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Abstract: The social influencer integrated marketing strategy, which builds social influencers through
potential users, has gained widespread attention in the industry. Traditional Scoring Link Prediction
Algorithms (SLPA) mainly rely on homogeneous network indicators to predict friend relationships,
which cannot provide accurate link prediction results in cold-start situations. To overcome these
limitations, the Closeness Heterogeneous Link Prediction Algorithm (CHLPA) is proposed, which
uses node closeness centrality to describe the social intimacy of nodes and provides a heterogeneous
measure of a network based on this. Three types of heterogeneous indicators of social intimacy were
proposed based on the principle of three-degree influence. Due to scarce overlapping node sample
data, CHLPA uses gradient boosting trees to select the most suitable index, the second most suitable
index, and the third most suitable index from Social Intimacy Heterogeneous Indexes (SIHIs) and
SLPAs. Then, these indicators are weighted and combined to predict the likelihood of other node
users in the two product circles in an online brand community becoming friends with overlapping
node users. Finally, a hill-climbing algorithm is designed based on this to build integrated marketing
social influencers, and the effectiveness and robustness of the algorithm are validated.

Keywords: CHLPA; SIHI; integrated marketing; social influencer; gradient boosting trees
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1. Introduction

In the past decade, online social networks have firmly rooted themselves in our lives,
becoming an integral part of it. Almost everyone has a personal profile on some social net-
work. Social networks provide a detailed record of human communication patterns, offer a
convenient way to disseminate information, and explore the structure of social networks.
Users within social networks form communities or groups [1] based on shared interests,
hobbies, professions, locations, or careers, creating what is often referred to as a circle.
Companies can leverage these circles to establish corresponding online brand communi-
ties [2]. Users within these communities form connections through communication and
interaction and, in the case of brand communities, integrating marketing social influencers
is defined as a multi-circle overlap node user who can become friends with many people
in the product circle and influence the purchase decisions of ordinary node users through
their behavior [3,4]. A large amount of research has shown that integrating marketing
social influencers has a significant impact on consumers’ willingness to join brand pages [5],
share electronic word-of-mouth information [6], brand attitudes [7], product evaluations,
purchase likelihood [8], and actual purchase behavior [9] through their friend relationships.

Users in a brand community are typically consumers of the same brand. By having
their own online community, brands can effectively gather consumers together and increase
their brand loyalty. The existence of online communication platforms means that online
interactions between different brand communities not only affect the relationships between
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consumers, but also between consumers and brands [10]. Through these platforms, user
interactions continue to strengthen, and the opinions and recommendations of friends play
an increasingly important role in influencing the purchasing decisions of other users and
their attitudes towards companies. Therefore, brand communities are crucial for online
marketers as they can often encourage consumers to make purchase decisions [11]. In
the era of fragmented marketing, companies are still increasingly using highly influential
friends, i.e., integrated marketing social influencers, for marketing purposes. Social influ-
encer integrated marketing plays an irreplaceable role in enhancing a company’s brand
image and achieving a brand’s long-term development goals.

Integrated marketing is a strategy that combines the sales of two different branded
products by integrating their respective customer bases and conducting joint marketing
activities. This strategy can break down the barriers between product circles and signifi-
cantly improve marketing efficiency, just like the marketing case of beer and diapers, where
their correlation can promote each other’s sales and achieve the goal of simultaneously
increasing sales volume. Nowadays, integrated marketing has attracted widespread at-
tention in the industry, and “everything can be crossed, everything can be connected” has
become a common trend. Recently, joint products such as the “Uniqlo × KAWS” T-shirt
and the “NetEase Cloud Music × Sanqiang” underwear caused a frenzy among the public
and set off a storm on social media. “Crossing borders and collaborating with others” has
become the slogan of many brands. From real estate and cars to shoes, handbags, lipsticks,
and drinks, as long as they are labeled with a joint name, they can always create a wave of
excitement.

Using popular social influencers for integrated marketing can indeed achieve the
goal of integrated marketing, but the high cost of using these influencers makes it difficult
for new brands in their early stages with limited funds. Therefore, this study proposes
to build integrated marketing social influencers by cultivating users with potential (i.e.,
users who currently have few friends but will have many in the future) and recommending
them to other users as friends. In social network brand communities, integrated marketing
social influencers generally cross different brand circles and are overlapping nodes in
different circles [12]. Integrated marketing in brand communities on social networks
requires predicting the likelihood of overlapping node users in two circles establishing
friendships with other node users in the two circles. If the likelihood is high, then they
are recommended to become friends. Because overlapping node users have network
characteristics different from other node users in the circle, such as being located in two
product circles at the same time and being rare in number, recommending them to establish
friendships with other node users will inevitably face the cold-start problem. Existing friend
recommendation algorithms for establishing friendships in social networks mainly use the
Scoring Link Prediction Algorithm (SLPA), which predicts the likelihood of a link between
user nodes based on the similarity of the social network’s topological structure, such as
the characteristics of common neighbors. However, these SLPA algorithms mainly rely on
homogeneous network indicators to predict friendship relationships, do not consider the
differences in social intimacy between node pairs that have already established friendships,
have low information content, and cannot adaptively generate combination link prediction
algorithms based on specific circle structure features, which cannot provide accurate link
prediction results in cold-start situations.

To address the challenges posed by the cold-start problem in predicting node-pair
friendships with insufficient information, this study proposes a novel approach that lever-
ages heterogeneous indicators to capture the macro structure of the network. Traditional
solutions have typically relied on local information only, which can limit the accuracy and
reliability of predictions. By utilizing heterogeneous indicators, this study aims to extract
hidden information from deep mining network structures and provide a more effective
means for predicting node pair friendships while also addressing overlapping node re-
lationships. By considering the macro structure of the network, the proposed approach
can increase the amount of reliable information available and help to avoid the cold-start
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problem caused by a lack of data. The resulting predictions can be more accurate, enabling
better decision-making in various applications.

To characterize social intimacy, this study utilizes the global feature indicator of
closeness centrality and proposes the Closeness Heterogeneous Link Prediction Algorithm
(CHLPA) to predict the likelihood of a target user becoming friends with other node users.
CHLPA uses the variable of node closeness centrality to describe the social intimacy of
nodes and provides a heterogeneous measurement of the network based on this. Based
on the three-degree influence principle, three types of heterogeneous indicators of social
intimacy are proposed, including the self-Social Intimacy Heterogeneous Index (SIHI),
common neighbor-based SIHI, and community neighbor-based SIHI.

To address the issue of traditional mining methods being ineffective due to scarce data
on overlapping node samples, CHLPA employs the Gradient Boost Decision Tree (GBDT)
method. Using the density of nodes and their centrality in local networks, the most suitable
index, the second most suitable index, and the third most suitable index from SIHIs and
SLPAs are selected. To improve the model’s performance and avoid the risk of algorithmic
accuracy reduction resulting from blind SIHI combinations, CHLPA applies the GBDT
method to obtain a final fit probability by assigning weights to the selected SIHIs and
combining them. Composite indexes are used to predict the likelihood of other node users
in two product circles in the online brand community becoming friends with overlapping
node users.

Finally, this study presents a hill-climbing algorithm for building integrated marketing
social influencers, which utilizes CHLPA to predict the likelihood of overlapping node
users linking with ordinary node users within two product circles. Based on whether their
closeness centrality is improved, the algorithm determines whether to recommend nodes
with link potential as friends, thereby achieving the construction of social influencers for
integrated marketing. The effectiveness and robustness of the algorithm were verified
through datasets from social networks.

In summary, this study presents several key innovations: (1) The application of CHLPA
in integrated marketing is novel. (2) The innovative SIHI indicators. (3) The use of the
GBDT model to innovatively select and combine indicators. (4) The adaptive selection of
indicators based on network characteristics. These innovations have successfully realized
the construction of integrated marketing social influencers in online brand communities,
providing new ideas and insights for research on social network analysis and marketing
strategies.

The remaining parts of this study are arranged as follows: Section 2 presents the link
prediction research status; Sections 3 and 4 introduce the CHLPA and the hill-climbing
algorithm for constructing “integrated marketing social influencers”; Section 5 verifies
the effectiveness of the CHLPA and the hill-climbing algorithm through datasets in social
networks; and Section 6 provides a conclusion of this study.

2. Link Prediction Research Status
2.1. Link Prediction

In studies related to link prediction, the scoring method based on common neighbors
is the most widely used algorithm for link prediction. Its fundamental principle is to
judge the likelihood of a link between nodes based on the high or low scores calculated
from common neighbor-related indicators. The higher the score, the greater the likelihood
of a link appearing in the future network. Lü and Zhou [13] classified link prediction
algorithms into three categories: similarity-based link prediction, maximum likelihood
estimation-based link prediction, and probability model-based link prediction. Among
these existing link prediction algorithms, the similarity-based algorithm is the most widely
used framework for predicting non-existent links, where the score between two nodes is
directly defined as their similarity [14].
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2.2. Combined Link Prediction

With the development of research, more and more scholars have found that a single
link prediction algorithm cannot meet the prediction needs of extremely sparse networks.
Therefore, in addition to the common link prediction algorithms mentioned above, many
scholars have proposed combined link prediction algorithms to deal with the link prediction
problem in sparse networks. For example, He and Liu [15] found that the stability of link
prediction algorithms based on local information was usually very low. Therefore, they
proposed a link prediction ensemble algorithm (LPEA) based on the Ordered Weighted
Averaging (OWA) operator. LPEA used three different OWA operators to assign integration
weights to various link prediction algorithms. Wang, Ma [16] and others proposed a
parameter-adjustable link prediction algorithm based on community information (CI)
and applied it to large-scale complex networks to obtain community information for link
prediction. Xiao and Li [17] generalized the LDA topic model and Hidden Naive Bayes
algorithm and proposed a three-level hidden Bayesian link prediction (3-HBP) model for
link prediction. Also, Bütün and Kaya [18] analyzed user behavior and user relationships to
mine users’ interest distribution and predicted missing links between users. They proposed
a pattern-based supervised link prediction method to improve the link prediction accuracy
of the Triad Closeness (TC) measure in directed complex networks. The proposed pattern-
based link prediction measure was compared with the TC measure and the latest link
prediction measure, and the results confirmed the effectiveness of their proposed measure.

2.3. Heterogeneous Link Prediction

Unlike the homogeneous link prediction algorithms described earlier, in recent years,
some scholars have proposed heterogeneous link prediction algorithms to extract deeper
information from the network. For example, Zhan and Zhang [19] studied finding influ-
ential users across multiple heterogeneous social networks in different sub-communities
and proposed a new network diffusion model called “Cross-Network Information Diffu-
sion” (CONFORM). Based on this, they extracted and fused various diffusion links in a
heterogeneous network and calculated the probability of user activation. Yudhoatmojo and
Budi [20] used edge-weighted and centrality-based weighting to retrieve opinion leaders
related to rumor propagation. They examined the importance of each defined edge type in
finding opinion leaders through edge weighting and found the weights that can provide
more accurate opinion leaders through centrality weighting. Dai and Shang [21] devel-
oped a new framework to address the embedding problem in heterogeneous networks by
proposing a path-guided random walk strategy related to edges to guide walking between
different layers separated by edge types, and then used a heterogeneous jump model to
calculate the overall node embedding. The results of quantitative experiments on four pub-
lic datasets (Amazon, Youtube, DBLP, and Movielens) showed that their method achieved
significant improvements in link prediction tasks. Wen [22] designed a link prediction
algorithm that combined node structure and sentiment attributes, analyzing the linkages
and tweets of some hot topics in the 2014 World Cup on Tencent Weibo and the emotional
distribution of each topic’s audience. The experimental results showed that the number of
users with the same emotion and the emotional distribution of the audience can affect the
links between users. Mohdeb and Boubetra [23] proposed a weighted meta-path-based link
prediction method, WMPLP, which significantly improved the effect of link prediction by
maximizing the information richness in heterogeneous social networks. Cao and Kong [24]
proposed an iterative framework for heterogeneous collective link prediction, called HCLP,
which utilized diversified and complex link information in heterogeneous homogeneous
information networks to predict multiple types of links. Empirical studies based on real
tasks have shown that this method can effectively improve the link prediction performance
in heterogeneous information networks.

The link prediction algorithm is a common friend recommendation algorithm that can
predict whether two users in the network can become friends based on the past network
topology. However, traditional link prediction algorithms rely on relatively single indicators
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and different indicators have inconsistent prediction capabilities in different networks. The
accuracy of the prediction depends on whether the algorithm aligns well with the structural
characteristics of the target network. Traditional algorithms have not adequately adapted
to network features by selecting appropriate algorithms from the perspective of algorithm
combinations or recommending friends for target users through suitable network evolution
algorithms. Li, S. et al. [25] proposed a fully integrated homogeneous link prediction
algorithm, which focused on solving the issues of sparse networks and the cold-start
problem in product marketing. However, it still lacks the application scenario in integrated
marketing, and its interpretability is poor, that is, identifying which indicators are effective.

This study has effectively addressed the above shortcomings. For the construction of
“integrated marketing social influencers”, oriented towards product integration marketing,
this study develops the CHLPA from the perspective of heterogeneity of social intimacy
to overcome the cold-start problem when predicting links between overlapping nodes of
two product circles. Moreover, the algorithm adapts to the network feature indicators to
construct composite indicators by suitable indexes for link prediction.

3. Building Social Influencers for Integrated Marketing Based on Friends
Recommendations
3.1. Integrated Marketing within a Brand Community

Define online brand community G(V, E) as a graph, where V represents the set of
nodes representing users in the community, and E stands for the set of edges representing
friendships between users. Users in the brand community form circles based on their
shared interests in particular product types. The set of users in the circle of category C
products is defined as Vc, and the set of users in the circle of category D products is defined
as Vd.

The aim of this study is to achieve efficient integrated marketing by cultivating po-
tential users into integrated marketing social influencers. Specifically, the overlapping
node users between the circles of category C and category D products are recommended as
friends to other users in both circles. By leveraging the marketing and sales capabilities of
social influencers, this approach aims to achieve integrated marketing targeting both the C
and D product circles.

Figures 1 and 2 show schematic diagrams of friend recommendations for cultivating
integrated marketing social influencers among potential users. Figure 1 displays the
network before evolution, while Figure 2 depicts the network after evolution. In Figure 1,
the users belonging to the circle of category C products include a, b, c, d, e, f, g, h, and
others, while the users belonging to the circle of category D products include a, 1, 2, 3, 4,
5, and 6. Assuming that a is the target user and the goal is to cultivate a social influencer
for integrated marketing, friend recommendations aim to make users in both the C and D
product circles become friends with user a, thus facilitating integrated marketing between
the two product circles. In this study, the SIHI method is used to predict the likelihood of
user a becoming friends with users in both the C and D product circles. Users with a high
probability of becoming friends are recommended to user a, as shown by the red lines in
Figure 2.

3.2. SIHI Aimed at Friend Recommendations

American scholars Nicholas Christakis and James Fowler proposed the “Three Degrees
of Influence” principle, which states that only three degrees of separation, or “strong
connections,” truly affect people in their social networks [26]. Connections beyond three
degrees also have an impact, but their influence is weaker and are thus referred to as
“weak connections.” Strong connections facilitate social behavior, while weak connections
transmit information. Based on this principle, this study concludes that the closer a node is
to other nodes in terms of social distance, the stronger its social strength with those nodes,
making it easier for the node to form social relationships and become friends with other
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nodes. This study utilizes the principle of three degrees of influence and a node’s closeness
centrality to express its level of social intimacy with new friends.
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Variables that describe the importance of nodes mainly include betweenness centrality,
degree centrality, and closeness centrality. Among these variables, closeness centrality
is closer to the geometric center of the network and can depict global information, mak-
ing it more suitable for characterizing the intimacy of social connections between nodes.
Therefore, this study first used closeness centrality as a global variable to describe the
social intimacy of nodes and measure the heterogeneity of the network based on it. If the
shortest distance between a node and all other nodes is small, its closeness centrality is
high, indicating high social intimacy with other nodes. The closeness centrality of user i
is defined as C(i), and the social intimacy assigned by user i to each link in the personal
network is s(i) = 1

C(i)+1 . The calculation formula for the closeness centrality of node i

is C(i) = 1
∑n−1

v=1 d(i , v)
, where n is the total number of nodes in the network, d(i , v) is the

shortest distance between node v and node i, which is the shortest path. For any node pairs
x and y, and their common neighbor z, SIHI is defined as follows.
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3.2.1. SIHI Based on the Node’s Own Characteristics

The greater the closeness centrality of a node, the closer its social distance with other
nodes, making it easier for the node to become friends with other nodes. Therefore, in real
life, two nodes that are close to other nodes in their network are more likely to become
friends. Based on this principle, this study creates an SIHI based on the node’s own
characteristics, as shown in Table 1. M1 represents the sum of two social intimacy values,
while M2 represents the product of two social intimacy values.

Table 1. SIHI based on the node’s own characteristics.

Algorithm Formula

M1 SM1
xy = 1

s(x) + s(y)
M2 SM2

xy = 1
s(x) ∗ s(y)

3.2.2. SIHI Based on Nodes and Common Neighbors

The greater the social distance between the common neighbors of a node pair and
other nodes, the more social attention is allocated to that node pair, making it more likely
for them to become friends [27]. Additionally, the greater the closeness centrality between
two nodes, the closer their social distance, making it easier for them to become friends.
Based on this principle, this study created a measure of intimacy between nodes and their
common neighbors using the SIHI, as shown in Table 2. The M3 calculates similarity
between nodes by summing the social intimacy values of their common neighbors and
dividing it by their own social intimacy values. M4 calculates similarity by multiplying
the social intimacy values of common neighbors and dividing it by the node’s own social
intimacy values. Similarly, M5 and M6 calculate similarity by summing the social intimacy
values of common neighbors in relation to either the maximum or minimum social intimacy
values of the nodes.

Table 2. SIHI based on nodes and common neighbors.

Algorithm Formula

M3 SM3
xy =

∑z∈Γ(x)
⋂

Γ(y) s(z)
s(x) + s(y)

M4 SM4
xy =

∑z∈Γ(x)
⋂

Γ(y) s(z)
s(x) ∗ s(y)

M5 SM5
xy =

∑z∈Γ(x)
⋂

Γ(y) s(z)
s(x) + s(y) ∗ 1

max{s(x), s(y)}
M6 SM6

xy =
∑z∈Γ(x)

⋂
Γ(y) s(z)

s(x) + s(y) ∗ 1
min{s(x), s(y)}

3.2.3. SIHI Based on Nodes and Community Neighbors

If a node has a smaller clustering coefficient with its neighboring nodes, indicating
weaker emotional connection with them, based on the principle of interpersonal interaction,
its demand for emotional connection with new friends is higher, and it is more likely
to form a link with a new node. Meanwhile, the larger the social distance between the
common neighbors of a node pair and other nodes in the network, the more attention the
node pair is likely to receive, thereby increasing the probability of a link between them.
Additionally, the larger the closeness centrality between two nodes, the closer their social
distance, making them more likely to become friends. Based on these principles, this study
proposes an SIHI based on nodes and community neighbors to measure the likelihood
of establishing a friendship between nodes, as shown in Table 3. M7 considers closeness
centrality and social intimacy values for more accuracy. M8 gives more weight to nodes
with lower intimacy values. M9 uses both the closeness centrality and intimacy values
of common neighbors for a comprehensive similarity measurement. M10 considers the
product of intimacy values and centrality for a more comprehensive similarity calculation.
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Table 3. SIHI based on nodes and community neighbors.

Algorithm Formula

M7 SM7
xy =

cc(x) ∗ cc(y)
max{s(x), s(y)}

M8 SM8
xy =

cc(x) ∗ cc(y)
min{s(x), s(y)}

M9 SM9
xy = ∑

z∈Γ(x)∩Γ(y)

(
s(z)

2 ∗ (s(x) + s(y))

)
+

cc(x)
s(x) +

cc(y)
s(y)

M10 SM10
xy = ∑

z∈Γ(x)∩Γ(y)

(
s(z)

2 ∗ (s(x) ∗ s(y))

)
+

cc(x)
s(x) +

cc(y)
s(y)

Here, cc(·) represents the inverse of the clustering coefficient of a node, as shown in
Formula (1):

cc (i) =
Ni ∗ (Ni − 1)

2C
(1)

where C is the actual number of links among node i and its neighboring nodes, which is
the number of neighboring nodes of node i.

4. CHLPA

To overcome the cold-start problem associated with friend-based recommendations,
this study delves deeply into the information contained within the network structure.
Specifically, it emphasizes that the social closeness of different nodes varies and proposes
CHLPA as an adaptive method for constructing SIHI that is suitable for circle structure
characteristics. To accurately capture the compatibility between indexes (such as SIHIs and
SLPAs) and the network feature structure, the GBDT model was designed, which employs
network feature indicators, such as node clustering and centrality within the local network,
to select the appropriate indexes. The process of CHLPA is depicted in Figure 3. CHLPA
deals with the cold-start issue in network analysis by utilizing heterogeneous indicators,
combining them through weighted or comprehensive methods, selecting appropriate
indicators based on network characteristics, and leveraging the power of the GBDT for
accurate predictions and decision-making. This approach improves the understanding and
utilization of network information, particularly in the context of integrated marketing and
brand community analysis.
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4.1. Network Features for Filtering SIHI
4.1.1. Node Density

(a) Average Path Length
The average path length represents the average distance between all pairs of nodes

and is used to measure the dispersion of emotional intimacy between each node and other
nodes in the network. The formula for the average path length is shown in Formula (2).

L =
2 ∑i≥j dj

N ∗ (N − 1)
(2)

The variable dj represents the path length between nodes, and N is the number of
nodes.

(b) Network Diameter
The network diameter refers to the maximum distance between any two nodes in the

network. The Formula (3) shows the calculation of the network diameter.

d(i, j) = max
i 6=j

Lij (3)

where Lij = min
i 6=j

lij represents the shortest distance between any two nodes, where lij is the

length of all paths from node i to node j.

4.1.2. Node Centrality

(a) Average Node Degree Centrality
Degree centrality is the most direct measure of node centrality in network analysis.

The larger the degree of a node, the higher its degree centrality and the more important it
is in the network. Formula (4) shows the calculation of average node degree centrality.

s =
1
N

N

∑
i=1

si (4)

where N is the number of nodes, and si represents the degree centrality of node i.
(b) Average node betweenness centrality
Betweenness centrality refers to the number of times a node serves as a bridge along

the shortest path between two other nodes. The betweenness centrality of a node is the
number of these shortest paths that pass through that node. The more times a node acts
as an “intermediary,” the greater its betweenness centrality. Betweenness centrality is a
commonly used measure for characterizing the importance of nodes. The formula for the
average node betweenness centrality is shown in Formula (5).

CG =
1
|V| ∗

|V|

∑
i=1

2
(|V| − 1) ∗ (|V| − 2)

∗∑
j<k

njk(i)
njk

(5)

where V represents the number of edges, njk(i) stands for the number of shortest paths
from node j to node k that pass-through node i, and njk represents the total number of
shortest paths from node j to node k.

(c) Average Eigenvector Centrality
The fundamental concept behind eigenvector centrality is that the centrality of a node

is a function of the centralities of its neighboring nodes. In other words, the more important
the other nodes connected to a node, the more important the node itself is. Therefore,
eigenvector centrality can effectively measure the importance of nodes while considering
the importance of their neighbors and can be used to measure the transmission impact
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and connectivity between nodes. The formula for the average eigenvector centrality is
displayed in Formula (6).

EC(i) = xi = c
N

∑
j=1

aijgj (6)

where c is a proportionality constant, aij = 1 if there is a connection between node i and
node j, otherwise aij = 0, gj is the degree of node j, and N is the total number of nodes.

4.2. GBDT

The GBDT model was proposed by Jerome Friedman as an iterative decision tree
algorithm composed mainly of multiple Classification and Regression Trees (CART) [28].
During the prediction phase, the model traverses all nodes of a tree for each input feature
vector, and each tree generates a prediction value based on the input vector’s features. The
final prediction value is obtained by aggregating all the prediction values from the trees.

The GBDT offers various advantages in certain aspects. Firstly, GBDT performs
well in processing nonlinear data and can recognize the interaction between features.
Secondly, GBDT can achieve high accuracy and generalization performance in training and
testing sets. Thirdly, GBDT is constructed using decision trees, making the results easy
to understand and highly explanatory. The GBDT can be used to solve both regression
and classification problems. One of the fundamental concepts of The GBDT is to use the
negative gradient values of the loss function as an estimated value of the residuals to
fit a classification tree. When decision tree algorithms are used alone, they are prone to
overfitting. GBDT decreases the complexity of decision trees, reduces the fitting ability of a
single decision tree, and then integrates multiple decision trees through gradient boosting,
ultimately solving the problem of overfitting very well [29].

In the GBDT, the independent variables used for learning the samples are network
feature indicators, while the dependent variable is the one-hot encoding of the π categories
of SIHIs and SLPAs (i.e., the encoding corresponding to the index with the maximum AUC
value is 1, and the others are 0). The π categories indexed in this study can each generate
a CART for GBDT. The core idea of CART is that each round of training is based on the
residual of the previous round of training. Here, the residual refers to the negative gradient
value of the current model. For the GBDT’s multiclass classification problem, the softmax
model needs to be considered as follows:

P(y = j|x ) = eFj(x)

∑k
i=1 eFi(x)

(7)

where Fj(x) represents the predicted value of the jth CART for category x. As this study
adapts π indexes, the value of K is π. The single-sample loss function of the softmax model
is as follows:

loss = −
k

∑
i=1

yi log
eFk(x)

∑k
i=1 eFi(x)

(8)

where yi(i = 1, 2, . . . , k) stands for the value of class i in one-hot encoding of the SIHIs.
The derivative of the loss function with respect to Fi is as follows:

−∂loss
∂Fi

= yi − P(yi |x ) (9)

In summary, the basic steps for training the GBDT model in this study are as follows:
Step 1: We select an index based on five different network feature indicators, including

average path length, network diameter, average node degree centrality, average node
betweenness centrality, and average eigenvector centrality for a comprehensive evaluation
of image dehazing algorithms. Therefore, we use a five-dimensional vector to represent the
input of each sample and select the most suitable indicator from π indexes based on the
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five different indicators. For each index, we independently trained a CART with a depth
of five to avoid overfitting. The root and internal nodes of the tree correspond to the five
different network feature indicators, and the leaf nodes represent the clustering labels of
the samples. We set the number of trees generated through training for each index to 90,
ensuring a robust selection process, named CART Tree1, CART Tree2, . . . , CART Tree90.
The first most suitable index is the one selected the most times, the second most suitable
index is the one selected the second most times, and the third most suitable index is the one
selected the third most times, providing a quantitative measure of the relative performance.
The variable m represents the number of iterations, and we initialize m to 1 to find more
effective algorithms.

Step 2: Train CART. First, initialize the data. The input for the training samples consists
of five network feature indicators, and the output is the index independent hot encoding
(defined previously), which allows for a comprehensive evaluation of the index algorithm
performance. During CART training, use Formula (10) to calculate the probability that
a training sample belongs to the index. Due to being a classification problem, it is not
possible to compare the size of each classification problem; therefore, the probability of
which category to classify is used to represent the classification results.

P(y = k|x 1...x5) =
eFk,m(x1...x5)

∑10
o=1 eFo,m(x1...x5)

(10)

The formula Fk,m(x1...x5) =
Gk(x1...x5)

Q represents the predicted value of the k-th index
in the mth round of training. Here, Gk(x1...x5) is the count of the one-hot encoding of the
kth index with a value of one among all samples, and x1...x5 are the five network feature
indicators. Q is the total nber of samples.

Step 3: Calculate the negative gradient values of the index using Formula (11). Nega-
tive gradient values are a technique used to minimize loss in gradient descent optimization
algorithms and improve model performance and accuracy.

ỹi,k = yik − P(yi = k|xi1...xi5) i = 1, · · · , n, k = 1, · · · , K (11)

where yik refers to the one-hot encoded value of the kth class index in sample i, P(yi = k|x1...x5)
is the probability that sample i belongs to the kth class index, and ỹi,k is the negative
gradient value of the kth class index in sample i. n represents the number of samples, xij
represents the jth input in sample i, and K = 10.

Step 4: Generate a CART for each index, resulting in K CARTs. The procedure for
generating each CART is as follows. Use the five types of network feature indicators as the
nodes of the CART, choose one network feature indicator from the five types of feature
indicators, and traverse all possible values to find a critical value. Sample classification is
then performed based on this critical value. The criterion for classification is to minimize
the value of Formula (12). The critical value is used as the splitting condition, where
samples with values less than the critical value are split to the left leaf node, and samples
with values greater than the critical value are split to the right leaf node.

min

(
min ∑

xi∈Hi

(ỹk,m − c1)
2 + min ∑

xi∈Hi

(ỹk,m − c2)
2

)
(12)

where c1 represents the mean negative gradient value of the samples allocated to the left
leaf node, while c2 represents the mean negative gradient value of the samples allocated to
the right leaf node.

This process is repeated until all five feature indicators are considered as splitting con-
ditions, completing one round of CART training. K CARTs can be generated by following
the same steps.
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Step 5: Update Fk,m(x1 . . .x5) [28] based on the generated CART using the following
formulas.

γjkm =
K− 1

K

∑si∈Rjkm
ỹik

∑si∈Rjkm
|ỹik|(1− |ỹik|)

, j = 1 . . . , J, k = 1, . . . , K (13)

Fk,m+1(x1 . . . x5) = Fk,m(x1 . . . x5) + ∑J
j=1 γjkmI

(
x1 . . . x5 ∈ Rjkm

)
, k = 1, . . . , K (14)

P(y = k|x 1...x5) =
eFk,m+1(x1...x5)

∑K
o=1 eFo,m+1(x1...x5)

, k = 1, . . . , K (15)

where Rjkm represents the set of samples corresponding to the jth leaf node of the CART

for the kth type of index in the mth round of training. I
(

x1 . . . x5 ∈ Rjk1

)
is an indicator

function that equals one if the sample containing x1 . . . x5 belongs to Rjkm and 0 otherwise.
si represents the ith sample, and J is the number of bottom-level leaf nodes in the CART.

Step 6: Begin the next round of training by setting m = m + 1 and repeating steps 3–6.
Iterate in this manner until the specified time limit is reached (e.g., M rounds), where M
is set to 90 in this study. By continuing the training process through multiple rounds, the
model is able to learn and improve its accuracy over time.

Step 7: The probability that a new sample is suitable for a certain index is shown in
Formula (16). In this study, the index with the highest probability is selected as the most
suitable index.

pk(x1...x5) =
eFk,M(x1...x5)

∑10
o=1 eFo,M(x1...x5)

(16)

Step 8: Among all indexes, the indexes with the highest, second-highest, and third-
highest probabilities calculated according to formula (16) are selected as the first suitable,
second suitable, and third suitable indexes for the brand community, i.e., Efirst suitable,
Esecond suitable, and Ethird suitable.

The final combination of indexes is as follows:

MAA = w1 ∗ E f irst suitable + w2 ∗ Esecond suitable + w3 ∗ Ethird suitable (17)

Here, w1, w2, and w3 are the weights of the first, second, and third suitable indexes,
which are determined according to the fitting probabilities calculated from Formula (16).

Similarly, link prediction is made based on the combined index of Formula (17), and
then a social influencer for integrated marketing is constructed by evolving the network
based on changes in the closeness centrality index using the hill-climbing algorithm.

The pseudo code for CHLPA is shown in Algorithm 1.

Algorithm 1. The proposed CHLPA algorithm.

Input: a set of no-direction network
Output: a set of combined indexes for node pairs
Function CHLPA
For node pairs (x,y) in non-edges

Node Density
Node Centrality

GBDT choosing the suitable indexes
Return a set of combined indexes
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5. Experimental Design and Result Analysis
5.1. Experimental Design

To verify the effectiveness of CHLPA, one hundred and five ego net datasets from
Google Plus (http://snap.stanford.edu/data/ego-Gplus.html (accessed on 10 January
2023), one hundred ego net datasets from Twitter (http://snap.stanford.edu/data/ego-
Twitter.htm (accessed on 10 January 2023), and one ego net datasets Celegans(https://deim.
urv.cat/~alexandre.arenas/data/welcome.htm (accessed on 10 January 2023) provided
by Stanford University were selected as the experimental objects. In each experiment,
90% of the datasets were randomly selected from the network as the training set, and the
remaining 10% were used as the test set. The experiment was repeated 100 times to obtain
the average value. Matlab 2022 software was used to implement the experiment, and the
algorithm parameters, except as specifically noted, were selected using the default values
provided by the software. Table 4 shows the average, minimum, and maximum values of
the selected network samples from Google Plus, Twitter, and Celegans.

Table 4. Statistics of the Network Sample.

Dataset Statistical Indicators MIN AVERAGE MAX

Google Plus

average path length 1.4503 2.0078 2.5968
network diameter 2.000 4.4583 7.000

mean node degree centrality 5.824 23.2574 56.557
average node betweenness centrality 8.105 258.9533 1054.731

mean eigenvector centrality 0.856 2.3905 4.720

Twitter

average path length 1.1209 1.9739 2.8883
network diameter 2.0000 4.4810 8.0000

mean node degree centrality 2.8889 24.6438 92.4426
average node betweenness centrality 1.5714 118.6830 378.5911

mean eigenvector centrality 0.8953 2.7602 6.7377

Celegans

average path length 2.7375
network diameter 8.0000

mean node degree centrality 27.3552
average node betweenness centrality 2121.5237

mean eigenvector centrality 1.2455

AUC is the primary metric to evaluate algorithm performance accuracy; it measures
the randomness of pairs of linked and unlinked nodes in the test set compared to their
scores generated by SIHI or SLPA [27]. Specifically, the AUC is calculated by randomly
sampling N pairs of nodes n from the test set and comparing their scores. If the score
for the linked node is higher than the score for the unlinked node N1 times out of the N
comparisons, then the AUC value is calculated using Formula (18):

AUC =
N1 + 0.5(N − N1)

N
(18)

5.2. Algorithm Performance Analysis

In this section, the experimental results of the proposed method are presented and
compared with benchmark methods and different datasets. The results indicate that the
CHLPA performs better than the benchmark methods and can effectively address the issue
of cold-start problems in nodes. The formulas of benchmark algorithms are as shown in
Table 5.

Table 6 and Figure 4 provide a comparison of the performances of the different algo-
rithms on different network datasets. Figure 4 is the candlestick of the AUC results for
CHLPA considering the average, the maximum, the minimum, and the standard deviation
of the AUC values. The results presented in Table 6 and Figure 4 show that the perfor-
mance of MAA outperforms any individual SIHI, indicating that the proposed method

http://snap.stanford.edu/data/ego-Gplus.html
http://snap.stanford.edu/data/ego-Twitter.htm
http://snap.stanford.edu/data/ego-Twitter.htm
https://deim.urv.cat/~alexandre.arenas/data/welcome.htm
https://deim.urv.cat/~alexandre.arenas/data/welcome.htm
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of generating a combined SIHI using GBDT is effective and that CHLPA significantly im-
proves the algorithm’s performance. In other words, when constructing social influencers
for integrated marketing in social networks, CHLPA accurately predicts the likelihood
that overlapping node target users will establish friendships with other node users in the
community. Table 7 provides a performance comparison between the traditional SLPA
and MAA0 on Google Plus datasets, a combination algorithm constructed based on the
traditional SLPA, and the proposed combined index architecture in this study. From
Figure 4 and Table 7, it can be seen that MAA0’s performance is significantly better than
that of SLPA, indicating that the proposed architecture for constructing combined indexes,
which combines five network characteristics, GBDT, and three types of suitability indexes,
effectively improves the accuracy of link prediction for overlapping nodes. Additionally,
the performance of MAA is significantly better than that of MAA0, indicating that using
global variables such as closeness centrality to characterize the network position of nodes,
proposing SIHI based on the three-degree influence principle, and generating suitable
combined indexes through GBDT accurately and effectively characterize the implicit social
information in overlapping networks and improve algorithm performance.

Table 5. The formulas of benchmark algorithms.

Algorithm Formula Reference

CN Sxy = |Γ(x)
⋂

Γ(y)| [30]
Salton Sxy = |Γ(x)

⋂
Γ(y)|√

|Γ(x) ∗ Γ(y)|
[31]

Jaccard Sxy = |Γ(x)
⋂

Γ(y)|
|Γ(x)∪Γ(y)|

[32]

Sorenson Sxy =
2|Γ(x)

⋂
Γ(y)|

kx + ky
[30]

Hub Promoted Index (HPI) Sxy = |Γ(x)
⋂

Γ(y)|
min(Γ(x), Γ(y))

[33]

Hub Depressed Index (HDI) Sxy = |Γ(x)
⋂

Γ(y)|
max(Γ(x), Γ(y))

[33]

LHN Sxy = |Γ(x)
⋂

Γ(y)|
|Γ(x)| ∗ |Γ(y)|

[34]

Adamic/Adar (AA) Sxy = ∑
z∈Γ(x)

⋂
Γ(y)

1
log|Γ(z)| [35]

Resource Allocation (RA) Sxy = ∑
z∈Γ(x)

⋂
Γ(y)

1
|Γ(z)| [36]

DGLP Sxy = |Γ(x)+Γ(y)|
dxy+1 + ∑

z∈Γ(x)
⋂

Γ(y)
Γ(z) [37]

CCPA Sxy = α∗(|Γ(x)
⋂

Γ(y)|) + (1 − α)∗ N
dxy

[38]

Note: For CCPA, parameter α∈ [0, 1] is the defined parameter value to control the weight of centrality and common
neighbor, N is the number of nodes, and dxy is the shortest distance between node x and y. For Sorenson, kx
represents the degree of a node x.

Table 6. AUC of all SIHI in different datasets.

Algorithm Google Plus Celegans Twitter

M1 0.8057 0.7263 0.8321
M2 0.8059 0.7265 0.8316
M3 0.6710 0.7056 0.7453
M4 0.6719 0.7066 0.7460
M5 0.6708 0.7067 0.7455
M6 0.6734 0.7062 0.7443
M7 0.6317 0.6035 0.7710
M8 0.6338 0.6026 0.7719
M9 0.5017 0.2696 0.6048
M10 0.6656 0.7062 0.7496

MAA 0.8515 0.8839 0.8868
DGLP 0.6895 0.6828 0.7100
CCPA 0.7231 0.5328 0.8241

Note: MAA is the combined SIHI proposed in this study. Google plus’ MAA = 0.999 ∗ RA + 0.0005 ∗M1 + 0.0005
∗ AA. Celegans’ MAA = 0.999 ∗ RA + 0.0005 ∗ AA + 0.0005 ∗M1. Twitter’s MAA = 0.999 ∗ RA + 0.0005 ∗ AA +
0.0005 ∗M1. For CCPA, we consider α = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
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Table 7. Performance Comparison of CHLPA proposed in this study and all reference methods.

Algorithm Average AUC Algorithm Average AUC

CN 0.7987 HDI 0.6330
Salton 0.6599 LHN 0.4562
Jaccard 0.6480 AA 0.8081

Sorenson 0.6489 RA 0.8123
HPI 0.6956 DGLP 0.6895

CCPA 0.7231 MAA0 0.8174

5.3. Establishing Friend Relationships Based on Hill-Climbing Algorithm

According to the different network densities, extremely sparse networks (with ID
114124942936679476879), sparse networks (with ID 104917160754181459072), and dense
networks (with ID 112573107772208475213) on Google Plus datasets were selected as
examples to study the effectiveness of the hill-climbing method proposed in this study for
constructing friendships in evolving networks. For each of the three types of networks,
we chose a target user as the overlapping node and analyzed the evolution process of the
network based on the proposed CHLPA.

Table 8 shows the evolution of the target user’s friends during the hill-climbing
algorithm based on node degree, node degree centrality, node betweenness centrality, and
node closeness centrality. Ci represents the number of friends for the ith iteration, and the
stopping iteration is based on the termination round of the hill-climbing algorithm based on
node closeness centrality. For the extremely sparse network (ID 114124942936679476879),
the threshold for the number of friends of the target user was set to 30, for the sparse
network (ID 104917160754181459072), the threshold of the number of friends of the target
user was set to 110, and for the dense network (ID 112573107772208475213), the threshold
for the number of friends of the target user was set to 190. From Table 8, it is evident
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that the hill-climbing algorithm based on node closeness centrality has a faster and more
efficient friend recommendation performance than the other hill-climbing algorithms.

Table 8. Prediction of Friend Relationships Constructed using Hill-Climbing Algorithm.

Network
Code

Number of
Nodes

Number of
Circles

Target
User ID

Algorithm
Number of Friends after

Each Iteration

C1 C2 C3 C4 C5 C6

114124942936
679476879

34 2
101889975

950769

Hill-Climbing Algorithm
Based on Node Degree 1 11 23

Hill-Climbing Algorithm
Based on Node Degree

Centrality
1 18 25

Hill-Climbing Algorithm
Based on Node

Betweenness Centrality
1 17 27

Hill-Climbing Algorithm
Based on Node Closeness

Centrality
1 21 33

104917160754
181459072

132 6 111043623
176980

Hill-Climbing Algorithm
Based on Node Degree 1 16 29 48 79 103

Hill-Climbing Algorithm
Based on Node Degree

Centrality
1 16 35 57 79 102

Hill-Climbing Algorithm
Based on Node

Betweenness Centrality
1 20 36 59 84 104

Hill-Climbing Algorithm
Based on Node Closeness

Centrality
1 34 56 87 103 116

112573107772
208475213

202 14
115716197

313320

Hill-Climbing Algorithm
Based on Node Degree 1 48 79 102 148 179

Hill-Climbing Algorithm
Based on Node Degree

Centrality
1 35 667 99 105 132

Hill-Climbing Algorithm
Based on Node

Betweenness Centrality
1 45 79 106 124 158

Hill-Climbing Algorithm
Based on Node Closeness

Centrality
1 67 89 102 142 198

Upon comparison, it can be observed that the climbing algorithm based on closeness
centrality facilitates a faster rate of friend recommendations between the target user and
ordinary users. Therefore, in the context of integrated marketing, applying CHLPA and the
climbing algorithm proposed in this study to recommend friends for overlapping network
users can swiftly convert potential ordinary users into social influencers for integrated
marketing. This approach can then be used to market products by leveraging the social
influence of integrated marketing social influencers, thereby saving marketing costs.

6. Conclusions

In the early stages of brand establishment, the customer base is usually limited.
Therefore, product integration marketing can quickly attract fans to the brand. To construct
“integrated marketing social influencers” and accumulate a large fan base for overlapping
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nodes between two product circles within a short period of time, it is necessary to identify
node users in both product circles who can establish friendships with overlapping node
users. Therefore, this study proposes CHLPA to predict possible friendship relationships
between overlapping node users and other node users in different product circles, thereby
achieving efficient and accurate product integration marketing.

To address the cold-start problem when predicting friend relationships between target
overlapping node users and other node users in two product communities, this study
takes an adaptive approach based on network characteristics. This study proposes the
SIHI method, which utilizes closeness centrality as a global variable to represent the
social intimacy between nodes, and develops the CHLPA model. Following the three-
degree influence principle, CHLPA proposes three types of SIHI, which are based on node-
based, neighbor-based, and community-based approaches, to comprehensively describe
the probability of users becoming friends in a sparse network environment. Then, CHLPA
utilizes the GBDT method to adaptively select the most suitable index, the second most
suitable index, and the third most suitable index from SIHIs and SLPAs based on the
density of nodes and their centrality in the local network. CHLPA then assigns weights
to the selected index according to the normalized final fit probabilities from GBDT and
combines them to predict the probability of overlapping node users and other node users
becoming friends in two product communities in an online brand community. As a result,
an integrated marketing social influencer can be built efficiently.

To evaluate the performance of CHLPA, this study conducted simulation experiments
using the Google Plus, Twitter, and Celegans datasets. The experimental results show that
CHLPA has excellent performance. In addition, this study investigated the effectiveness
of the hill-climbing method in constructing friendship relationships in evolving networks,
focusing on extremely sparse, sparse, and dense networks. One overlapping node target
user was selected based on the proposed CHLPA. The results show that the node-closeness
centrality-based hill-climbing algorithm has a faster and more efficient friend recommenda-
tion efficiency than the others. Therefore, applying the proposed CHLPA and hill-climbing
algorithms to friend recommendations for overlapping nodes in social networks can effi-
ciently transform potential ordinary users into integrated marketing social influencer users,
who can influence marketing through the friends of integrated marketing social influencers,
and thus reduce marketing costs.

Further research in the field of link prediction is expected to explore the integration
of new data sources and features to enhance accuracy. One promising approach is the
incorporation of social context information, such as user demographics and online behavior,
alongside link structure data. This can provide a more comprehensive understanding of
user behavior and improve link prediction performance. Moreover, the development of
more advanced machine learning techniques should also be considered to improve the
efficiency and accuracy of link prediction models. Recent innovations in deep learning and
reinforcement learning have shown great potential in enhancing the performance of link
prediction algorithms and may be utilized in future research for even better outcomes.
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