD-Hybrid methods.
The paper concludes with numerical dynamic examples to prove the efficiency of the
proposed method.

2. Layered Digital Dynamic Network

This paper considers a very general class of RNN—the Layered Digital Dynamic
Network—first introduced in [10]. The net input n™ (k) for layer m of an LDDN can be
computed as follows:

(k)= Y Y w"(d)a(k—d)

IELJ:,, dEDLm,[
+Y Y w@p'k—d)+p" (1)
Il de+DIy,

where p' (k) is the Ith input to the network at time k, IW™! is the input weight between
input / and layer m, LW™! is the layer weight between layer | and layer m, b™ is the bias
vector for layer m, DL,, | is the set of all delays in the tapped delay line between layer [ and

layer m, I, is the set of indices of input vectors that connect to layer m, and L{; is the set of
indices of layers that connect directly forward to layer m. The output of layer m is

a" (k) = £"(n" (k)) €

form =1, 2, ---, M, where f" is the transfer function at layer m. The set of M paired
Equations (1) and (2) describes the LDDN. LDDNs can have any number of layers, any
number of neurons in any layer, and arbitrary connections between layers (as long as there
are no zero-delay loops).

3. Reachable Set
Consider an RNN in the state space form [11]:

x(k+1) = £(x(k)) ®)

where f: R" — R", x € R", and f = col{f;} is a vector of functions that are bounded and
smooth fori =1,2,...,n. For each initial condition x(0) € R", there exists a trajectory of a
dynamic system (3). A reachable set, denoted by Dy, is a set of system trajectories for all
possible initial conditions x(0) € R”".

Reachable sets are the foundation of dynamic systems. A reachable set for a dynamic
system (3) is a set that contains all solutions for all initial conditions and can be solved
recursively as follows:
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x(1) = £(x(0))
x(2) = f(x(1)) = £(x(0)) = £*(x(0))
x(k) = £(x(0)) )

The above recursive equations show that the reachable set Dy, is a nonlinear trans-
formation of the set of initial conditions R” through the mapping 1.

The sequence of reachable sets should satisfy the following relationship:
Djyq = £(Dg) ®)

The exact knowledge about the reachable sets has a critical role in solving problems.
Several basic problems can be stated and solved in terms of reachable sets. For instance,
the stability or instability of system (3) can be determined based on the knowledge of the
reachable set. If the system is globally asymptotically stable (GAS), we would expect that
D;., C Dy, as shown in Figure 1.
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Figure 1. Reachable sets [11].

In order to show that the equilibrium point is globally asymptotically stable, it needs
to be proven that D;; — {0} as k — co. This confirms that all possible trajectories converge
to the origin regardless of the initial conditions. This is the definition of global asymp-
totic stability [12]. Similarly, we can prove the lack of global stability of the origin by
showing that

D; C D4 (6)

The main focus of this paper is on dynamic systems with convex reachable sets. This
is the case when a dynamic system (3) satisfies sector conditions [8]. However, the RODD
algorithm is not only limited to convex reachable sets, and it can be applied to a dynamic
system with a non-convex reachable set. The main challenge of using reachable sets to
determine stability is the exact derivation of the reachable sets. Because of this challenge,
an estimation of the reachable set is needed. We explain some methods for approximating
reachable sets in the following section.

4. Estimation of Reachable Set

There are several methods that can be used to estimate convex reachable sets. Bara-
banov and Prokharov [9] used a set of linear functions to estimate reachable sets. They
proved that for any stable system, it is always possible to estimate reachable sets, denoted
by Dy, that are constructed via linear boundaries, such that D, — {0} as k — oco. The



Mathematics 2023, 11, 3050

40f18

RODD-LB1 algorithm in their paper is guaranteed to provide an accurate approximation of
any convex reachable set with a sufficient number of linear boundaries. (The RODD-LB1
algorithm is investigated in Section 4.) Reachable sets can also be approximated with other
methods. There are other methods to estimate reachable sets. For example, a reachable set
can be estimated using an elliptical approximation. According to several experiments,
it turns out that the elliptical approximation of convex reachable sets is a very fast-
converging algorithm. The speed of convergence for this method of stability is investigated
in the Examples section.

Any approximation of a reachable set must contain all the system trajectories.
In other words,

f(Dj) = Dj,; C Diiq @)

In order to minimize the error, we need to make sure that the true reachable set D} is
a subset of estimated reachable sets Dy, so that if {D;} — {0} as k — oo, it guarantees that
{D;} — {0}, which proves that (3) is globally asymptotically stable. An example of using
linear boundaries to approximate a convex reachable set is shown in Figure 2. The linear
approximation has the advantage that increasing the number of linear functions will
increase the accuracy. If the number of linear functions goes to infinity, then Dy — D ;.

Figure 2. Approximate reachable set [13].

Figure 3 illustrates how the accuracy of the estimation of the convex reachable set can
be increased by increasing the number of linear boundaries.

Figure 3. More accurate estimation of the reachable set [13].

In the next section, a linear approximation of the reachable set is explained. Then, the
approximated reachable set is used to detect the stability region for the equilibrium point
for system (3).

5. RODD-LB1 [9]

Reduction of Dissipativity Domain is a numerical algorithm to detect the stability of the
equilibrium point for a dynamic system. The better the accuracy of the estimated reachable
set, the more accurately the algorithm can detect stability or instability. The estimated
reachable set at time step k + 1 (Dy, 1) is compared against the estimated reachable set at
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the previous time step k (Dy). If the size of the estimated set decreases over time, then this
is an indication of the asymptotic stability of the equilibrium point.

For RODD-LB methods, reachable sets are approximated with linear boundaries.
These boundaries take the form [9]

qfx <7 8)

where q; is a unit vector that is orthogonal to the boundaries.
The RODD-LB1 method involves three main steps. These steps are given as follows:

5.1. Step 0

Step 0 is the internalization step, where the initial approximate reachable set Dy is
defined. The unit vectors qq,j are chosen tobe {e1,- - ,ey, —e1, -+, —ey}, where ¢; is the
unit vector along axis i. Then, we compute

Yo, = m)iax{qg,jf(x) xeR",j=1,2,--,mg ©9)
where my = 2n. The set Dy can then be defined:
Do:{Xiqg,jXS’Yo,j,]':LQr",mo} (10)

5.2. Step 1

In this step, the size of the set Dy decreases as k evolves over time. This can include
both moving existing boundaries and adding new boundaries. In step 1, the boundaries
from the previous iteration are moved (see Figure 4) . This involves updating 7y ;:

Vi, = mfx{qz,jf(x) ix €Dy} (11)

wherej =1,2,...,my. According to the Extreme Value Theorem [14], the maximum of the
function in (11) is achievable. This is because the estimated reachable set Dj._; is a compact
set, and q,{,]-f(x) is a continuous function. Since 7y ; is always imputable, the estimated
reachable set Dy can be defined as follows:

Dk = {q,z;]x < ’)/k,]',Vj =12,.. .,mk} (12)

By definition, the estimated reachable set Dy is the set of linear functions that are
tangent to the set f(Dy_1) (see Figure 5). The optimization in (11) guarantees the tangency.
The decision to add additional linear boundaries depends on the shrinkage of the estimated
reachable set. If it is necessary to add more linear boundaries, then the algorithm switches
to step 2. If the set Dy decreases in size compared to the set Dy_1, then additional linear
boundaries are not required. In this case, an accurate approximation of the true reachable
set Dy is obtained, and improving the estimation accuracy is not needed. However, if the
estimated reachable set Dy does not decrease in size compared to Dy_1, then there is a need
to improve the accuracy of the estimated reachable set. The accuracy improvement of the
estimated reachable set will be realized by including additional linear functions. In this
case, the algorithm switches to step 2.
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Figure 5. Additional linear boundaries [13].

5.3. Step 2

If the estimated reachable set Dy does not decrease in size compared to the set Dy_q,
then there are two possibilities: Case I: The equilibrium point is not globally asymptotically
stable. Case II: The estimated reachable set D; is not an inaccurate estimation of the true
reachable set Dj. To reduce the estimation error and make the estimated reachable set more
accurate, a new linear function is added.

To minimize the estimation error, there is a need to find an optimal boundary line
q. The calculation of the vector q can be performed by solving the double maximization
problem that maximizes the following difference [9]:

q'x* — max {qTf(x)} (13)

x€EDy_q

where x* is the solution that maximizes the function q” f(x), and f(x*) is located on the
boundary of f(Dy_1). Equation (13) represents the distance that a new boundary would
move in one time step, and we want to add the boundary with which we will obtain the
maximum shrinkage of Dy. Figure 5 is a typical representation of how Dy, is derived when
step 1 is performed. The dashed lines are an indication of the contour lines of q’x. There
are two maximization problems involved in (13). The inner one locates the x* that is in the
next iteration of (3) and located on the boundary of Dj_;. The outer maximization in (13)
guarantees finding the best direction of the vector q that creates the largest distance of this
boundary line from Dj_; to Dg. The new linear boundary will be located on the surface
of f(Dy_1) at the point f(x*). This is the optimal location that corresponds to the largest
unwanted region from the estimated reachable set.

The interior maximization in (13) searches for the optimal x only over the space of
those points coming from the solution of the optimization in (11), not over all possible
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points in space. This makes the optimization simple, but at the potential cost of missing the
new optimal boundary. The maximization problem to find q in [9] is written as follows:

qj =arg H1(111”&1_><1{qTx]- - n}(eilx{qTf(xi)} 2i=1,2,...,m} (14)
where x;, j = 1,2,...,m, denotes the solution of the optimizations in (11). These are the
points that are located on the boundary of f(Dy_,). There are several reasons why limiting
the search space to the inner optimization in (14) is impractical. First, for a linear f(Dy_,),
tangent points for the m current boundaries of Dy always occur at the vertices. Second,
even if we were to include all of the vertices, x;, of Dy in the inner maximization of (14),
there is no guarantee that the points f(x;) will be vertices of f(Dy). Lastly, for the reachable
set with nonlinear boundaries, the maximum can occur at any location and not necessarily
the vertices. A slight modification of the current method is introduced in the next section
that solves the above limitations and speeds up the convergence rate of the algorithm.

After finding q; forj=1,2,...,min (14), the RODD-LB1 algorithm selects q; with the
largest values of

6; = 61— 0, (15)
where
01 = mfx{q]-Tx :x € D1}

b, = m;lx{quf(x) :x € Dy} (16)

Once the estimated reachable set has been updated, and Dy has been obtained
(using (11) with the new boundaries included), the algorithm checks again to verify that
there has been a sufficient reduction in size from Dj_; to Dy. If the reachable set with
updated linear boundaries does not decrease in size, then the algorithm is inconclusive.
In this case, the algorithm stops. If the additional linear boundaries help to reduce the size
of the reachable set, then the algorithm continues with step 1. The algorithm stops if the
size of the reachable set reaches below some small threshold value. This means that the
equilibrium point of the dynamic system is stable.

6. RODD-LB2

RODD-LBI1 suffers from a limited search space for finding optimal linear boundaries.
In RODD-LB?2, this problem is resolved, which generates a better estimation of the reachable
set and which we have found to converge faster on several test problems compared to
RODD-LB1. RODD-LB2 provides an improvement in the maximization of step 2 compared
to RODD-LBL1. The objective in RODD-LB2 is to widen the search space, which requires a
somewhat larger computational burden at each iteration, but the improved boundaries may
allow the algorithm to converge faster. In order to improve the inner optimization of (14),
instead of searching for the optimal x in the space among the points provided by (11), we
add all of the vertices of Dy to the search space. We found that adding these points makes
RODD-LB2 more efficient in higher dimensions.

In RODD-LB2, the derivation of q; in (14) is revised based on the discussion in [13]
as follows:

q; = arg max {qTx]- —max{q"f(x;)}} (17)
lall=1 xie0

where () is the space containing all the vertices of the set Dy and where x; € (). The concept
of RODD-LB2 is illustrated with the 2D example shown in Figure 6.
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Figure 6. Operation of step 2 for RODD-LB1 (left) and RODD-LB2 (right) [13].

The left graph in Figure 6 used the RODD-LB1 method to estimate the reachable set,
whereas the right graph in Figure 6 used the RODD-LB2 method. As shown in the figure,
the wider search space in the RODD-LB2 algorithm ends in a better estimation of the true
reachable set. All the steps inside the RODD-LB2 algorithm are shown in the flowchart
below(see Figure 7).

Initialization

Step 0

Construct D,

>¢<

Shrink Dk to form|

Step 1

potential Dg.1

Dy,1 = Potential D _ 4

Step 2

Add new bounding
lines to Dito form
potential Dy, 4

Yes
Did D _ 4 shrink
7. RODD-EB

The RODD-EB method uses elliptical boundaries, instead of linear boundaries, to cre-
ate the approximate reachable sets. As with the RODD-LB methods, RODD-EB requires
that the approximate reachable set Dy contain the reachable set D; ;. In RODD-EB,
the boundaries are created with quadratic functions, and the approximate reachable sets
are ellipses.

Dyt
mall enoug

Figure 7. RODD-LB2 algorithm [13].

7.1. RODD-EB Algorithm

In this section, we explain the implementation of the RODD-EB method. The RODD-
EB algorithm can be divided into three steps.
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7.1.1. Step 0

As with the RODD-LB methods, the first step is to find the initial approximate reach-
able set, Dg. This can be carried out numerically in a variety of ways, and the exact
technique used is not critical to the success of the algorithm. For our simulation experi-
ments, we randomly generated a large number of points throughout the feasible region of
the state space, updated the points at one time step using (3), and then found the minimum
volume ellipse that contained all these points. We would then increase the size of the
ellipse by 20% to account for any errors. Figure 8 illustrates a sample calculation of Dy.
The elliptical set Dy is defined by a positive definite symmetric matrix Ey, as in [11]:

Do = {x e R"|xTEgx < 1} (18)

Minimum Bounding Ellipse verses Enlarged Ellipse
1

Minimum Ellipse

0.6~

0.2

Enlarged Ellipse

1 | I | | | | | | | ]
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 8. Minimum bounded and enlarged ellipse [11].

7.1.2. Step 1

In this step, the set Dy is constructed from the set Dy by shrinking the size of
the ellipse. This is similar to step 1 of the RODD-LB methods. The update involves the
following maximization process [13]:

Ve+1 = m)le{f(X)TEkf(x) :x € D¢}

E
Eppp = —— (19)

where Dy = {x € R" : x'E;x < 1}. The maximization in (19) has a solution, and 7y is
computable, because the set Dy is compact, and the function f is continuous. In order to be
consistent with the definition of Dy, we normalize Ej by 7j.1. Then, if ;1 < 1, the set
D1 shrinks compared to Dy. The set Dy 1 derived in this step is only a potential Dy 1,
because if Dy 1 does not decrease compared to Dy, then the orientation of Dy needs to
be changed. In this case, the algorithm switches to step 2.

Figure 9 illustrates a typical 2D example of a system with a GAS equilibrium point,
for which Dy shrinks relative to Dy. If the equilibrium point of a system is GAS, and if
Dy (Ey) is oriented correctly, then x"Exx < 1 is a good estimation of the reachable set.
For stable linear systems, there always exists an elliptical reachable set, and for nonlinear
systems with a stable equilibrium point, an appropriate elliptical set can often make a good
estimation of the reachable set.
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(3

T
X B xi= Y

f(x)" E, f(%) =Yi4

Figure 9. Typical example of system trajectory in step 1 [11].

7.2. Step 2

If the set Dy; does not decrease in size compared to the set Dy, then either the
equilibrium point cannot be shown to be stable using an elliptical Dy, or the orientation of
the ellipse Dy needs to be changed.

There is a close relationship between the selection of an approximate reachable set and
the selection of a Lyapunov function. If we select the Lyapunov function V(x, E) = x” Ex,
then we can define Dy = {x € R"|V(x,E) < 1}. Consider a point on the boundary of Dy
— x]lj. When this point is updated in time, it moves to £ (xi). The change in the Lyapunov
function would be

AV = ()TE(XE) — £(x)) TEf(xD) (20)

In terms of both the choice of the Lyapunov function and the choice of the approximate
reachable set, we would like AV to be as large as possible. For the reachable set, we would
like to choose E so that AV is maximized for every x; € Dy. However, the E that maximizes
AV generally depends on x;. A conservative (robust) solution would be to chose the E that
maximizes the minimum AV over all x € Dy. This can be formulated as follows:

oy T T
rggg{igg;{{x Ex — f(x) Ef(x)}} (21)

If the maximum of the minimum AV over x is positive, then it is guaranteed that the
set D1 contains all the system solutions at time step k 4- 1 and has a reasonable orientation.
In this case, Dy is a good estimation for D}, ;, and the algorithm continues with the new
E in step 1. Figure 10 graphically explains the max—min optimization in (21). The dashed
ellipses are contour lines of a potential V(x, E). For the potential V, AV > 0 for the point
x1, and AV < 0 for the point x,. The contour lines for the optimal V' are shown by the solid
lines, where, for all x € Dy, AV > 0. The purpose of (21) is to find an orientation for Dy
so that f(Dy) C Dy. This is equivalent to finding a quadratic Lyapunov function that will
decay for all trajectories.

Figure 11 shows the direction field for a stable 2D dynamic system. In this figure,
the solid lines represent contour lines for a V(x, E) that does not produce a good estimation
of the reachable set, and the dashed ellipses represent a better V(x, E). The solid ellipses
do not produce a good estimation of the reachable set, because AV is not positive for
all x € Dy; by inspecting Figure 11, it can be observed that some trajectories are going
out of the solid ellipses. However, the dashed ellipses produce a good estimation of the
reachable set, because AV is positive for all x € Dy. (All trajectories are moving inside the
dashed ellipses.)
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Figure 10. Optimal orientation of E [11].
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Figure 11. Optimal V versus potential V [13].

The exact method for finding the optimal ellipse (a more precise formulation of (21))
is given by [11]:

E; = mgx{mxin{xTEx — £(x)TEf(x) : xE;_;x < 1} : min(eig(E)) > 0, max(eig(E)) < 1}

e = max{f(x)TEf(x) : x E_1x < 1}
X

E;, =
Tk

_ E

(22)

The inner minimization in (22) minimizes AV over x € Dj for fixed E, whereas the outer
maximization finds the optimal E to maximize the minimum value of AV. The inner
minimization is constrained by xTEk,lx < 1, because x needs to be in Dj_;, and the outer
maximization is constrained by min(eig(E)) > 0 and max(eig(E)) < 1. The minimum
eigenvalue of E is forced to be positive, because E needs to be positive definite, and the
maximum eigenvalue of E is forced to be less than 1 to bound E and to ensure the existence
of a maximum. (The magnitude of the largest eigenvalue of E does not affect the orientation
of D). As in step 1, we always normalize E; by 7. In order to check whether Dy has
shrunk relative to Dy_1, B is defined as follows:

Br = max{||x — x*||? : x € Dy} (23)

If Bx < Bx_1, then Dy has shrunk relative to Dy_1. If Dy has not decreased enough, then
no conclusion can be made about stability. In this scenario, the algorithm is inconclusive
and will exit. If a reachable set decreases over time, then there is no need to add additional
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linear boundaries. The algorithm tests to see whether the size of Dy is essentially zero to
stop and exit.

All the steps inside the RODD-EB algorithm are shown in the flowchart below(see
Figure 12).

Find Initial
Bounding Ellipse
E, to construct D, Step 0

>¢<

Shrink Dk to form|

potential D1

Yes No
Dk41 = Potential D 4
Step 2

Change the
orientation of E to
shrink Dy, ¢

Figure 12. RODD-EB algorithm [11].

8. RODD-Hybrid

The RODD-Hybrid method switches between RODD-LB and RODD-EB as the algo-
rithm progresses. The RODD-LB methods approximate reachable sets with a set of linear
boundaries. These methods are guaranteed to detect stability if a sufficient number of linear
boundaries are used. The main drawback of these methods is the slow rate of convergence,
because they may require many linear boundaries to adequately approximate the reachable
set. Alternatively, the RODD-EB method is an algorithm with a fast rate of convergence
if the reachable set is approximately quadratic. This is generally true near the equilibrium
point, but it may not be true in the early iterations of the algorithm. The flexibility of
linear boundaries might be useful at certain stages of the algorithm, while the efficiency
of elliptical boundaries could provide better performance at other stages. The need for
an accurate and fast algorithm for proving the global asymptotic stability of dynamical
systems led us to develop a new algorithm based on a combination of RODD-LB2 and
RODD-EB. RODD-Hybrid combines RODD-LB2 and RODD-EB by switching between
them at various iterations of the algorithm.

The main goal in the RODD-Hybrid method is to obtain an accurate approxima-
tion of reachable sets with the fastest rate of convergence. In order to accomplish this
goal, the RODD-Hybrid algorithm is divided into three main modes, RODD-LB2, RODD-
EB and transition modes. The RODD-Hybrid method can start with either RODD-LB2
or RODD-EB.

8.1. RODD-EB Mode

Suppose that the RODD-Hybrid method starts with RODD-EB. In this case, the RODD-
Hybrid algorithm uses (19) to derive Dy 1. If Dy, 1 does not decrease compared to Dy,
then the algorithm uses (22) to find a better estimation of the reachable set. Unlike the
RODD-EB algorithm, the RODD-Hybrid algorithm only allows one re-orientation of Dj.
If the re-oriented Dy does not make Dy shrink compared to Dy, then the algorithm
switches to RODD-LB2. The transition from RODD-EB to RODD-LB2 will be explained in
the transition mode section.



Mathematics 2023, 11, 3050

13 0f 18

Figure 13 graphically illustrates the RODD-EB mode of the RODD-Hybrid algorithm.
If the set Dy 4 does not decrease compared to Dy 5, then the algorithm switches to the
RODD-LB2 mode.

Dkz D.. D,.1 D,,
Dk+2

Figure 13. RODD-EB mode of RODD-Hybrid algorithm

8.2. Transition from RODD-EB to RODD-LB Mode

The RODD-LB2 mode of RODD-Hybrid will take over when one re-orientation of the
set Dy does not make Dy shrink compared to Dy. When RODD-Hybrid needs to switch
from the RODD-EB mode to the RODD-LB mode, Dy needs to be converted from an ellipse
to a polytope. To produce the polytope with the lowest volume, we use the eigenvectors
of Ey, as shown in Figure 14. The bounds of the optimal bounding polytope are derived
through the following optimization [11] (similar to (11)):

v = max{v/x:x Exx < 1} (24)

where {v1,vy,... v, } are the eigenvectors of E;. The sides of the bounding polytope are
orthogonal to the eigenvectors v;, and the optimization in (24) derives the bound such that
the sides are tangent to the original elliptical Dy. From this point, the reachable set will
be approximated by the bounding polytope Dy. Figure 14 shows the bounding polygon
(n = 2) derived through the optimization given in (24).

Figure 14. Bounding polygon [13].

8.3. RODD-LB2 Mode

In the RODD-LB mode, Dy is updated through (11) and (12). If the reachable set
D)1 decreases in size compared to the set Dy, then there is no need to add additional
linear boundaries. However, if Dy 1 does not decrease relative to Dy, then additional
linear boundaries are added. The additional linear boundaries are calculated through
the optimization given in (14). If the additional linear boundaries do not make Dy
shrink relative to Dy, then the algorithm is inconclusive and will stop. Otherwise, the
algorithm will continue until the number of additional linear boundaries exceeds the
maximum allowable number. Based on many experiments, we found that 47 is a reasonable
upper bound for the maximum number of linear boundaries. If Dy does not decrease
enough, and the algorithm exceeds the maximum number of linear boundaries, then the
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algorithm will switch to the RODD-EB mode. The transition from RODD-LB2 to RODD-EB
is explained in the next section.

Figure 15 graphically illustrates the RODD-LB2 mode of the RODD-Hybrid algorithm.
If the set does not shrink compared to Dy 1, then the algorithm will switch to the RODD-EB

mode using the bounding ellipse Ej ;.
f Ek+1
Dy

Ek Dk+1 Dk+1

Figure 15. RODD-LB2 mode of RODD-Hybrid algorithm [11].

8.4. Transition from RODD-LB to RODD-EB Mode

In the transition between the RODD-LB mode and the RODD-EB mode, a bounding
ellipse is calculated to enclose the final set Dy from the RODD-LB2 mode. The first step is
to find a set of points on the boundary of Dj. These points will be the vertices of the linear
boundaries and certain locations in the middle of the boundaries. Each linear boundary
is defined by a unit vector q; that is orthogonal to the boundary. In other words, the *"
boundary is defined as those points x such that

q/x =7 (25)

The point x = 7;q; is on the i’ linear boundary, because it satisfies (25). Some of these
points may not fall on the edge of Dy, because the set Dy in RODD-LB2 may be the interior
of several linear boundaries. The set Dy is defined as follows:

Dy = {xcR"|qg/x<v;:i=1,2,...,m} (26)

In order to obtain a point on the edge of Dy, we take the inner product of each q; with all

Tq.
q;, including q;, and divide by ;. Then, we find the maximum of q]T?'. Suppose that the

maximum occurs for q;. Then, ;%q" is a point on the edge of Dy.

1 ™
The next step is to find the vertices of Dy. (This can be achieved using the method
described in [15].) Then, we form the matrix Z as follows:

Z=[V,M] 27)

where V contains all the vertices, and M contains all previously described points on the
edges of D;. Then, we construct the approximate covariance matrix A = ZZ'. Using
concepts from principal component analysis [16], the expression x'A™1x = v gives a
reasonably good orientation of the bounding ellipse. The correct value for y can be found
from the optimization in (19), where the constraint is the final Dy in the RODD-LB2 mode.
After v is found, the set Dy is derived from Dy using RODD-EB. Figure 16 illustrates the
transition mode from RODD-LB2 to RODD-EB for a specific 2D example.
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Figure 16. RODD-LB2 to RODD-EB transition mode [11].

In the following section, some examples are used to compare the efficiency of the
proposed algorithms.

9. Discussion
9.1. Examples

Example 1. Consider a two-layer RNN with 10 neurons in the hidden layer:
x(k+1) = Btanh(Wx(k) + b) (28)

where x € R?, B € R? x R, W € R1® x R2 and b € R'. For a specified set of weights, this
system has the GAS equilibrium point z = [0.8248,0.7799]T. (For all figures, we move this to the
origin.) All the RODD methods were able to detect stability; however, RODD-LB2 has the fastest
speed of convergence. This is due to the shape of the reachable set. The left figure in Figure 17 shows
the randomly generated points used to create Dy. The middle figure in Figure 17 shows f(Dy) and
the linear boundaries of Dy for RODD-LB2, and the right figure in Figure 17 shows the elliptical
bounding of Dy for RODD-EB.

1.5

1

0.5

a4t

0.5

as . . . . .
! 8 2 15 -1 05 0 05 1 -6, ” ~ 5 5 : .

Figure 17. Linear boundary D; with RODD-LB2 and RODD-EB.

In this case, linear boundaries can approximate the reachable set better than ellip-
tical boundaries. Hence, RODD-LB2 has the fastest speed of convergence (4x faster).
Although RODD-EB could detect the GAS equilibrium point, due to the shape of the
reachable sets, this method is not as fast as RODD-LB2. RODD-Hybrid does not have the
fastest speed of convergence for this example, because it starts in RODD-EB mode, and that
affects the overall speed of convergence.

The graphs of By for RODD-LB2, RODD-EB and RODD-Hybrid are shown in Figure 18.
Note that for RODD-EB, the graph of B is not always decreasing. This is because of the
change in the orientation of Dy.
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Figure 18. Graph of By for RODD-LB2, RODD-EB and RODD-Hybrid algorithms.

Example 2. The second example is the model reference control of a single-link robot arm. The system
model and the controller were trained using the Neural Network Toolbox of MATLAB [17] using
the procedure described in [11]. The system block diagram is shown in Figure 19. This is a special
case of an LDNN network, as defined in Equation (1). The proposed stability methods can now be
applied to the state equation. Figure 20 shows the graphs of By for RODD-LB2 and RODD-EB
and Hybrid. All the RODD methods were able to detect the stability of the equilibrium point for
this example. In this example, RODD-EB and Hybrid have the same graph for By. This is because
RODD-Hybrid starts with the RODD-EB method, and, in this example, RODD-Hybrid never goes

to the RODD-LB2 mode.

e.(0)

c(1) R
L4

N J
Neural Network Controller Neural Network Plant Model
Figure 19. Neural network model of MRAC [17].
" RODD-LB2 RODD-EB and RODD-Hybrid
"
o -
o
g 2 W@ = w0 w0 w0 " T 0 =0 o = 0
Epochs Epochs

Figure 20. Graph of By for RODD-LB2 and RODD-EB and RODD-Hybrid algorithms, Example 2.
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Table 1 illustrates the result of stability for different methods. RODD-EB(RODD-Hybrid) is
more efficient in detecting the stability of the equilibrium point compared to RODD-LB2. In this
example, RODD-EB (RODD-Hybrid) is 1.07 times faster than RODD-LB2.

Table 1. Comparison of RODD methods—Example 2.

RODD-LB2 RODD-EB RODD-Hybrid
Result Stability detected Stability detected Stability detected
Runtime (s) 302 282 282
Improvement 1.07x Base Base

9.2. Comparing Performance

The performance of the proposed algorithms was tested using several random RNN
systems. A total of 60 randomly generated RNN systems were used to compare the
performance of RODD-LB2, RODD-EB and RODD-Hybrid versus the original method,
RODD-LBI. The final results show an improvement (average speed of convergence) in
all proposed algorithms compared to RODD-LB1. The improvement results are given in
Table 2.

Table 2. Average speed of convergence.

RODD-LB1 RODD-LB2 RODD-EB RODD-Hybrid
Stable base Improves by 16x  Improves by 75x  Improves by 95x
Unstable base Improves by 16x  Improves by 190x  Improves by 112x

10. Conclusions

In this paper, we propose three stability analysis algorithms that use the method known
as Reduction of Dissipativity Domain [9,13]. The objective of the proposed algorithms is to
find whether the origin is globally asymptotically stable. The proposed algorithms work by
checking the size of the reachable set as the system evolves over time and illustrating that
the evolved reachable set finally converges to the origin. RODD-LB1 and RODD-LB2 use
linear approximations of the reachable set, and RODD-EB uses quadratic approximations.
The RODD-Hybrid algorithm, which combines linear and quadratic approximations of
reachable sets, takes the advantage of the accuracy of RODD-LB and the fast convergence
of RODD-EB. Preliminary tests on a variety of systems have shown that RODD-Hybrid is
more efficient than RODD-LB1, RODD-LB2 or RODD-EB.

The proposed methods open up many interesting theoretical and practical research
possibilities. The methods that we developed in this study can be applied to solve interest-
ing problems, i.e., maintaining stability during RNN training or approximating the region of
attraction [11]. One of the main challenges with RNNs is training. The potential instability
of RNNs complicates their training. The spurious valleys in the training error surface that
were studied in [3] are an immediate consequence of the potential instability. However,
the new efficient stability algorithms open up the possibility of maintaining stability dur-
ing RNN training. This will guarantee the smoothness of the error surface and improve
training performance.

One of the great features of the RODD methods is the fact that the initial set can
be selected arbitrarily. Moreover, this set can be placed at any desired location. In this
research work, we were looking for GAS equilibrium points. However, RODD methods
can be applied to nonlinear systems with multiple stable equilibrium points. In this
case, each stable equilibrium point has a region of attraction. By changing the size and
location, we could use RODD methods to approximate the region of attraction of selected
equilibrium points.
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