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Abstract: This paper explores the 3D printing of poly vinyl alcohol (PVA) using the fused deposition
modeling (FDM) process by conducting statistical modeling and optimization. This study focuses on
varying the infill percentage (10-50%) and patterns (Cubic, Gyroid, tri-hexagon and triangle, Grid) as
input parameters for the response surface methodology (DOE) while measuring modulus, elongation
at break, and weight as experimental responses. To determine the optimal parameters, a regression
equation analysis was conducted to identify the most significant parameters. The results indicate that
both input parameters significantly impact the output responses. The Design Expert software was
utilized to create surface and residual plots, and the interaction between the two input parameters
shows that increasing the infill percentage (IP) leads to printing heavier samples, while the patterns
do not affect the weight of the parts due to close printing structures. On the contrary, the discrepancy
between the predicted and actual responses for the optimal samples is below 15%. This level of error
is deemed acceptable for the DOE experiments.

Keywords: additive manufacturing; fused deposition modeling; 3D printing; infill percentage;
optimization

MSC: 70-05; 70-08; 70-10

1. Introduction

3D printing, also known as additive manufacturing, is a process of creating a physical
object from a digital model [1]. The object is built up layer-by-layer using a variety of mate-
rials such as plastic, metal, or resin [2,3]. 3D printing can be used to create a wide range of
objects, from small figurines to complex mechanical parts [4]. This technology has become
increasingly popular in recent years and is used in industries such as manufacturing, health-
care, and architecture [5-7]. There are several types of 3D printing technologies. Fused
deposition modeling (FDM) is a technology that builds objects by heating and extruding
thermoplastic filaments layer-by-layer [8,9]. PVA (polyvinyl alcohol) is a water-soluble
support material commonly used in FDM 3D printing [10-13]. PVA filament is extruded

Mathematics 2023, 11, 3022. https:/ /doi.org/10.3390/math11133022

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math11133022
https://doi.org/10.3390/math11133022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2361-4796
https://orcid.org/0000-0002-9171-4812
https://orcid.org/0000-0003-1774-4631
https://orcid.org/0000-0003-0875-4416
https://orcid.org/0000-0003-3929-2664
https://orcid.org/0000-0003-4720-0897
https://orcid.org/0000-0003-2960-3094
https://doi.org/10.3390/math11133022
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11133022?type=check_update&version=1

Mathematics 2023, 11, 3022

2 of 14

alongside the primary material and acts as a support structure for complex or overhanging
parts of 3D printing [14-16].

Padhi et al. [17] investigated how layer thickness affects ABSP 400 samples, while
Gardan et al. [18] focused on improving the quality of parts produced using two different
methods. Peng et al. [19] examined how layer thickness, filling speed, extrusion speed,
and line width influence build time and dimensions. They utilized a fuzzy inference
system to convert three responses into a single output and employed the response surface
methodology (RSM) to establish the relationship between four input parameters and
comprehensive output. MATLAB software was also utilized to implement a fitness function
in the genetic algorithm. The results suggested that this approach could significantly
enhance the accuracy and efficiency of the FDM process. Sajan et al. [20] conducted a study
to enhance the surface quality of ABS (acrylonitrile butadiene styrene) filaments, taking
into account five 3D printer input parameters, including printing speed, layer thickness,
and infill percentage. For optimization, they employed the Taguchi method to achieve
high-quality surface finishes. The results showed that the surface quality improved in
the XY and XZ planes. The compressive effect of FDM-made ABS Kagome truss unit
cells was studied by Gautam et al. [21]. As carbon fiber was added to the composite
filaments during the FDM process, Ning et al. [22] looked at the characteristics of carbon-
fiber-reinforced plastic (CFRP) composite parts. Due to the cohesiveness of the material,
standard production techniques, such as plastic molding, can provide sufficient tensile
strength. However, additive manufacturing can produce parts with weaker mechanical
qualities, including electrical and thermal conductivity, optical clarity, and strength. This
study used the design of experiment (DOE) method and input parameter adjustments to
improve the mechanical properties of FDM components [23-26]. Examining the mechanical
properties of samples through various tests, including tensile, roughness, and bending
tests, is crucial for optimizing the 3D printing process in polymers. Acquiring sufficient
information and identifying patterns in the fabrication of printed parts have a significant
influence on the resulting mechanical properties [27-29]. Furthermore, the utilization of
artificial intelligence (Al) and machine learning techniques offers a promising avenue to
mitigate errors encountered during sample fabrication. By leveraging machine-learning
algorithms, it becomes feasible to identify and rectify issues that may arise during or after
the printing process. The integration of Al-based approaches can greatly enhance the
overall quality and performance of printed samples, further advancing the optimization of
3D printing in polymer-based applications [30,31].

In this study, eleven samples of polyvinyl alcohol (PVA) filament were printed using
FDM, in which two important parameters, infill percentage (IP) and printing pattern,
were considered as an input parameter. Design of experiment (DOE) utilized the RSM
to design the 3D printing experiments. Responses in this experiment were modulus,
elongation at break, and weight of samples. The optimization was arranged to optimize
two input parameters to reach the goals for each response. The simultaneous optimization
of responses for PVA samples, considering multi-pattern printing, was investigated in this
study for the first time. The aim was to assess the effect of these input parameters on the
quality of fabricated samples.

2. Methodology and Experimental Work
2.1. Methodology

Statistical modeling used in this paper involves the implementation of statistical
techniques to model and understand the behavior of the 3D printing process. Statistical
modeling utilized for characterizing the relationships between process parameters, material
properties, and the quality of the printed parts. It allows for the identification of key factors
that influence the process and helps in optimizing the process settings to achieve desired
outcomes. On the other hand, mathematical optimization is used to focus on finding the
best possible solution within a given set of constraints. It involves formulating an objective
function and identifying the optimal values of the decision variables that maximize or
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minimize the objective function. In the context of 3D printing, mathematical optimization
is used to determine the optimal combination of process parameters to achieve specific
objectives defined in optimization section.

A response variable and many predictor variables are modeled and analyzed using
the statistical design of experiments approach known as RSM [32,33]. Finding the ideal
set of predictor variables that yields the highest (or lowest) response value is the aim of
RSM [34,35]. By fitting a polynomial equation to the data, one creates a mathematical
model of the response surface, which is then used to determine the input variables that
lead to the desired response using optimization techniques. RSM has a wide range of
applications, including control, process optimization, and product design [36]. The RSM
procedure is iterative and calls for careful consideration of the DOE selection, model choice,
and optimization methods applied (Figure 1).

Specification =l CAD Design = i‘TiL
ile

FDM Proces 3 — S licer

Analysis,

Characterization | == modelling and
optimization

Figure 1. Flowchart of Methodology.

Making educated judgments regarding product design, process optimization, and
control can benefit from understanding the correlations between the response variable and
predictor factors through the application of the RSM data. In Table 1, the independent
process parameters with design levels were depicted. Design levels refer to the different
settings or values assigned to a factor or independent variable in an experimental design.

Table 1. Independent Process Parameters with Design Levels.

Variable Notation Unit -2 -1 0 1 2
Infill Percentage P % 10 20 30 40 50
Pattern W - Cubic Gyroid Tri-Hexagonal Triangle Grid

This RSM design includes a center point (Infill Percentage: 30, Pattern: Tri-Hexagonal)
that is replicated three times to assess the lack of fit and provide an estimation of the
experimental error. The Design Expert software also suggests a fractional factorial design
to evaluate the main effects of the two parameters at different levels efficiently. This design
requires 8 experiments. Therefore, the total number of experiments recommended by the
Design Expert software for this RSM design with two parameters and 5 levels is 11 (center
point 3 replications + 8 factorial points). In Table 2, the input parameters and responses as
well as the relative error of mathematical model predictions were reported.
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Table 2. Input parameters and responses for PVA 3D printing.

Input Variables Responses
No. Infill I\/I(K/([i;;;.ls Elongation at Break (mm) W((eght
Percentage Pattern Relative Relative Relative
Actual Error % Actual Error % Actual Error %
1 30 Grid 15.561 7.52 1.871 —48.12 8.74 0.22
2 40 Triangle 15.696 —0.31 1.80 —59.44 9.3 —0.32
3 30 Cubic 17.414 21.59 3.731 —200.07 8.71 —1.37
4 30 Tri-Hexagon 14.492 13.02 2.806 73.24 8.89 0.78
5 30 Tri-Hexagon 9.609 33.54 4.818 —144.64 8.83 0.11
6 10 Tri-Hexagon 8.939 23.18 3.741 —294.91 7.81 0.12
7 50 Tri-Hexagon 17.519 0.91 4.358 13.97 9.72 —0.10
8 20 Gyroid 12.726 -9.27 14.279 0.06 8.39 0.23
9 20 Triangle 8.049 —24.75 17.026 58.98 8.22 —0.24
10 30 Tri-Hexagon 12.763 —-0.47 16.851 59.34 8.87 0.56
11 40 Cubic 14.739 —5.83 3.581 —183.24 9.32 0.64

2.2. Experimental Work

Solid Work software was used to draft the dimensions of the specimen then the
specimen can be saved in a file type, such as SLDPRT, or can be imported as an STL file.
The created STL file created can be used as an input to the 3D printing machines for further
printing. The material we used for the study was a PVA filament; each specimen was
printed using a PVA filament on an Ultimaker FDM 3D printer.

Polyvinyl alcohol (PVA) holds significant importance as a structural material for 3D
printing, especially for support structures. PVA is a biodegradable and non-toxic material,
making it an environmentally friendly choice for support structures.

Figure 2 shows the 3D-printer device which was used in this study. The IP rates are
based on the design done in the previous study [2].

Figure 2. Ultimaker 5 s 3D printer was used in this experiment.

The 3D model is sliced into thin layers using slicing software, which converts the 3D
model into machine-readable code. The slicing software also generates a toolpath for the
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3D printer, indicating the path that the extruder should follow to build the object. The
filament is then melted to a temperature that is specific to the material being used. The
melted filament is deposited layer-by-layer onto the build platform, following the toolpath
generated using the slicing software. The extruder moves in the X and Y axes, while the
build platform moves in the Z axis. After each layer is deposited, it cools and solidifies.
The build platform then moves down slightly, and the next layer is deposited on top. After
the object is finished printing, it is removed from the build platform and any support
structures are removed. After the print is complete, the PVA can be easily removed by
soaking the object in water, leaving behind a smooth surface and intricate details. After
printing, the specimen underwent post-processing in which the edges were chipped off.
Along with other procedures that looked at the product’s weight and production time,
tensile tests were carried out to disclose mechanical qualities. The specimen was stretched
until it was broken, and the corresponding elongation and stress were noted. According
to ASTM D638 2003, dog-bone-shaped specimens are advised for uniaxial tension testing
to lessen the impact of stress concentrations brought on the loading grips. ASTM D638
provides information on appropriate specimen dimensions. Specimens for the current test
are also a Dog bone shape and its design dimensions are in close resemblance with the
dimensions specified as per ASTM D638 2003 (Figure 3a). While measuring the dimensions,
it was found that the length was 164.5 mm and the thickness was between 3.94 mm and
4.02 mm, which is close to the design. The weight of the specimen was found to be between
8.37 gm and 9.87 gm. The printed specimens contained sharp edges and excess material;
under the post-processing stage, the sharp edges were filed, and the excess thin film was
removed using a plier before being taken for a tensile test. The specimen is stretched until
it breaks and the elongation at that point is noted (Figure 3b). Moreover, Figure 4 shows
some sample tensile test diagrams.
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(a) (b)

Figure 3. Specimen test. (a) Printed samples. (b) The samples after tensile test.
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Figure 4. Specimen Tensile tests for samples (a) #1 and (b) #6.

3. Result and Discussion

Each sample was mounted on the tensile test machine and stretched. The output
values that we obtained are Young’s modulus, elongation at break, and samples” weight,
which need to be tabulated for the optimization process.

3.1. Modulus

The ANOVA Table 3 provides valuable insights into the effective parameters in the
3D-printing process of PVA samples and their respective effects. By analyzing this ta-
ble, researchers can identify the key factors that significantly impact the outcome of the
3D-printing process. Equation (1) represents the regression model, which includes the
coefficients associated with each input parameter in the 3D-printing process. These co-
efficients quantify the magnitude and direction of the influence of each input parameter
on the response variable. By examining the values of these coefficients, researchers can
determine which input parameters have a substantial impact on the outcome of the 3D-
printing process. The coefficients derived from Equation (1) provide valuable information
about the relationship between the input parameters and the response variable. A positive
coefficient indicates that increasing the corresponding input parameter would lead to an
increase in the response variable, while a negative coefficient suggests that increasing the
input parameter would result in a decrease in the response variable.

(Modulus (MPa))!%¢ = + 8.27969 + 2.00265 x IP —12.45601 x Pattern + 0.32983 x
IP x Pattern + 2.72387 x 1073 x IP? + 4.84307 x Pattern®

Table 3. Analysis of variance (ANOVA) for modulus.

Source Sum of daf Mean F p-Value
Squares Square Value Prob > F
Model 5664.59 5 1132.92 1.87 0.2550
A-IP 5395.16 1 5395.16 8.89 0.0307
B-Pattern 67.32 1 67.32 0.11 0.7526
AB 49.64 1 49.64 0.082 0.7864
A? 1.55 1 1.55 2.547 x 1073 0.9617
B2 359.98 1 359.98 0.59 0.4760
Residual 3034.79 5 606.96
Lack of Fit 2143.83 3 714.61 1.60 0.4063
Pure Error 890.95 2 445.48
Cor Total 8699.37 10
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In Figure 5a, the normal plot of residuals shows that the residuals closely align with the
red line, suggesting a normal distribution of the data. Additionally, Figure 5b illustrates the
perturbation diagram for modulus. As the IP increases, the response value also increases.
This can be attributed to the higher density and cohesion of the printed samples, requiring
more force to separate them.

Normal Plot of Residuals Perturbation
18- A
99+
] 16—
3 B :
g 7
2 80 o ’ gl
3 70+ o g
< 501 512—
g 30- g
§ 20~ 210_
10-
57
1- 8
6_
T | | T T T
-2.00 -1.00 0.00 1.00 2.00 3.00 1000 -0.500 0.000 0.500  1.000

Externally Studentized Residuals Deviation from Reference Point

(a) (b)

Figure 5. (a) Normal plot of residuals. (b) Perturbation plot.

Figure 6a,b shows modulus’s response surface and contour plot. In Figure 6a, the
effects of the pattern for modulus are not linear, and each type of pattern has a different
impact on this response. Moreover, in Figure 6b, the red areas are the areas where the
effects of the input parameters in those areas are maximum, and the green areas have
fewer effects.

Modulus (MP2)

Pattern

10 20 30 40 50

Infill Percentage (%)
(a) (b)

Figure 6. (a) Response surface plot of modulus output in terms of IP and pattern. (b) Contour plot IP

and pattern.



Mathematics 2023, 11, 3022

8 of 14

3.2. Elongation at Break

The evaluation of elongation at break is a crucial response in the analysis of 3D-printed
samples, as it allows for the examination of the elongation capability of the samples before
failure occurs. In this research, the analysis of variance (ANOVA) was performed, and
Table 4 presents the results, indicating the significant parameters in the 3D-printing process.
To further explore the relationship between the input parameters and the response variable,
Equation (2) provides the coefficients associated with each input parameter, as well as the
interaction coefficients between different parameters. These coefficients play a crucial role
in forming the regression model, which aims to predict the response variable based on
the input parameters. By considering the coefficients, the regression model can provide
valuable insights into the impact of individual input parameters and their interactions
on the elongation at break. This allows for a deeper understanding of how different
factors influence the mechanical properties of the 3D-printed samples. Furthermore, the
coefficients can be utilized to identify the optimal values of the input parameters that
would result in the maximum elongation at break. By analyzing the regression model
and performing optimization techniques, such as those employed in the Design Experts
V11 program, it becomes possible to search for the optimum values that maximize the
desired response while considering the limitations and constraints of the printing process.
This iterative approach ensures the production of high-quality 3D-printed samples with
improved mechanical properties.

(Elongation at Break) ~0¢* = + 0.23652 + 4.26314 x 1073 x IP —0.044551 x Pattern +4.33220 x 103

x IP x Pattern + 2.45463 x 107° x IP? + 9.49324 x 10~3 x Pattern?

@

Table 4. Analysis of variance (ANOVA) for elongation at break.

Source Sum of df Mean F p-Value
Squares Square Value Prob > F
Model 0.13 5 0.025 0.61 0.6992
A-IP 0.038 1 0.038 0.92 0.3818
B-Pattern 0.075 1 0.075 1.82 0.2353
AB 8.564 x 1073 1 8.564 x 1073 0.21 0.6674
A? 1.255 x 10~* 1 1.255 x 107*  3.050 x 1073 0.9581
B2 1.383 x 1073 1 1.383 x 1073 0.034 0.8618
Residual 0.21 5 0.041
Lack of Fit 0.14 3 0.048 1.53 0.4193
Pure Error 0.063 2 0.031
Cor Total 0.33 10

According to Equation (2), the normal plot of residuals (Figure 7a) and perturbation
diagrams (Figure 7b) were generated to assess the adequacy of the regression model and
the accuracy of the predicted values for the elongation at break. The normal plot of
residuals provides insights into the distribution of the residuals and helps verify if the
assumptions of the regression model are met. Deviations from normality in the plot may
suggest areas of improvement or indicate potential issues with the model. The perturbation
diagrams in Figure 7b illustrate the effect of each input parameter on the elongation at break.
These diagrams enable the identification of the main factors that significantly influence
the response variable. By observing the magnitude and direction of the perturbation, the
impact of each parameter on the elongation at break can be determined. This information is
valuable for understanding the relationship between the input parameters and the response
variable and can aid in optimizing the printing process to achieve desired elongation
properties. In Figure 8a,b, the influence of the IP on the elongation at break is demonstrated.
As the value of the IP increases, more PVA is printed, resulting in a higher elongation
value. This relationship can be attributed to the increased length of the printed structure
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as more material is deposited. It suggests that controlling the input parameter, such
as adjusting the printing speed or extrusion rate, can have a significant impact on the
elongation properties of the printed samples. Understanding the relationship between the
input parameters and the elongation at break is essential for achieving desired mechanical
properties in 3D-printed samples. By leveraging this knowledge, researchers and engineers
can optimize the printing process by carefully adjusting the input parameters to achieve
the desired elongation values while maintaining other quality characteristics. This deeper
understanding facilitates the fine-tuning of the printing process and enhances the overall
quality and performance of the printed samples.

Normal Plot of Residuals

Perturbation
20 B
99
954 .
290° . _ Ao &
280 2
370- %
§50‘ g 104
£30- 3
H
59 =2 A
14
0_
23.00 -2.00 -1.00 0.00 1.00 2.00 ~1.000 -0.500 0.000 0.500 1.000
Externally Studentized Residuals Deviation from Reference Point (Coded Units)

Elongation at Break (mm)

(a) (b)

Figure 7. (a) Normal plot of residuals for Elongation at Break (b) Perturbation plot for Elongation
at Break.

20
Infill Percentage (%)

(b)

Figure 8. (a) Response surface plot of elongation at break output in terms of IP and pattern (b).
Contour plot IP and pattern.
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3.3. Weight

The ANOVA in Table 5 checks the input parameters of 3D printing for weight. Accord-
ing to Equation (2), IP and Pattern coefficients are shown in weight.

(Weight) =235 = +9.29504 x 1073 —1.39631 x 10™* x IP +2.61945 x 10~* x Pattern —7.71139 x 107° x

Table 5. Analysis of variance (ANOVA) for Weight.

IP x Pattern + 9.78546 x 10~/ x IP? + 2.56665 x 10~° x Pattern®

®)

Source Sum of daf Mean F p-Value
Squares Square Value Prob > F
Model 8.050 x 10~ 5 1.610 x 107° 123.12 <0.0001
A-IP 7.529 x 10~° 1 7.529 x 10~° 575.76 <0.0001
B-Pattern 9.611 x 1079 1 9.611 x 10~° 0.73 0.4304
AB 2714 x 1078 1 2.714 x 1078 2.08 0.2093
A? 1.995 x 1077 1 1.995 x 10~ 15.26 0.0113
B2 1.011 x 10~8 1 1.011 x 10~8 0.77 0.4195
Residual 6.538 x 10~8 5 1.308 x 108
Lack of Fit  6.075 x 1078 3 2.025 x 108 8.74 0.1044
Pure Error 4633 x 107° 2 2.317 x 10~°
Cor Total 8.115 x 10 10

In Figure 9a, the normal plot of residuals is presented, where the residuals closely align
with the red line. This indicates that the residuals follow a normal distribution, validating
the assumptions of the regression model. A normal distribution of residuals suggests that
the model captures the underlying variability in the data effectively and provides reliable
predictions for the weight of the samples. The point in Figure 9a that deviates significantly
from the trend is an outlier. It indicates an error derived from an extreme response value
that is not representative of the measurement data. This outlier implies that the predictive
model for weight is not capable of estimating the outlier. Figure 9b displays the perturbation
diagram of the 3D-printer parameters on the samples’ weight. By examining the magnitude
and direction of the perturbation lines, we can assess the impact of these parameters on the
weight. The diagram reveals that as the value of the input parameter increases, the weight
of the samples also increases. This relationship indicates that increasing the IP results in
the deposition of more PVA material, leading to an overall increase in the weight of the
printed samples. Understanding the influence of input parameters on the weight of the
samples is crucial for achieving the desired weight characteristics in 3D-printed objects.
By carefully adjusting the input parameters, such as the extrusion rate or IP, it is possible
to control and regulate the weight of the printed samples. The insights gained from the
normal plot of residuals and perturbation diagram contribute to a deeper understanding
of the relationship between the printer input parameters and the weight of the samples.
This knowledge facilitates informed decision-making in the optimization of the printing
process, ensuring the production of samples with the desired weight characteristics for
specific applications.

In Figure 10a,b, according to the effect of IP in the print of PVA samples, with the
decrease in IP, the weight of the samples also decreases because the samples do not have
high density, and as a result, their weight decreases. The output contains a graph, which
has an Extension on the x-axis and load on the y-axis. The extension starts from 0 mm
with the load being applied on the specimen; the elongation value increases until it breaks.
The elongation behaves linearly to a certain value of load and then the elongation goes on
increasing without change in the value of the load. The load suddenly drops when the
specimen breaks.
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Figure 9. (a) Normal plot of residuals for Weight. (b) Perturbation plot for Weight.
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Figure 10. (a) Response surface plot of weight output in terms of IP and pattern (b) Contour plot IP
and pattern.

4. Optimization

In this section, a detailed discussion is provided regarding the formation of the regres-
sion model and the search for the optimum values using the Design Experts V11 program.
The analysis involved considering the minimum and maximum ranges of each input pa-
rameter, as indicated in Table 6. The objective, based on the statistical analysis, was to
simultaneously increase the maximum modulus and elongation at break while reducing
the weight of the samples. Table 7 presents the results of the statistical analysis conducted
on the data from Table 2. Based on this analysis, the software suggested three samples that
meet the specified conditions outlined in Table 6. Furthermore, Figure 11 illustrates an
overlay plot, highlighting the samples with optimal input parameters in the yellow areas.
This approach of utilizing the Design Experts V11 program allowed for the identification
of key input parameter values that optimize the desired properties of the samples. By
considering the statistical analysis and utilizing the suggested samples, it becomes possible
to achieve the desired balance between increased modulus and elongation at break, while
simultaneously reducing the weight of the samples.
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Table 6. Constraints and criteria of input parameters and responses.

Parameters/ Lower Upper
Responses Name Goal Limit Limit Importance
P A: TP is in range 10 50 3
arameters B: Pattern is in range -2 2 3
Modulus maximize 8.049 17.519 3
R Elongation at Break maximize 1.805 17.027 3
esponses Weight minimize 7.81 9.72 3
Table 7. Predicted optimum results.
Elongation .
No. (E/IZ) Pattern Desirability 1\/{;/([111)1;;15 at Break We(eght
(mm)
1 30.916 —2.000 0.818 15.582 20.014 8.840
2 31.104 —2.000 0.817 15.610 20.131 8.848
3 33.000 —2.000 0.809 15.894 21.346 8.923
Overlay Plot
2 h Elongation at Break : 1.8052
I
1 ° °
g |
E 0—0 3e
A
-1 ® a
Modulus (MPa): 15.5816
Elongation at Break 20.0133
Tensile extension a 6.16508
Weight : 8.84032
X1 30.9162
X2 -2
-2 U | [
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Infill Percentage (%)
Figure 11. Overlay plot of pattern and IP for the PVA 3D printing process.

5. Conclusions

The optimization of the 3D printing process for composite fabrication can be achieved
by exploring alternative methods while considering the vast array of parameters and
materials available. In particular, the influence of temperature control and filament melting
temperature monitoring on mechanical properties, such as roughness, remains a topic of
active debate and warrants further investigation in future research endeavors. In this study,
the PVA filament was printed using FDM, in which two input parameters of the 3D printer,
infill percentage (10-50%), and patterns (Cubic, Gyroid, Tri-hexagonal triangle, Grid) were
varied, and modulus, elongation at break, and weight of samples were considered for
eleven samples as responses. In the following, some output can be addressed:

(1) The 3D printer could print the PVA filament properly by considering five differ-
ent patterns.
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(2) The maximum modulus for the sample is 17.519 MPa, and this phenomenon is due to
the cohesion of the melted material, which increases this parameter. So, by increasing
the IP, the modulus increased.

(3) The triangle pattern with 20% IP had a maximum elongation at break (17.026 mm). In
this kind of sitting, the sample had more elongation because of the geometry and the
IP percent.

(4) Based on the statistical modeling and RSM design, the overlay plot was designed to
show the optimum situations for the input parameters.
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