
Citation: Kansal, M.; Kaur, M.; Rani,

L.; Jäntschi, L. A Cubic Class of

Iterative Procedures for Finding the

Generalized Inverses. Mathematics

2023, 11, 3031. https://doi.org/

10.3390/math11133031

Academic Editor: Qing-Wen Wang

Received: 17 June 2023

Revised: 3 July 2023

Accepted: 6 July 2023

Published: 7 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Cubic Class of Iterative Procedures for Finding the
Generalized Inverses
Munish Kansal 1, Manpreet Kaur 2, Litika Rani 1 and Lorentz Jäntschi 3,*

1 School of Mathematics, Thapar Institute of Engineering and Technology, Patiala 147004, India;
munish.kansal@thapar.edu (M.K.); litikabansal92@gmail.com (L.R.)

2 Department of Mathematics, Lovely Professional University, Phagwara 144411, India;
mkaur.math@gmail.com

3 Department of Physics and Chemistry, Technical University of Cluj-Napoca, Muncii Blvd. No. 103-105,
Cluj-Napoca 400641, Romania

* Correspondence: lorentz.jantschi@gmail.com or lorentz.jantschi@ubbcluj.ro

Abstract: This article considers the iterative approach for finding the Moore–Penrose inverse of
a matrix. A convergence analysis is presented under certain conditions, demonstrating that the
scheme attains third-order convergence. Moreover, theoretical discussions suggest that selecting a
particular parameter could further improve the convergence order. The proposed scheme defines the
special cases of third-order methods for β = 0, 1/2, and 1/4. Various large sparse, ill-conditioned,
and rectangular matrices obtained from real-life problems were included from the Matrix-Market
Library to test the presented scheme. The scheme’s performance was measured on randomly gen-
erated complex and real matrices, to verify the theoretical results and demonstrate its superiority
over the existing methods. Furthermore, a large number of distinct approaches derived using the
proposed family were tested numerically, to determine the optimal parametric value, leading to a
successful conclusion.

Keywords: generalized inverse; convergence analysis; Moore–Penrose inverse; order of convergence;
singular matrices

MSC: 65F20; 65F10; 15A09; 15A10

1. Introduction

This study presents a generalization of the inverse of rectangular, rank-deficient, or
non-singular matrices, as a solution to a specific set of equations. A unique solution
for simultaneous equations involving a rectangular or rank-deficient coefficient matrix
is determined using the theory of generalized inverses and its various results in matrix
algebra. The endeavors of the researchers in this study are not limited to pure theoretical
investigations of the generalized inverse but also aim to obtain the deepest knowledge of
its characteristics and study its potentail for solving practical problems arising in diverse
areas of research. For instance, some of its implementations are discovered for digital image
processing [1], control theory [2], detection of neurons in cerebral cortex through a magnetic
field [3], machine learning [4], graph theory [5], control theory [6], robotics research [7],
and chemical balancing [8].

Back in 1920, Moore published the first article [9] on the study of matrix inverses.
Unaware of Moore’s work, Sir Roger Penrose [10] presented an analogous description of
the same concept in a different format, which was later recognized by Richard Rado [11].
Subsequently, Ben-Israel [12] presented a comprehensive analysis of a matrix inverse in
accordance with Penrose’s work. The definition of pseudo-inverse, as originally presented
by Moore and Penrose, is now commonly known as the Moore–Penrose inverse.

The Moore–Penrose inverse has many uses and connections with key concepts, includ-
ing eigendecomposition [13], eigenproblems [14], and singular value decomposition [15].
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Routes to the Moore–Penrose inverse involve matrix operations, which makes the algo-
rithms part of the parallelizable family.

A number of resource- and time-consuming applications for various topics require
obtaining the Moore–Penrose inverse (computer vision [16], control systems [17], data
compression [18], data mining [19], language processing [20], linear algebra [21], molecular
alignment [22], quantum mechanics [23], recommender systems [24], and signal process-
ing [25]), motivating an interest in the parallelization of the procedures for calculating the
generalized inverse.

It is important to mention that the conjugate transpose of a matrix argument is defined
by the superscript ‘∗’.

Definition 1. Let M be a complex matrix of order m× n. Then, the Moore–Penrose inverse of M
is the matrix M† satisfying the following Penrose equations:

MM† M = M, M† MM† = M†, (MM†)∗ = MM†, (M† M)∗ = M† M.

Over the last few decades, studies on various types of technique for evaluating the
Moore–Penrose inverse of a matrix have appeared. For instance, Shinozaki et al. [26] pre-
sented a survey and classification of the direct algorithms for computing the Moore–Penrose
inverse. Besides this, QR factorization [27], LDL∗ decomposition [28], and Gauss-Jordan
elimination [29] are well-known direct methods. These approaches generally yield highly
accurate results, but they can be computationally expensive and time-consuming, particularly
when dealing with large matrices. Therefore, iterative approaches to calculating M† have been
considered as an alternative. One well-known iterative approach is the Schulz method [30,31]:{

Xi+1 = Xi − 2Xi MXi, i = 0, 1, 2, . . . ,

X0 is the initial approximate to M†.
(1)

The selection of the initial estimate plays a critical role in ensuring the convergence of the
iterative algorithms to M†. In order to choose an appropriate initial approximate of the
form X0 = αM∗, such that it satisfies the condition ‖I −MX0‖ < 1, several articles [31–33]
provided different ways to calculate the value of α. Here, I denotes the identity matrix of
an appropriate size. On the other hand, Li et al. [34] introduced a kth-order family, given
as follows:

Xi+1 = Xi

(
kI − k(k− 1)

2
MXi + · · ·+ (−1)k−1(MXi)

k−1
)

, k = 2, 3, . . . , (2)

for a non-singular matrix M. In addition, two different forms of iterative family, along
with their theoretical analysis for computing the outer inverse, were discussed in [35,36]
and some particular cases weren analyzed in [37–39]. The study of the Moore–Penrose
inverse of a matrix has also been explored for tensors [40–43] and in the field of neural
networks [44,45]. Additionally, the representations and characteristics of the Moore–Penrose
inverse were presented under certain environments in [46,47]. Evidently, the theory of a
generalized inverse is not restricted to theory but has also been implemented in various
realistic problems [18,48,49].

In addition to the studies mentioned above, some higher-order algorithms have also
been proposed in the literature [33,50]. These higher-order iterative methods are known to
yield more accurate solutions, with fewer iterations. However, proposing an iterative scheme
of the same order that provides more efficient and effective results is a challenging task.

For instance, in the context of third-order methods, well-known solvers such as the
Chebyshev matrix method [51], Homeier’s matrix method [51], and the mid-point matrix
method [51] have been utilized for finding various types of generalized inverses. However,
the development of novel third-order methods that can effectively compete with these
established techniques, in terms of accuracy and computational efficiency, presents a
significant challenge. Motivated by recent studies in matrix inversion and addressing this
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challenging aspect, this study aims to establish a new and efficient iterative third-order
method.In particular, we contribute to the field by proposing an effective cubic parametric
iterative family for finding the Moore–Penrose inverse. By conducting thorough theoretical
analyses and rigorous numerical evaluations, we attempt to identify the optimal value for
the associated parameter, thus further enhancing the efficacy and efficiency of the proposed
method. Furthermore, it is noteworthy that certain existing methods can be derived as
special cases of our proposed method for specific choices of the free parameter.

With this motivation, we propose an iterative family and extend it to find the Moore–
Penrose inverse in Section 2. A theoretical analysis is contributed in Section 3, demonstrating
the convergence order three under certain conditions and restricted parametric values.
Section 4 defines the various existing and new schemes, on the basis of different parametric
values. The testing of these schemes is included in Section 5, by using realistic and academic
problems for evaluation. Moreover, the proposed scheme is tested for 100 distinct values
of β, signifying fruitful results for the choice of β. At the final section, i.e., in Section 6, the
concluding remarks based on numerical testing and theoretical results are presented.

2. Iterative Scheme

In this section, we will introduce an algorithm that can be used to evaluate the Moore–
Penrose inverse of a given matrix. The approach depends on an iterative process that
generates a sequence of matrices, each providing a better approximation of the Moore–
Penrose inverse. We begin this iterative process using the following iteration formula:

Xi+1 = Xi

(
aI + bMXi + c(MXi)

2 + d(MXi)
3
)

, i ≥ 0, (3)

where M is a given matrix, X0 is the initial approximation of M−1, and a, b, c, d are real
parameters satisfying the condition a + b + c + d = 1. In order to minimize the free
parameters, we establish the relationship between each parameter and a new free variable,
β ∈ R. We consider the values of a = 3 + β, b = −3− 3β, c = 1 + 3β, d = −β such that
a + b + c + d = 1, and propose the following iterative scheme:

Xi+1 = Xi

(
(3 + β)I + (−3− 3β)MXi + (1 + 3β)(MXi)

2 − β(MXi)
3
)

, i ≥ 0, (4)

where M is a given matrix, X0 is the initial estimate of M−1, and β is any real parameter.
The lemma presented below will be helpful in the subsequent theoretical analysis.

Lemma 1. For a given initial matrix X0 = αM∗, where α is an appropriate real number, the
sequence {Xi} generated by scheme (4) satisfies for all i ≥ 0,

MP1 : M† MXi = Xi,

MP2 : Xi MM† = Xi,

MP3 : (Xi M)∗ = Xi M,

MP4 : (MXi)
∗ = MXi.

Proof. With the help of mathematical induction, we will prove these results. Clearly,
MP1 and MP2 are valid for i = 0, that is M† MX0 = (M† M)(αM∗) = α(M† M)M∗ =
α(M† M)

∗M∗ = α(MM† M)
∗
= αM∗ = X0 and X0MM† = αM∗MM† = αM∗(MM†)

∗
=

α(MM† M)
∗
= αM∗ = X0.

Assume that MP1 is true for some i, we will prove the result for i + 1 using (4) as

M† MXi+1 = M† MXi

(
(3 + β)I − (3 + 3β)MXi + (1 + 3β)(MXi)

2 − β(MXi)
3
)

= Xi

(
(3 + β)I − (3 + 3β)MXi + (1 + 3β)(MXi)

2 − β(MXi)
3
)

= Xi+1.
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In a similar manner, we demonstrate the validity of the second statement MP2 for
i + 1, assuming it is true for i, as follows:

Xi+1MM† = Xi

(
(3 + β)I − (3 + 3β)MXi + (1 + 3β)(MXi)

2 − β(MXi)
3
)

MM†

= (3 + β)Xi MM† − (3 + 3β)Xi MXi MM† + (1 + 3β)Xi(MXi)
2MM†

− βXi(MXi)
3MM†.

Using the results Xi(MXi)
n = (Xi M)nXi for n ≥ 0 and Xi MM† = Xi, we have

Xi+1MM† = (3 + β)Xi MM† − (3 + 3β)Xi MXi MM† + (1 + 3β)(Xi M)2Xi MM†

− β(Xi M)3Xi MM†

= (3 + β)Xi − (3 + 3β)Xi MXi + (1 + 3β)(Xi M)2Xi − β(Xi M)3Xi

= (3 + β)Xi − (3 + 3β)Xi MXi + (1 + 3β)Xi(MXi)
2 − βXi(MXi)

3

= Xi+1.

To demonstrate that MP3 is true, we first prove the case when i = 0 as (X0M)∗ =
(αM∗M)∗ = αMM∗ = M(αM∗) = MX0. Furthermore, let us assume that this holds for
some i. Now, consider the case for i + 1, as follows:

(Xi+1M)∗ =
(

Xi
(
(3 + β)I − (3 + 3β)MXi + (1 + 3β)(MXi)

2 − β(MXi)
3)M

)∗
= (3 + β)(Xi M)∗ − (3 + 3β)

(
(Xi M)2

)∗
+ (1 + 3β)

(
(Xi M)3

)∗
− β

(
(Xi M)4

)∗
= (3 + β)(Xi M)− (3 + 3β)(Xi M)2 + (1 + 3β)(Xi M)3 − β(Xi M)4

= Xi

(
(3 + β)I − (3 + 3β)Xi M + (1 + 3β)(Xi M)2 − β(Xi M)3

)
M

= Xi+1M.

On similar lines, MP4 can be proven. This completes the lemma proof.

3. Convergence Behavior

This section deals with establishing a convergence analysis of the recursive form (4)
with the starting value X0 = αM∗. The following theorem indicates that for a limited free
parameter β and under certain conditions, the sequence produced by the scheme in (4)
converges to M†.

Theorem 1. Let M ∈ Cm×n
r , the initial estimate X0 = αM∗ for arbitrary real number α and

X = M† such that the residual F0 = (X0 − X)M satisfies ‖F0‖ < 1. Then, the sequence of
approximations generated by (4) for β ∈ [0, 1] converges to M†. Moreover, it has third-order
convergence and fourth-order convergence for β ∈ [0, 1) and β = 1, respectively.

Proof. To prove the first part of the theorem, it suffices to demonstrate that ‖Xi+1 − X‖ ap-
proaches 0 as n approaches infinity. This can be accomplished by employing the properties
of the Moore–Penrose inverse M and using Lemma 1, resulting in

‖Xi+1 − X‖ = ‖Xi+1MX− XMX‖ ≤ ‖Xi+1M− XM‖‖X‖. (5)
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By using (4), one can derive

Xi+1M− XM =
(
(3 + β)Xi − (3 + 3β)Xi MXi + (1 + 3β)Xi(MXi)

2

− βXi(MXi)
3
)

M− XM

=(1− β)
(
(Xi M)3 − 3(Xi M)2 + 3Xi M− XM

)
− β

(
(Xi M)4 − 4(Xi M)3 + 6(Xi M)2 − 4(Xi M) + XM

)
=(1− β)(Xi M− XM)3 − β(Xi M− XM)4.

Therefore, the sequence of residual matrices Fi = Xi M− XM satisfies the recurrence relation:

Fi+1 = (1− β)Fi
3 − βFi

4. (6)

We will apply mathematical induction to prove the convergence of sequence {Xi}.
Specifically, we will demonstrate that ‖Fi‖ → 0 as i → ∞, which establishes the desired
convergence result. It is clear that ‖F0‖ < 1, and thus this holds for i = 0. Now, assume that
for some i, ‖Fi‖ < 1. To prove the inductive step i + 1, we consider the norm of Equation (6)
for β ∈ [0, 1), which yields the result:

‖Fi+1‖ ≤ (1− β)‖Fi‖3 + β‖Fi‖4 < (1− β)‖Fi‖3 + β‖Fi‖3 < ‖Fi‖3 < ‖F0‖3i+1
. (7)

However, for β = 1, we obtain

‖Fi+1‖ ≤ ‖Fi‖4 < ‖F0‖4i+1
. (8)

Therefore, as i → ∞, Equations (7) and (8) imply that ‖Fi‖ → 0, which completes the
convergence proof, i.e., Xi → X as i→ ∞.

Now, to determine the convergence order of the proposed technique, we define the
error estimate at step i as Ei = Xi − X, where X is the exact solution. Then, using (4), we
arrive at the following expression for the error matrix at i + 1 step:

Ei+1 =(3 + β)Ei − (2 + β)Ei MX− (2 + β)XMEi + (1 + β)XMEi MX + (1 + β)

Ei MEi MX + (1 + β)XMEi MEi − (2 + β)Ei MEi − βXMEi MEi MX + (1

+ β)Ei MEi MEi − βEi MEi MEi MX− βXMEi MEi MEi − βEi MEi MEi MEi.

Thus, one can determine the following errors:

Error1 = (3 + β)Ei − (2 + β)Ei MX− (2 + β)XMEi + (1 + β)XMEi MX,

Error2 = (1 + β)Ei MEi MX + (1 + β)XMEi MEi − (2 + β)Ei MEi − βXMEi MEi MX,

Error3 = (1 + β)Ei MEi MEi − βEi MEi MEi MX− βXMEi MEi MEi,

Error4 = −βEi MEi MEi MEi.

Using Ei = Xi − X and Lemma 1, one can achieve

Error1 = 0,

Error2 = 0,

Error3 = (1− β)Ei MEi MEi,

Error4 = −βEi MEi MEi MEi.

This completes the proof and demonstrates that scheme (4) converges with order three for
0 ≤ β < 1 and four for β = 1.
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Theorem 2. Iterative scheme (4) with the initial estimate X0 = αM∗ results in the following relation

lim
i→+∞

Ωi+1

Ω3
i

= 1− β. (9)

Proof. From the recurrence relation (6), one can derive the following inequalities using
the norm

Fi+1 = (1− β)F3
i − βF4

i

‖Fi+1‖ ≥ ‖(1− β)F3
i ‖ − β‖F4

i ‖
≥ (1− β)‖Fi‖3 − β‖Fi‖4. (10)

Let Ωi = ‖Fi‖, the inequality (10) yields

Ωi+1 ≥ (1− β)Ω3
i − βΩ4

i
Ωi+1

Ω3
i
≥ (1− β)− βΩi. (11)

On the other hand, we can obtain

Ωi+1 = ‖Fi+1‖ ≤ ‖(1− β)F3
i ‖+ β‖F4

i ‖
≤ (1− β)‖Fi‖3 + β‖Fi‖4

≤ (1− β)Ω3
i + βΩ4

i

Ωi+1

Ω3
i
≤ (1− β) + βΩi. (12)

Consequently, the two preceding inequalities lead to

(1− β)− βΩi ≤
Ωi+1

Ω3
i
≤ (1− β) + βΩi. (13)

As the norm of Fi, denoted by Ωi, approaches zero, the Theorem 1 permits us to deduce by
taking a limit for the Equation (13), where Ωi+1

Ω3
i
→ 1− β as i approaches infinity. Thus, the

theorem is proven.

4. Variants of the New Family (4)

By introducing different values for the parameter β in the proposed iterative matrix
method (4), one can define various new methods to solve different problems. For instance,
some of the existing methods used for finding different types of generalized inverse for
a specified matrix can be derived from the proposed method. Furthermore, one can also
develop entirely new methods for different parametric values β and analyze the algorithm’s
performance. This can lead to the discovery of more efficient and accurate problem-solving
methodologies across diverse fields of study. In light of this, we derived the following
cases that pertain to this novel technique, as well as established techniques, for computing
generalized matrix inverses.

Case 1: For β = 0, the technique (4) corresponds to the widely known third-order Cheby-
shev matrix scheme [51], which is defined as follows:

CM Xi+1 = Xi

(
3I − 3MXi + (MXi)

2
)

, i ≥ 0. (14)
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Case 2: The method developed in [51], which is an extension of Homeier’s method [52], is
obtained from (4) for β = 1

2 , as demonstrated below:

HM Xi+1 = Xi

(
I +

1
2
(I −MXi)(I + (2I −MXi)

2)

)
. (15)

Case 3: By selecting β = 1
4 in Equation (4), we obtain the matrix method given by [51],

which is derived from the mid-point method [52] and is read as

MP Xi+1 = Xi

(
I +

1
4
(I −MXi)(3I −MXi)

2
)

. (16)

Case 4: When β = 1, the scheme proposed in Equation (4) can be interpreted as a fourth
order hyperpower method [53]:

HP4 Xi+1 = Xi

(
4I − 6MXi + 4(MXi)

2 − (MXi)
3
)

. (17)

Case 5: A new algorithm can be derived by incorporating β = 9
10 into the matrix family (4):

NM1 Xi+1 = Xi

(
3.9I − 5.7MXi + 3.7(MXi)

2 − 0.9(MXi)
3
)

. (18)

Case 6: Another new matrix method can be derived when β = 4
5 from (4):

NM2 Xi+1 = Xi

(
3.8I − 5.4MXi + 3.4(MXi)

2 − 0.8(MXi)
3
)

. (19)

In a similar manner, we can establish several new and distinct third-order iterative schemes
for matrix inverse by selecting different values of β that fulfill the conditions of Theorem 1.

5. Numerical Testing

In this section, we examined the convergence and efficiency of the proposed method
using various test matrices. The scheme was evaluated by applying it to randomly selected
real and complex matrices, as well as some practical problems. The performance of the
scheme was determined using several criteria, including the computational time (Time)
measured in seconds, number of iterations (i), convergence order ρ, and several norms, such
as: e1 = ‖MXM−M‖, e2 = ‖XMX −M‖, e3 = ‖(MX)∗ −MX‖, e4 = ‖(XM)∗ − XM‖.
For each test matrix, we fixed the initial guess X0 =

1

‖M‖2
2 M∗ and the stopping criteria,

max{‖MXM − M‖, ‖XMX − M‖, ‖(MX)∗ − MX‖, ‖(XM)∗ − XM‖} < tol. We consid-
ered two distinct values of ‘tol’ depending on the size of the testing matrix. Additionally,
the approximate value of the computational convergence order was determined using the
following formulae:

ρ ≈ ln(‖Xi+1 − Xi‖/‖Xi − Xi−1‖)
ln(‖Xi − Xi−1‖/‖Xi−1 − Xi−2‖)

, i = 2, 3, . . . . (20)

The numerical values used for comparison purposes were calculated utilizing
Mathematica software [54], version 11. In the resulting tables, the expression of the form
a(±b) denotes a× 10±b.

Example 1. Consider a randomly generated real matrix of size 100× 101 using built-in commands,
as follows:

SeedRandom[123];
M=RandomReal[{-2, 2}, {100, 101}];
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The results obtained from a randomly generated matrix of size 100× 101 with a tolerance
value of 10−50 are presented in Table 1. Analysis of the results reveals that the newly proposed
methods, labeled as NM1 and NM2, outperformed the existing third-order iterative approaches CM,
MP, and HM in terms of providing highly accurate solutions. Furthermore, the new methods were
able to achieve the required level of accuracy in a comparatively shorter amount of time.

Table 1. Experimental data obtained from iterative methods, for Example 1.

Method i e1 e2 e3 e4 ρ Time

SM [30] 21 1.6 (−55) 5.6 (−54) 0 0 2.0001 277.203
CM [51] 14 1.1 (−124) 3.7 (−123) 0 0 3.0000 194.312
MP [51] 13 3.4 (−88) 1.1 (−86) 0 0 3.0000 194.325
HM [51] 12 8.7 (−57) 3.0 (−55) 0 0 3.0000 179.031
NM1 (18) 12 1.4 (−147) 4.7 (−146) 0 0 3.0000 174.985
NM2 (19) 12 1.5 (−115) 1.9 (−113) 0 0 3.0000 171.470
HP4 [53] 11 1.6 (−109) 5.3 (−108) 0 0 4.0000 155.702

Example 2. Consider a randomly generated complex matrix of order 100× 101 using built-in
commands, as follows:

SeedRandom[123];
M=RandomReal[{-2+I, 2+I}, {100, 101}];

The findings of the study are summarized in Table 2, using tol = 10−50. The CM method
required more iterations compared to other third-order methods to achieve an enforced exactness
of the solution. On the other hand, the NM1 method exhibited a superior performance in terms of
iterations, accuracy, and time compared to the third-order techniques.

Table 2. Experimental data obtained from iterative methods, for Example 2.

Method i e1 e2 e3 e4 ρ Time

SM [30] 25 7.4 (−90) 1.2 (−88) 0 0 2.0000 1644.86
CM [51] 16 6.6 (−115) 1.1 (−113) 0 0 3.0000 1680.99
MP [51] 15 1.2 (−94) 1.9 (−93) 0 0 3.0000 1153.19
HM [51] 14 7.8 (−69) 1.2 (−67) 0 0 3.0000 941.094
NM1 (18) 13 1.4 (−70) 4.7 (−69) 0 0 3.0000 793.515
NM2 (19) 13 2.6 (−53) 4.2 (−52) 0 0 3.0000 817.546
HP4 [53] 13 2.2 (−178) 3.4 (−177) 0 0 4.0000 831.734

Example 3. Consider the partial differential equation (pde):

∂U
∂t

=
∂2U
∂x2 , (0 < x < 1, 0 < t ≤ 0.1), (21)

satisfying the initial condition U = sin πx, when t = 0 for 0 ≤ x ≤ 1, and the boundary con-
dition U = 0, at x = 0 and 1 for t > 0. Our objective was to obtain the approximate U using
finite-difference methods. Specifically, we applied the Crank–Nicolson implicit method on Equa-
tion (21) to evaluate U at n points. This procedure resulted in the following approximated equation:

Ui,j+1 −Ui,j

k
=

1
2

{Ui+1,j+1 − 2ui,j+1 + ui−1,j+1

h2 +
ui+1,j − 2ui,j + ui−1,j

h2

}
,

implies

−rUi−1,j+1 + (2 + 2r)Ui,j+1 − rUi+1,j+1 = rUi−1,j + (2− 2r)Ui,j + rUi+1,j,
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where r = k/h2. To this end, we took step sizes h = 0.1 and k = 0.01, and obtained the following
linear system:

MU = b, (22)

where

M =


B1 0 0 · · · 0
B2 B1 0 · · · 0
0 B2 B1 · · · 0
...

...
. . . . . . · · ·

0 0 0 B2 B1

,

B1 =



4 −1 0 0 0 0 0 0 0
−1 4 −1 0 0 0 0 0 0
0 −1 4 −1 0 0 0 0 0
0 0 −1 4 −1 0 0 0 0
0 0 0 −1 4 −1 0 0 0
0 0 0 0 −1 4 −1 0 0
0 0 0 0 0 −1 4 −1 0
0 0 0 0 0 0 −1 4 −1
0 0 0 0 0 0 0 −1 4


,

0 is a zero matrix of order 9× 9,

B2 =



0 −1 0 0 0 0 0 0 0
−1 0 −1 0 0 0 0 0 0
0 −1 0 −1 0 0 0 0 0
0 0 −1 0 −1 0 0 0 0
0 0 0 −1 0 −1 0 0 0
0 0 0 0 −1 0 −1 0 0
0 0 0 0 0 −1 0 −1 0
0 0 0 0 0 0 −1 0 −1
0 0 0 0 0 0 0 −1 0


,

U = [U1,1, U2,1, U3,1, U4,1, . . . , U9,1, U1,2, U2,2, U2,3, . . . , U2,9, . . . , U1,10, U2,10, . . . , U9,10]
t, and

b = [sin 0.2π, sin 0.1π + sin 0.3π, sin 0.2π + sin 0.4π, sin 0.3π + sin 0.5π, sin 0.4π + sin 0.6π,
sin 0.5π + sin 0.7π, sin 0.6π + sin 0.8π, sin 0.7π + sin 0.9π, sin 0.8π, 0, 0, . . . , 0]t, where t sig-
nifies to transpose of matrix or vector.

In order to check the applicability of the proposed iterative methods (NM1 and NM2) for solving
PDE (21), we examined the resulting linear system (22). The numerical outcomes were calculated using
the coefficient matrices with a tolerance of τ = 10−50 and are displayed in Table 3. The experimental
data revealed that the proposed scheme provided superior results in comparison to the existing methods
of the same order for each considered parametric value. In addition, the final approximate values of
U up to four decimal places obtained using the method NM1 were equal to

[
0.2802, 0.5329, 0.7335,

0.8623, 0.9067, 0.8623, 0.7335, 0.5329, 0.2802, 0.2540, 0.4832, 0.6651, 0.7818, 0.8221, 0.7818, 0.6651,
0.4832, 0.2540, 0.2303, 0.4381, 0.6030, 0.7089, 0.7453, 0.7089, 0.6030, 0.4381, 0.2303, 0.2088, 0.3972,
0.5467, 0.6427, 0.6758, 0.6427, 0.5467, 0.3972, 0.2088, 0.1893, 0.3602, 0.4957, 0.5827, 0.6127, 0.5827,
0.4957, 0.3602, 0.1893, 0.1717, 0.3265, 0.4494, 0.5284, 0.5556, 0.5284, 0.4494, 0.3265, 0.1717, 0.1557,
0.2961, 0.4075, 0.4791, 0.5037, 0.4791, 0.4075, 0.2961, 0.1557, 0.1411, 0.2684, 0.3695, 0.4344, 0.4567,
0.4345, 0.3695, 0.2684, 0.1411, 0.1280, 0.2434, 0.3350, 0.3938, 0.4141, 0.3938, 0.3350, 0.2434, 0.1280,
0.1160, 0.2207, 0.3037, 0.3571, 0.3754, 0.3571, 0.3037, 0.2207, 0.1160

]
. Overall, we can conclude

that the developed scheme can be used as a better alternative to the existing cubic-convergent
iterative methods.
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Table 3. Experimental data obtained from iterative methods, for Example 3.

Method i e1 e2 e3 e4 ρ Time

SM [30] 16 1.7 (−90) 9.2 (−90) 0 0 2.0000 128.719
CM [51] 10 1.2 (−81) 6.5 (−81) 0 0 3.0068 63.071
MP [51] 10 5.3 (−131) 2.8 (−130) 0 0 3.0015 66.297
HM [51] 9 1.1 (−67) 6.1 (−67) 0 0 3.0671 109.813

NM1 (18) 9 2.4 (−134) 1.3 (−133) 0 0 3.0589 54.781
NM2 (19) 9 2.7 (−111) 1.5 (−110) 0 0 3.0493 61.610
HP4 [53] 8 1.7 (−90) 9.2 (−90) 0 0 4.1557 54.875

In addition to validating the proposed scheme for accuracy, we investigated the
computational convergence behavior of the newly developed third-order iterative schemes
and compared them with existing schemes reported in the literature. The comparison is
presented in Figure 1, which was drawn using Examples 1–3. These plots demonstrate
the performance of the various iterative approaches in terms of computational order of
convergence with respect to the number of iterations.
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Figure 1. Iterations (i) versus computational convergence order (ρ). (a) Example 1. (b) Example 2.
(c) Example 3.

Figure 1a shows that the CM, MP, HM, NM1, and NM2 approaches reached the
convergence phase after 12, 11, 11, 10, and 10 iterations, respectively. Figure 1b,c further
demonstrate that the developed iterative procedure achieved theoretical convergence order
relatively earlier than the others. Furthermore, as evidenced by the data presented in
Tables 1–3, the performance of NM1 and NM2 was superior in terms of both convergence
phase and solution accuracy compared to the CM, MP, and HM approaches in each of the
considered examples.

Example 4. To investigate the applicability of the presented matrix methods to real-world problems,
we examined various mathematical models available in the Matrix-Market Library [55]. We evaluated
the performance of the developed methods on the matrices mentioned in Table 4, which included
different types of matrices, such as ill-conditioned square matrices, rectangular matrices, and rank-
deficient matrices. Using the same initial guess and stopping criteria with a tolerance of 10−5, a
comparison of different methods was derived. The corresponding results are displayed in Table 5,
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where the third and last columns clearly indicate that the new method’s implementations were
comparatively more satisfying than the other conventional iterative techniques. Additionally, the
representation of the considered matrices listed in Table 4 and their corresponding Moore–Penrose
inverse are visualized in Figure 2.

Table 4. Information of matrices considered from the Matrix-Market Library [55].

M# Name of Problem Description

M1 1138 BUS Order: (1138, 1138), rank =1138, condition number (est.): 1(+2)
M2 YOUNG1C Order: (841, 841), rank = 841, condition number (est.): 2.9(+2)
M3 BP 600 Order: (822, 822), rank = 822, condition number (est.): 5.1(+06)
M4 ILLC1850 Order: (1850, 712), rank = 712
M5 WM3 Order: (207, 260), rank = 207
M6 BEAUSE Order: (497, 507), rank = 459

Table 5. Performance of iterative methods for the different matrices defined in Table 4.

M# Method i e1 e2 e3 e4 Time

M1 SM [30] 51 6.5 (−7) 4.1 (−10) 1.2 (−10) 1.3 (−6) 113.688
CM [51] 32 6.0 (−7) 3.3 (−9) 1.3 (−10) 1.6 (−6) 71.687
MP [51] 30 5.3 (−7) 9.7 (−10) 1.2 (−10) 1.3 (−6) 68.750
HM [51] 28 7.8 (−7) 1.6 (−6) 1.6 (−10) 1.6 (−6) 63.297

NM1 (18) 26 7.5 (−7) 2.4 (−9) 1.7 (−10) 1.3 (−6) 51.437
NM2 (19) 27 5.2 (−7) 4.2 (−10) 1.2 (−10) 1.6 (−6) 53.750
HP4 [53] 26 5.3 (−7) 4.3 (−10) 1.2 (−10) 1.4 (−6) 42.548

M2 SM [30] 21 5.8 (−6) 4.5 (−6) 3.7 (−14) 2.7 (−13) 47.203
CM [51] 14 9.7 (−12) 7.7 (−13) 3.5 (−14) 2.9 (−13) 34.015
MP [51] 13 1.5 (−10) 1.2 (−10) 3.7 (−10) 2.7 (−13) 31.344
HM [51] 12 9.6 (−8) 7.4 (−8) 4.6 (−14) 2.5 (−13) 28.749

NM1 (18) 11 1.2 (−7) 9.4 (−8) 3.6 (−14) 3.4 (−13) 21.016
NM2 (19) 11 6.3 (−6) 4.9 (−6) 3.8 (−14) 2.9 (−13) 21.781
HP4 [53] 11 3.0 (−11) 2.3 (−11) 3.8 (−14) 3.6 (−13) 20.843

M3 SM [30] 46 8.4 (−12) 8.8 (−11) 1.2 (−12) 3.3 (−11) 131.891
CM [51] 29 1.3 (−11) 1.9 (−10) 1.1 (−12) 2.3 (−11) 57.125
MP [51] 27 1.6 (−11) 3.3 (−8) 1.6 (−12) 2.0 (−11) 49.343
HM [51] 26 1.8 (−11) 1.9 (−12) 1.3 (−12) 1.9 (−10) 48.515

NM1 (18) 24 1.7 (−11) 4.1 (−12) 1.6 (−12) 4.2 (−11) 25.845
NM2 (19) 24 1.9 (−11) 2.8 (−9) 1.5 (−12) 2.0 (−10) 25.844
HP4 [53] 23 1.5 (−11) 9.0 (−11) 1.4 (−12) 4.3 (−11) 26.984

M4 SM [30] 26 3.0 (−13) 6.3 (−12) 8.7 (−13) 3.9 (−12) 117.156
CM [51] 16 5.1 (−13) 2.2 (−7) 7.1 (−13) 2.7 (−12) 67.656
MP [51] 15 1.1 (−12) 4.6 (−7) 7.1 (−13) 2.9 (−12) 66.499
HM [51] 15 3.0 (−13) 1.3 (−11) 9.9 (−13) 2.7 (−12) 66.439

NM1 (18) 13 2.0 (−12) 8.7 (−7) 7.4 (−13) 3.0 (−12) 54.313
NM2 (19) 14 3.4 (−13) 4.3 (−12) 8.1 (−13) 4.2 (−12) 56.781
HP4 [53] 13 6.1 (−13) 1.0 (−11) 9.3 (−13) 2.4 (−12) 55.281

M5 SM [30] 27 4.1 (−14) 3.3 (−11) 1.2 (−13) 7.6 (−14) 3.009
CM [51] 17 4.5 (−14) 9.8 (−11) 4.7 (−14) 8.7 (−14) 2.094
MP[51] 16 4.8 (−14) 4.8 (−11) 7.0 (−14) 6.8 (−14) 2.048
HM [51] 15 1.3 (−13) 2.4 (−9) 6.0 (−14) 7.1 (−14) 1.922

NM1 (18) 14 5.0 (−14) 2.5 (−12) 5.5 (−14) 9.4 (−14) 1.890
NM2 (19) 14 1.3 (−12) 2.4 (−8) 8.1 (−14) 1.2 (−13) 1.891
HP4 [53] 14 3.9 (−14) 1.8 (−13) 7.1 (−14) 8.5 (−14) 1.806

M6 SM [30] 36 2.1 (−12) 2.0 (−9) 1.7 (−12) 1.1 (−12) 18.656
CM [51] 23 1.9 (−12) 2.0 (−19) 1.8 (−12) 1.0 (−12) 12.688
MP [51] 21 2.6 (−12) 2.4 (−7) 1.8 (−12) 9.9 (−13) 12.094
HM [51] 20 2.1 (−12) 2.0 (−9) 2.2 (−12) 1.1 (−12) 12.094

NM1 (18) 19 3.2 (−12) 3.9 (−9) 1.7 (−12) 1.2 (−12) 11.652
NM2 (19) 19 1.7 (−12) 1.8 (−9) 1.7 (−12) 1.7 (−12) 11.922
HP4 [53] 18 1.7 (−12) 1.3 (−9) 1.2 (−12) 1.2 (−12) 10.982
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Figure 2. Visual representations of matrices and their Moore–Penrose inverses.

Example 5. Let us consider the rectangular matrix

M =


5 1 1
0 5 0
0 0 5
0 0 0

. (23)

The exact pseudoinverse of M is

M† =

 1/5 −1/25 −1/25 0
0 1/5 0 0
0 0 1/5 0

. (24)

In this example, the numerical results listed in Table 6 were computed with a tolerance of
tol = 10−1000. The purpose of evaluating a higher accurate solution is to discuss the behav-
ior of residual norms of third-order iterative schemes with an increase in iterations, as shown in
Figure 3. It is important to note that the figure results were obtained under the same environment
for the initial guess and stopping criteria. Moreover, the computational results were evaluated by
fixing the 3000 significant digits, to minimize the round-off errors and enhance the computing speed.
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Table 6. Experimental data obtained from iterative methods, for Example 5.

Method i e1 e2 e3 e4 ρ Time

SM [30] 12 2.1 (−1497) 1.1 (−1498) 0 0 2.000 0.562
CM [51] 8 1.7 (−2398) 8.9 (−2400) 0 0 3.0000 0.500
MP [51] 8 1.2 (−2673) 6.5 (−2675) 0 0 3.0000 0.548
HM [51] 7 3.0 (−1009) 1.6 (−1010) 0 0 3.0000 0.470

NM1 (18) 7 5.3 (−1359) 2.8 (−1360) 0 0 3.0000 0.453
NM2 (19) 7 2.6 (−1229) 1.4 (−1230) 0 0 3.0000 0.480
HP4 [53] 6 2.1 (−1497) 1.1 (−1498) 0 0 4.0000 0.484

Figure 3. Number of iterations versus residual norms of cubic order methods, for Example 5.

According to the computational data listed in Tables 1–6, a clear conclusion can be
drawn that NM1 and HP4 exhibited the best performances in each aspect of the compar-
isons. Undoubtedly, the HP4 method demonstrated equivalent or, in some cases, superior
results compared to NM1 and NM2. However, in comparison to the cubic order conver-
gence methods, the new method demonstrated more favorable outcomes.

Study of Different Parametric Values

In this subsection, we conducted a comprehensive analysis of the behavior of the
proposed scheme by varying the value of the parameter β. To achieve this, we utilized
selected test matrices to evaluate the performance of the scheme under different values of β.
We considered a range of values for β from 0 to 1, with a step size of 0.01. This allowed us
to systematically investigate the scheme’s performance under different parameter values,
providing valuable insights into how the scheme behaves and performs in various scenarios.

Example 6. Let us consider a randomly generated real matrix of order 10× 11 denoted as M1,
which was generated using the following code:

SeedRandom[123]

M1=RandomReal[{-2, 2}, {10, 11}]; (25)

We also refer to the matrix M defined in Example 5, and in this subsection, this is denoted by M2

M2 =


5 1 1
0 5 0
0 0 5
0 0 0

. (26)

The iterations and computational time of the proposed scheme for the matrix M1
defined in (25) were determined under the same initial guess and stopping criteria, with
a tolerance of 10−50. The obtained experimental data are illustrated in Figures 4 and 5.
Similarly, the behavior of the matrix M2 defined in (26) with a tolerance of 10−100 is shown



Mathematics 2023, 11, 3031 14 of 18

in Figures 6 and 7. Note that the maximum error norm emax = max{e1, e2, e3, e4}. Based on
the observations from these figures, the following conclusions can be drawn:

1. The graph of the number of iterations shows that, as the value of β increased, the
number of iterations did not necessarily decrease. In fact, it can be observed that the
presented scheme used fewer iterations for values of β close to one compared to values
of β close to zero, indicating that the scheme converged faster for higher values of β.

2. To achieve a more precise matrix inverse, the maximum error norm should be lower.
However, it was observed that the scheme (4), which resulted in fewer iterations as
depicted in Figures 4 and 6, corresponded to a higher error norm. Nevertheless, when
the accuracy of the solutions obtained from each iterative method was evaluated for a
particular iteration, it was found that the scheme with β that required fewer iterations
yielded a comparatively more accurate and precise matrix inverse.

3. On the other hand, the same trend did not necessarily hold for a computational
time, due to fluctuations. For example, for matrix M1 of (25), the time taken for
computation with a β close to one was comparatively less than the β near to zero.
However, such behavior of β was not observed for the matrix M2 in (26). Therefore,
the computational time varied depending on the characteristics of the matrices used.

In summary, it can be concluded that the scheme (4) demonstrated a greater efficiency
for values of β near to one compared to values of β close to zero.
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Figure 4. Number of iterations and corresponding maximum error norm emax attained by the proposed
scheme for different parametric values β for the matrix defined in (25).

Figure 5. Computational time used by the proposed scheme for different parametric values β for the
matrix defined in (25).
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(a) Maximum error (b) Maximum error

Figure 6. Number of iterations and corresponding maximum error norms emax attained by the
proposed scheme for different parametric values β for the matrix defined in (26).

Figure 7. Computational time used by the proposed scheme for different parametric values the β for
matrix defined in (26).

6. Conclusions

This paper presented an iterative scheme for obtaining the Moore–Penrose inverse of a
given complex matrix. The behavior of the proposed scheme was thoroughly analyzed and
investigated in this study. The theoretical analysis showed that under specific conditions
and with a restricted parametric value, the new scheme converged to M† with a third-
order convergence rate. The existing three- and four-order schemes could be defined for
a specific parameter. Nevertheless, we aimed to identify the best parametric value to
define a comparatively efficient third-order method. We demonstrated through numerical
investigations that the proposed scheme had a superior accuracy, despite not being as
efficient as the other methods in terms of a higher efficiency index. Different types of
matrices, such as random real and complex matrices, realistic problems, ill-conditioned
matrices, a larger sparse matrix, and academic problems were inspected, to authenticate
the validity of the new scheme. Based on numerical analysis, we concluded that the
presented scheme yielded more accurate results as the value of β gradually increased
towards one. In conclusion, the proposed iterative scheme is a viable method for obtaining
the Moore–Penrose inverse of a complex matrix, and it can be applied to various practical
problems in mathematics, engineering, and other fields. Several possible directions for
further research can be described. The presented work could be extended to include a
stability analysis of the proposed techniques. This would include exploring the stability
properties and performance bounds of the presented methods. Furthermore, one could
investigate the characteristics of the proposed scheme for computation of the Drazin inverse
and Bott–Duffin inverse.
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