
Citation: Pattanaik, S.; Imoize, A.L.;

Li, C.-T.; Francis, S.A.J.; Lee, C.-C.;

Roy, D.S. Data-Driven Diffraction

Loss Estimation for Future Intelligent

Transportation Systems in 6G

Networks. Mathematics 2023, 11, 3004.

https://doi.org/10.3390/math11133004

Academic Editors: Jianhua He, Yipeng

Zhou, Wei Wang and Fan Wu

Received: 24 May 2023

Revised: 30 June 2023

Accepted: 3 July 2023

Published: 6 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Data-Driven Diffraction Loss Estimation for Future Intelligent
Transportation Systems in 6G Networks
Sambit Pattanaik 1, Agbotiname Lucky Imoize 2,3,* , Chun-Ta Li 4,* , Sharmila Anand John Francis 5,
Cheng-Chi Lee 6,7,* and Diptendu Sinha Roy 1

1 Department of Computer Science & Engineering, National Institute of Technology Meghalaya,
Meghalaya 793003, India; p21cs006@nitm.ac.in (S.P.); diptendu.sr@nitm.ac.in (D.S.R.)

2 Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos, Akoka,
Lagos 100213, Nigeria

3 Department of Electrical Engineering and Information Technology, Institute of Digital Communication,
Ruhr University, 44801 Bochum, Germany

4 Bachelor’s Program of Artificial Intelligence and Information Security, Graduate Institute of Applied Science
and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan

5 Scientific Research Unit (SRU), Rejal Almaa Campus, King Khalid University, Abha 61421, Saudi Arabia;
sfrancis@kku.edu.sa

6 Department of Library and Information Science, Research and Development Center for Physical Education,
Health, and Information Technology, Fu Jen Catholic University, New Taipei City 24205, Taiwan

7 Department of Computer Science and Information Engineering, Asia University, Taichung City 41354, Taiwan
* Correspondence: aimoize@unilag.edu.ng (A.L.I.); 157278@mail.fju.edu.tw (C.-T.L.);

cclee@mail.fju.edu.tw (C.-C.L.)

Abstract: The advancement of 6G networks is driven by the need for customer-centric communica-
tion and network control, particularly in applications such as intelligent transport systems. These
applications rely on outdoor communication in extremely high-frequency (EHF) bands, including mil-
limeter wave (mmWave) frequencies exceeding 30 GHz. However, EHF signals face challenges such
as higher attenuation, diffraction, and reflective losses caused by obstacles in outdoor environments.
To overcome these challenges, 6G networks must focus on system designs that enhance propagation
characteristics by predicting and mitigating diffraction, reflection, and scattering losses. Strategies
such as proper handovers, antenna orientation, and link adaptation techniques based on losses can
optimize the propagation environment. Among the network components, aerial networks, including
unmanned aerial vehicles (UAVs) and electric vertical take-off and landing aircraft (eVTOL), are
particularly susceptible to diffraction losses due to surrounding buildings in urban and suburban
areas. Traditional statistical models for estimating the height of tall objects like buildings or trees are
insufficient for accurately calculating diffraction losses due to the dynamic nature of user mobility,
resulting in increased latency unsuitable for ultra-low latency applications. To address these chal-
lenges, this paper proposes a deep learning framework that utilizes easily accessible Google Street
View imagery to estimate building heights and predict diffraction losses across various locations. The
framework enables real-time decision-making to improve the propagation environment based on
users’ locations. The proposed approach achieves high accuracy rates, with an accuracy of 39% for
relative error below 2%, 83% for relative error below 4%, and 96% for both relative errors below 7%
and 10%. Compared to traditional statistical methods, the proposed deep learning approach offers
significant advantages in height prediction accuracy, demonstrating its efficacy in supporting the
development of 6G networks. The ability to accurately estimate heights and map diffraction losses
before network deployment enables proactive optimization and ensures real-time decision-making,
enhancing the overall performance of 6G systems.

Keywords: millimeter wave; building height estimation; deep convolutional neural network; image
segmentation; image processing; camera projection framework

MSC: 78A45

Mathematics 2023, 11, 3004. https://doi.org/10.3390/math11133004 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11133004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8921-8353
https://orcid.org/0000-0003-0637-5666
https://orcid.org/0000-0002-8918-1703
https://orcid.org/0000-0001-9731-2534
https://doi.org/10.3390/math11133004
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11133004?type=check_update&version=1


Mathematics 2023, 11, 3004 2 of 20

1. Introduction

We are living in the technological era of 5G and are on the way to 6G. Very few tech-
nology giants have already implemented 5G on a broad global scale. 5G provides a highly
scalable and flexible network technology for connecting everything from everywhere to
everyone [1]. One such future 6G application may be a cyber-physical intelligent transporta-
tion system (ITS). Such artificial intelligence-enabled vehicle-to-vehicle communications
and vehicle-to-roadside communications use extremely high-frequency bands (EHF) such
as mmWave [2]. The vehicles are equipped with advanced sensing technologies such as
the Internet of Things (IoT), consumer electronics, intelligent software, and so forth [3–6].
These heterogeneous technologies have different requirements such as low latency, high
bandwidth, and higher capacity. The EHF comes with higher speeds but with several
challenges. For example, signals over EHF can easily get absorbed by huge buildings, trees,
clouds, etc. [7]. The signals over EHF suffer significant losses due to diffraction, reflection,
and so on. Hence, one of the objectives of future 6G networks is to use integrated satellite,
aerial, and terrestrial networks [8] to address the limitations of EHF and ITS [9]. In this
research, we focus on 6G aerial network scenarios where unmanned aerial vehicles (UAV)
and electric vertical take-off and landing aircraft (eVTOL) can be used to provide line of
sight (LoS) to signals originating from consumer electronic devices [10]. UAV and eVTOL
are termed urban aerial devices (UAD) in this paper. UADs fly around 120 m and also use
EHF. However, UADs can face diffraction losses due to flying over buildings. The aware-
ness of network surroundings for EHF can help operators decide the communication path
without obstacles between a transceiver and receiver. Hence, in this research, we focus on
understanding diffraction losses in outdoor environments to improve the communication
path for UADs. The diffraction loss mostly happens when the UAD flies over a building
and close to the rooftops. According to Fresnel diffraction theory, diffraction is dependent
on the height of the top of the obstacle above the straight line joining two ends of paths
and the distance between the transceiver and receiver from the top of the obstacles [11].
Hence, the height of buildings and tall obstacles is the key parameter to estimate diffraction
losses. Therefore, we focus on estimating the height of the building in this paper to improve
communication in case of higher diffraction losses.

Previously, a few technologies have been implemented for determining buildings’
height, which have been focused on high-spectral satellite optical image data [12], Light
Detection and Ranging (LiDAR) [13] data, and synthetic aperture radar (SAR) [14,15] image
data. However, these optical approaches are very costly and difficult to implement in a
wide range of scenarios, e.g., obtaining the height of every building in the world. Such
approaches can be costly to keep updated for UADs. Lately, street-view imagery has
been used for the estimation of the height of buildings [16–18], as the procedure is easy
to implement. The process incorporates a good image-capturing device to capture only
panorama or street-view imagery. Technology-based companies like Google and Microsoft
provide rich open-source mapping for this two-dimensional imagery, such as Google
Street View [19], Streetside [20] by Microsoft, and OpenStreetMap [21] (a collaborative map
project). These wide platforms provide enormous opportunities because of their intense
data collection for further economic and spatial enhancement. However, such applications
cannot provide the correct estimation of building heights, which can be accessed by UADs
before deciding on a communication path in a real-time and automatic way.

1.1. Contributions

The following contributions are made in this paper. Our system:

• Proposes an algorithm termed Deep Learning and Image Processing-based Height
Estimator (DLIPHE) to estimate a building’s height using publicly available, static,
non-interactive Google Street View images;

• Uses semantic segmentation [22] to identify a building and obtain its height by detect-
ing the contour of the image using advanced image processing techniques on images
from Street View;



Mathematics 2023, 11, 3004 3 of 20

• Accurately predicts real-time height with minimal complexity prior to data transmis-
sion, enabling efficient communication path planning;

• Creates an improved end-to-end real-time system that can use online 2D image data
and footprints to determine the heights of all buildings in the path of UADs.

1.2. Organization

The rest of the paper is arranged as follows. The related works in the literature are pre-
sented in Section 2. Section 3 explains the structure of DLIPHE and presents the detection
of buildings and extraction of their dimensions in detail. It also explains the extraction of
two-dimensional building footprint data and the application of the pinhole camera projec-
tion framework for the final estimation of the building’s height. The experimental results
are reported in Section 4. The present research paper’s final remarks and recommendations
for further study are presented in Section 5.

2. Related Work

In this section, we present related works to estimate diffraction losses and building
heights. We also present the research gaps.

2.1. Diffraction Loss Estimation Methods

ITU [11] presents detailed mathematical models to estimate the diffraction for different
types of surfaces. From their proposed model, we can conclude the diffraction loss depends
on the height of the obstacles and the distance between two communication ends. Several
studies estimate diffraction loss for different scenarios using mathematical models [23–25].
For instance, the authors of [23] proposed mathematical models to determine the diffrac-
tion loss in a rain forest environment from the ground. Similarly, Edgar et al. proposed
a simple statistical model to estimate diffraction losses due to thin isolated trees in an
air-to-ground communication (satellite-to-mobile and helicopter-to-mobile) [26]. The sta-
tistical and mathematical models need manual inputs such as the height of buildings and
distances between nodes to understand the attenuation. Hence, statistical models cannot
determine the diffraction losses in real-time and provide automatic information to UADs
for adjusting their communication path. Hence, statistical methods can be applicable to
UADs. Additionally, we need to study building height estimation methods that can be
used by UADs directly to optimize the propagation path. We present the related works for
building height estimation in the next subsections.

2.2. Method Based on High-Resolution Optical Imagery

Methods based on VHR synthetic aperture radar (SAR) imagery [14,15,27–29] mainly
use elevation, layover, and shadow to analyze the respective building’s height. Studies
based on high-resolution satellite images [27] estimate buildings’ heights using shadows
cast and acquisition geometry. Methods based on aerial LiDAR [13] data construct polyhe-
dral building roof-tops according to structure or shape. In [30], a complete, fully trainable
convolutional–deconvolutional DNN framework is proposed that allows mapping from
single satellite imagery to a digital surface model for urban area analysis. A multi-sensor
combination of optical imagery data and LiDAR data is fed as training data for the pipeline.
To overcome geo-referencing/projection errors and sensor calibration inaccuracies, a cal-
ibrating process is proposed, which improves LiDAR and optical data alignment. The
model is validated on a high-resolution dataset of central Dublin. With the help of these
data, reconstruction of a 3D model from single-view aerial imagery is performed. These
methods come with constraints of scalability, as they are highly expensive to obtain and
require huge computation resources for UADs. These methods also depend on huge data
collection and require multiple lines of communication with servers where data is analyzed.
Hence, real-time planning by 6G applications cannot be feasible in extreme situations in
the future. Therefore, we should focus on real-time solutions such as image processing.
Section 3.1 discusses several methods to estimate height based on street scene imagery.



Mathematics 2023, 11, 3004 4 of 20

2.3. Method Based on Street Scene Imagery

Recently, building heights have also been estimated using deep learning approaches on
satellite images, and the results of these learning approaches highly depend on the quality
of the training data. In this regard, street-view data are high-quality with a deeper level
of detail, are efficient, easily available, and have a low cost. For instance, methods based
on street-view are easier to obtain and highly scalable. Street scenes are easily available
from Microsoft Streetside [20] and from Google Street View API [19], which makes building
height estimation easier to scale. Hence, street-scene data are used to estimate height. Zhao
et al. [18] demonstrated a method of building height estimation using building corner
and roofline detection using street-view imagery. First, building rooflines and corners are
extracted from Google Street View API, based on their parameters and 3D maps footprint.
Afterward, building corners are used instead of corner lines, which yields better results in
camera location calibration. Then, a deep neural network-based method is applied to filter
and segregate the roofline and the building’s corner. Finally, the height of the building is
calculated via the pinhole camera model, based on the building’s roofline and valid corners
from the DNN model. Such deep data used in this method are not available everywhere.

Yuan et al. [31] presented a methodology for height estimation of the buildings that
employs footprint and street-view imagery of the building from two-dimensional maps.
Initially, mapping between the building’s footprint and the street-view imagery of the
building is fulfilled, with the help of the projection metadata of the camera. Afterward,
via the camera projection framework, the camera location is calibrated. This process also
involves the extraction of the corner lines of the building from street-view imagery, as
the location of the camera can be inaccurate due to errors in Global Positioning System
(GPS). The process of mapping is again applied with the updated (after calibration) camera
location and roofline of the building detected with edge detection methods. Then, the
height of the building is estimated with the help of certain parameters, calibrated camera
location, the footprint of the building in the two-dimensional map, and the corresponding
building’s roofline height in the street image.

Mou et al. [32], estimated building height using a single monocular remote sensing im-
agery. A convolutional–deconvolutional network architecture, encompassed with residual
learning, is proposed, which frames the ambiguous modeling between the building height
map and monocular remote sensing image. The network is a composition of two, i.e., a con-
volutional and a deconvolutional, sub-networks. The first sub-network, the convolutional
network, is responsible for feature extraction from the input remote sensing imagery. It
transforms the extracted input image into a high-level, complex, multidimensional represen-
tation. On the other hand, a height map is produced with the deconvolutional sub-network.
A skip connection method is introduced such as residual networks for preventing the loss
of fine details of the estimated height maps, as the methodology can shuttle the visual
information having low resolution.

Díaz et al. [16] proposed a novel methodology for estimation of the height of the
building using street-scene imagery from Google. The proposed method estimated average
building heights in an image. However, they used a machine learning approach for edge
detection, which makes it a heavyweight algorithm for implementation at UADs.

In this research, we propose DLIPHE for building height estimation using semantic
segmentation and rooftop detection, which requires lower data input compared to the
above approaches. Moreover, DLIPHE eliminates the need for using machine learning
for edge detection purposes, which reduces the complexity of the proposed approach
and makes it lightweight for UADs. The DLIPHE model performs a series of advanced
image processing operations on the semantically segmented image for extracting building
contours. These methods include extraction of the biggest connected component, contour
extraction, and approximation. Finally, the building’s height is estimated using a well-
known 3D camera projection framework. In the following sections, the proposed algorithm
is discussed in further detail, and some of the obtained results are presented.



Mathematics 2023, 11, 3004 5 of 20

3. Proposed Methodology

This section describes the overall technique of the proposed DLIPHE and gives the
system model and the diffraction model.

3.1. System Model

In this research, we take into consideration potential applications for ITS that will
be furnished with a variety of communication devices focused on the consumer and will
have a wide range of demands. These communication devices use mmWave for V2V
or V2R communications in outside environments. We also note that mmWave can be
attenuated and suffer signal losses due to dynamic obstacles in an outside environment.
Hence, in our proposed method, we deploy UADs that are flying over a building, as well as
vehicles and equipped consumer devices that communicate with UADs in case of non-LoS
(NLoS), as shown in Figure 1. The UADs transmit data to dedicated devices. UADs have
multiple input and output antennas for transmission, whereas, in general, we think of
consumer electronics as having only a single receiving antenna. The UADs are deployed
in urban environments where there are several buildings and fly over 120 m and more.
UADs transmit data on the 28 GHz spectrum for a faster data rate. We also assume that
UADs start from the initial point going to a fixed destination point and choose the shortest
trajectory path. In the environment we have assumed for the network, our attention is
focused on a UAD serving as a transmitter and a receiver (RX) for the purpose of analyzing
the diffraction loss that results from buildings serving as an impediment between them.
We find the rooftops of buildings to be flat, which allows for the possibility of a single
knife-edge diffraction as depicted in Figure 2. In such a case, we use the Fresnel diffraction
model from [11] to express signal losses, as follows:

v = h

√
2
λ

(
1
d1

+
1
d2

)
(1)

J(v) = −20 log10

(√
1− C(v)− S(v)2 + [C(v)− S(v)2]

2

)
(2)

Figure 1. UAD-assisted vehicular communication over next-generation wireless network.



Mathematics 2023, 11, 3004 6 of 20

Figure 2. Diffraction model and relationship to height of building.

C(v) and S(v) are the real and imaginary parts of complex Fresnel integral F(v),
respectively. h is the height distance from the top of the building to the line joining the
UAD and RX device. d1 and d2 are the distance between the top of the building and RX
device, and the top of the building and UAD, respectively. λ is the wavelength. The ray
diagram of this model is presented in Figure 2, where we can see that h, d1, and d2 depend
on the height of the building (bh). The location of RX is available to UADs. Now, our next
approach is to estimate the building heights around UADs and RX devices. Therefore, in
the following section, we introduce DLIPHE as a method for Unmanned Aerial Devices
(UADs) to autonomously estimate the height of buildings.

3.2. DLIPHE

Figure 3 demonstrates the process of the DLIPHE model. Initially, with the help
of Google Street View API, images of the building of interest are downloaded by UADs
before reaching the next destination point for proactive communication path planning.
The imagery is purely static and non-interactive. Along with the API request of imagery,
metadata of the same imagery can be called. Metadata contain the location of the camera,
which is used in the pinhole camera projection framework. After the image of interest
is obtained, semantic segmentation is applied to the image to identify a building using
transfer learning. After the segmentation is completed, with the help of advanced image
processing techniques, the buildings’ heights are extracted. Afterward, building footprint
data are extracted by calling OSM API using a Hypertext Transfer Protocol (HTTP) request.
Then, after obtaining all the necessary data, computations are performed to obtain the
estimated height. As illustrated in Figure 3, DLIPHE contains several steps. With the
assistance of a deep learning mechanism for image processing, Algorithm 1 provides
detailed instructions for estimating height.

In the following subsection, we provide a more in-depth explanation of the stages that
were just discussed.

3.3. Google Street View API Call Using REST

Google provides a set of application programming interfaces (APIs) for various appli-
cations through representational state transfer (REST). We are using Google Street View API,
which provides a non-interactive thumbnail of a street view or panorama via conventional



Mathematics 2023, 11, 3004 7 of 20

HTTP API request. To obtain the required building’s image in a specific manner, we have
to provide a few parameters (e.g., location, size, heading, and pitch) along with the API
request. Figure 4, is an example of Google Street-View API, using HTTP request with the
Python client. Both Figure 4a,b are two instances of the same building. One is taken from a
closer distance with high elevation by increasing the pitch angle, whereas the other is taken
from a farther distance, along the angle of the road, to capture the building’s image. In
urban areas, the building’s imagery has to be captured from a closer distance because of
the density of the buildings. In that case, the building might look a bit slanted, owing to
the high elevation.

Figure 3. Steps for estimating building heights by UADs.

Algorithm 1 Deep Learning Image & Processing Based Height Estimator

Input: Google Street View image
Output: The building’s image along with its estimated height

1: Request for building image from Google Street View API using HTTP request
2: Apply image segmentation with DeepLabV3+ model
3: Use the image thresholding method to extract the area of interest
4: Contour detection for extracting the topmost pixel of the building in the image
5: Building footprint extraction
6: Building height estimation using the pinhole camera projection framework
7: return Building image with an estimated height

(a) Near view (b) Far view
Figure 4. Image obtained from Google Street View.



Mathematics 2023, 11, 3004 8 of 20

The Street View API also allows for downloading of a metadata file containing the
location (latitude/longitude) of the capturing camera. This camera location is further used
to obtain the distance between the building and the camera.

3.4. Image Segmentation Using the DeepLabv3+ Model

To evaluate the building’s height, the measurement of the building in the imagery
needs to be extracted. Therefore, extracting the building is the first step toward obtaining
the measurements. Here, we used semantic segmentation based on the DeepLabv3+
model [33].

Image segmentation is a digital image processing technique commonly used for
partitioning an image into multiple segments or regions. Typically, it is used to locate
the object boundaries in images. This technique is widely used in image processing, as it
simplifies further analysis and makes it possible to extract certain information. Grouping
pixels together is done on the basis of specific characteristics, such as intensity, color, or
connectivity between pixels.

Semantic segmentation is the process of agglomerating segments of an image together
that belong to a quite similar entity group. It is a pixel-level prediction, where each pixel in
the imager is categorized according to a group or class. The segmentation process links
each pixel to a specific class label. It is the same as the image classification at a pixel level. It
is different from object detection, as it does not predict the bounding box around the objects.
It does not classify between different instances of the same object. Here, for instance, in our
application, we classify the pixels in the image in different class labels, such as building,
road, sidewalk, sky, vegetation, etc. Common applications of semantic segmentation
include self-driving vehicles, human–computer interaction, photo editing, etc.

Nowadays, deep convolutional neural networks (DCNNs) have accomplished re-
markable results in numerous computer vision applications. Deep CNNs are typical
feed-forward, fully-connected neural networks most often applied to analyzing imagery.
Usually, DCNNs have four main operations. CNN contains the convolution operation, an
activation function like ReLU or TanH, a pooling layer (max or global), fully connected
layers, and an output function. The imagery is processed through a series of like opera-
tions and produces a feature vector carrying the probabilities for each class label. Many
deep learning architectures have been proposed for semantic segmentation to date. Here,
however, we are using Google’s DeepLab model (DeepLabv3+, specifically).

The DeepLab model is a state-of-the-art deep learning model for image semantic
segmentation. The DeepLab model has been implemented with a few backbone archi-
tectures, such as MobileNet [34], Xception [35], ResNet [36], etc. In this paper, we use
Xception (Xception-71/XC-71 specifically) architecture as the backbone of the DeepLabv3+
model. The Xception backbone is more precise, as it has 25 times more parameters than
MobileNetv2. Xception-71 is an improved version of the original Xception model. The
DeepLabv3+ model is strengthened by joining a decider unit module to improve the
segmentation results, especially along the entity borderline.

In this paper, the DeepLabv3+ model is used with the help of transfer learning. The
model was trained on the Cityscapes dataset [37] of 50 different cities. The Cityscapes
dataset mainly concerns the semantic understanding of the city’s street views. The dataset
has almost 30 class labels, such as road vegetation, buildings, sidewalks, etc.

The image was downloaded from Google Street View API with the help of an HTTP
request and fed to the DCNN for segmentation. The output of the DCNN is a semantically
segmented image with the pixels labeled as multiple classes (e.g., building, road, vegetation,
etc). Figure 5a,b are the semantically segmented output of Figure 4.



Mathematics 2023, 11, 3004 9 of 20

(a) Near view (b) Far view
Figure 5. Semantic segmentation image.

3.5. Image Thresholding

In Figure 5, which is the output of the semantic segmentation, we can clearly see
that the building has been detected in purple. There might be some sub-regions in the
image, due to the presence of unwanted buildings in the background or imperfection in
the DCNN.

Thereafter, thresholding is applied to the image in Figure 5 to extract the pixels that
represent the building. Image thresholding is a method of segmenting or classifying pixel
values in the image using a digital image processing technique. The simplest method
for image thresholding is to assign a pixel as black if the intensity Ii,j is less than some
predetermined constant T (i.e., Ii,j < T). We can write this simply as:

i f f (x, y) > T then f (x, y) = 0 else f (x, y) = 255 (3)

In general, the threshold value T in automatic thresholding is automatically selected
by the system depending on the intensity of the object, the size of an object, the number
of objects, and a fraction of an image occupied by the objects. However, automatic thresh-
olding does not produce the expected results. For better results, we have used Otsu’s
thresholding method. It automatically finds an optimal threshold value based on the per-
ceived distribution of pixels. It chooses the threshold value by minimizing the within-class
variance (σ2

ω(T)) of the two groups of pixels separated by the thresholding operator. The
implementation of Otsu’s method [38] on the bi-modal image is given in Equation (4).

Consider that we have an image with L gray levels and normalized histograms, where
P(i) depicts the normalized frequency of i. It finds the value of T, which minimizes the gap
within class variances, which lies in between the two peaks of variances of both classes.
The weighted within-class variance will be given by:

σ2
ω(T) = qb(T)σ2

a (T) + q0(T)σ2
b (T) (4)

where

qb(T) =
T

∑
i=1

P(i) , qo(T) =
L

∑
i=T+1

P(i) (5)

The mean gray level value of the background and the object pixels will be:

µb(T) =
T

∑
i=1

iP(i)
qb(T)

, µ0(T) =
L

∑
i=T+1

iP(i)
qo(T)

(6)



Mathematics 2023, 11, 3004 10 of 20

The variance of the background and the object pixels will be:

σ2
b (T) =

T

∑
i=1

[i− µb(T)]
2 P(i)

qb(T)
, σ2

o (T) =
L

∑
i=T+1

[i− µo(T)]
2 P(i)

qo(T)
(7)

The following relations can be easily derived from the above:

µT =
L

∑
i=1

iP(i) (8)

µT = qbµb + qoµo , qb + qo = 1 (9)

The above operation can be implemented using Python. The segmented image is
passed to the threshold function as an input. The threshold function uses the global
threshold in addition to Otsu’s threshold. The threshold function results in a binary image
with white (building pixels) and black (remaining background) pixels. This binary image
still might contain the imperfection mentioned above. This imperfection can be removed
by eliminating irrelevant sub-regions. The thresholding function can be manipulated with
the help of the OpenCV library and Python, which might result in the removal of small
sub-regions. Figure 6a,b are the output of image thresholding performed on segmented
image Figure 5.

(a) Near view (b) Far view
Figure 6. Image thresholding.

3.6. Contour Detection

After image thresholding, as the required building (in white pixels) is clearly visible,
the contours of the foreground of the building image need to be extracted. A closed curve
made by combining every continuous point containing the same color pixels or intensity is
called a contour. Using contours, we can localize the objects easily.

For extracting the contour of an object in an image, the very first step could be image
thresholding or edge detection, as they provide better accuracy compared to an RGB image.
Image thresholding converts the RGB image into a binary image using the OpenCV library.
As we already performed image thresholding in the above step, the contour approximation
method is applied to the binary image.

The ultimate goal of contour detection is to extract the rooftop/topmost point or
pixel of the building roofline in the image. An approximated contour is generated which
contains all the quad corners (top, bottom, leftmost, rightmost). Figure 7a,b illustrate the
approximated contours of the building in the image where blue, cyan, red, and green point
out the top, bottom, leftmost and rightmost border, respectively.



Mathematics 2023, 11, 3004 11 of 20

(a) Near view (b) Far view
Figure 7. Building image with contours.

3.7. Building Footprint Extraction

Afterward, building footprint data need to be extracted for the estimation of the height
of the building. The building footprint contains geo-location (latitude/longitude), structure,
etc. The building’s geo-location is required to identify the distance between the building
and the camera. This is needed in the pinhole camera projection framework to identify the
actual height. To extract information about building locations, OpenStreetMap (OSM), an
open-source application, is used. OSM is a collaborative, free, editable map of the earth. It
provides geographical data on the Earth. It does not have any legal or technical restrictions
on its use. It has many use cases, such as geo-coding of place names and addresses, the
generation of maps, and route planning. OSM is also used to obtain the building’s footprint,
which includes various spatial data for the building of interest.

Nominatim is a tool used to generate synthetic addresses of OSM points (reverse
geo-coding) and to search ODM (OpenDroneMap) data by name and address (geo-coding).
Reverse geo-coding is the method that converts a geographical location described as ge-
ographic coordinates (latitude/longitude) to human-readable addresses or place names.
Geo-coding or address geo-coding is the method of converting a text-based representation
of a location as the name or address of the place to the geographical coordinates (lati-
tude/longitude). Using Python as a client, we can access the Nominatim API via HTTP
request. We can use any technique, whether geo-coding or reverse geo-coding. Here, we are
using geo-coding, as we are passing the address of the building. Nominatim returns an ob-
ject that contains latitude, longitude, place ID, OSM type (node, ways, or relation), OSM ID,
bounding box, etc. OSM ID can be used to obtain the building footprint using OSMPython-
Tools API via a Python client. Nodes are the points on the map (in latitude/longitude)
shown in Figure 8a. A way is an ordered list of nodes, which could correspond to a street
or the outline of a house. A relation is also an ordered list containing either nodes, ways,
or even other relations. The latitude and longitude returned by Nominatim are for the
center of the building. A list of geographical coordinates is also returned as a bounding
box containing the coordinates of each node. By joining those nodes, a polygon of nodes
can be built as in Figure 8b. After the nodes are obtained, we can calculate the distance
between the camera (obtained from metadata of Google Street View) and the nearest node
of the building.

3.8. Pinhole Camera Projection Framework

The camera projection framework explains the mathematical correlation between the
geographical coordinate of a point in 3D object space and its projection onto the 2D plane
imagery with the help of an ideal pinhole camera, where no single lens is used to focus
light. The center of the camera is the camera aperture, described as a point or pinhole.



Mathematics 2023, 11, 3004 12 of 20

(a) Building footprint (BF) (b) Node BF
Figure 8. Building footprint from OpenStreetMap.

The simplest construction of the pinhole camera is shown in Figure 9. In this con-
struction, the image plane is known as the retinal or focal plane. The pinhole O or the
center of the camera is the camera aperture. The line passing through the camera center
and perpendicular to the projected image plane is the principal axis.

Figure 9. Camera projection 3D view.

The distance between the pinhole O and the image plane is the focal length f .
The coordinate system is taken such that the origin O is in the center of the pinhole.
Here, [X Y Z] is the defined coordinate system centered at pinhole O. The Z-axis is per-
pendicular to the image. Let Q = [X Y Z]T be a point in 3D space clearly visible from
the pinhole camera. After the projection onto the image plane, resulting point Q will be
Q′ = [x′ y′], and the plane will be Z = − f , which is the image plane or the focal plane.

In Figure 10a, we have similar triangles, both having projection line OQ as their
hypotenuses. Therefore, using the rule of similar triangles, we can derive that:

− x′

f
=

X
Z

or x′ = − f
X
Z

(10)

Similarly, for the y′ coordinate in the camera coordinate framework,

− y′

f
=

Y
Z

or y′ = − f
Y
Z

(11)



Mathematics 2023, 11, 3004 13 of 20

Figure 10. (a) The physical model of the pinhole camera. (b) The virtual model where the projection
plane is put in front of the pinhole.

The above equation can be summarized as(
x′

y′

)
= − f

Z

(
X
Y

)
(12)

The negative sign indicates that the image projected on the left of the pinhole camera
is inverted. To eliminate the negative sign, we can mirror the image by using the virtual
pinhole camera in which the plane is Z = f , i.e., in the same direction of the pinhole camera.
Figure 10b illustrates the virtual model where the projection plane is put in front of the
pinhole. Therefore, the projected point Q′ of the building on the 2D image will be

Q′ =
(

x′, y′
)T

=
(

f X
Z , f Y

Z
)T (13)

Thus, from a geometric point of view, regarding (12), f is the focal length of the
pinhole, and Z is the distance between the pinhole and the building or object. X and Y are
the coordinates taken as Q on the building. The central projection mapping of 3D space to
2D coordinates is (

X, Y, Z
)T −→

(
f X

Z , f Y
Z
)T (14)

We use Figure 11 to show the notion behind the pinhole camera projection framework
and the related symbols. In the given figure, we have considered two coordinate systems,
i.e., the image plane and camera coordinate system.

The camera coordinate system can be represented as {o, x, y, z}, where the o origin
represents the geo-location of the camera. The image-capturing device is set parallel to the
ground level. The plane xy is set perpendicular to the ground and parallel to the ground
level, whereas the z-axis is perpendicular to the building’s axis. The image plane coordinate
system is represented by {o′, x′, y′}, where o′ is the center of the image and x′y′ are parallel
to the xy plane (Table 1).

Table 1. Symbol associated with the pinhole framework.

Representation Description

f the camera’s focal length
hr height above images’ center line
h f height below images’ center line
cb building’s corner point
d̂ the distance from the camera o to the corner cb of the building



Mathematics 2023, 11, 3004 14 of 20

Figure 11. Pinhole camera projection framework.

Figure 11 contains a building B that has been projected onto the image. For building
B, br, bc, and b f denote the roofline, the line on the building project on the x′-axis of the
2D image plane x′y′, and the floor, respectively. The summation of the distance from br
to bc, as well as the distance from bc to b f , is the probable height h of the building. The
symbolic representation for both the distances can be taken as h′r and h′f . In the image plane
x′y′, the projected length of h′r can be written as hr. The height of h′f is equivalent to the
height of the image-capturing car (as the camera device is mounted on the car) or human
being by whom the street view is recorded, which is a constant height (here, taken as 2.5 m).
Therefore, with the aforesaid information, we can derive the relation as:

h = h′r + h′f (15)

Let us consider that d̂ is the Euclidean distance from the image capturing device center
o to the building’s nearer node cb and that f represents the focal length of the image captur-
ing device (i.e., the euclidean distance from camera center o and the image plane center o′).
The focal length f can be extracted from the image as its metadata. Therefore, the height
of the building can be computed, based on the pinhole camera projection framework,
as follows:

h = hr∗
d̂
f
+ h′f (16)

4. Experiment Methodology and Results

In this section, the evaluation of the presented system for building height estimation
is given.

4.1. Dataset

In the experiment, we obtained the image dataset from Google Street View API and
the building footprint (geometrical coordinates) from OpenStreetMap, respectively. For the
experiments on the estimation of building height, we considered a set of buildings over 40
to 600 m. The image (640 × 640 pixels) samples have been collected from Google Street
View from different cities in North America.

4.1.1. Low-Rise Buildings

The low-rise buildings dataset contains a set of small buildings with camera orientation
along the street. The focal length is derived from image metadata, and the field of view is
taken as 90◦. The actual height of the buildings has been obtained from OpenStreetMap [21]



Mathematics 2023, 11, 3004 15 of 20

or Emporis (a database for building information worldwide) [39]. The camera location is
given by metadata obtained from Google Street View API.

4.1.2. High-Rise Buildings

The high-rise building dataset contains a set of buildings taller than 200 m up to
600 m. The camera pitch is set up with an upward-looking view of 25◦ to capture the
view of the building’s roof. The horizontal field of view of the image is taken as 90◦. The
building’s actual height comes from Emporis [39] or OpenStreetMap [21]. In the dataset,
we considered a different set of high-rise buildings. It contains overlapped, slightly slanted,
vegetation-covered, and idle-conditioned buildings.

4.2. Results of DLIPHE

The performance evaluation of the DLIPHE methodology on the low-rise and the
high-rise buildings is given in this subsection. We performed these experiments on the
dataset collected from Google Street View API.

4.2.1. Building Height Estimation on Low-Rise Buildings

DLIPHE was utilized to estimate the height of low-rise buildings, employing a sample
set with varying heights. The calculated relative error is shown in Figure 12a. Figure 12a
illustrates that the DLIPHE method accurately classified 61% of the low-rise buildings with
a relative error in height of 2%. Among the remaining, 31% of the buildings had an error of
3%, and for the rest, 9% a relative error of greater than 5% was observed.

(a) Low-rise buildings (b) High-rise buildings
Figure 12. Error graph of DLIPHE on buildings.

4.2.2. Building Height Estimation on High-Rise Buildings

In high-rise buildings, the image is captured from a far distance to encapsulate the
complete building’s rooftop. The camera pitch angle is set upward facing, as the dataset
contains buildings higher than 500 m. In urban areas, it is difficult to capture an ideal image
for height estimation. Sometimes, in the case of high-rise buildings, we get slightly slanted
buildings. For high-rise façades, an absolute error can be high, as the estimation of height
is difficult.

As calculated for the low-rise buildings, the relative error is calculated for the skyscraper
façades displayed in Figure 12b. In the graph, 9%, 5%, and 5% of buildings in the high-rise
set have greater than 5%, 8%, and 10% relative error, respectively.

Table 2 shows the descriptive analysis of the experimentation performed on low-rise
and high-rise buildings with their absolute estimated error and relative errors.



Mathematics 2023, 11, 3004 16 of 20

Table 2. Height estimation for high-rise buildings.

Absolute Error Percentage Relative Error Percentage

>2 m 69.5% >2% 60.8%
>5 m 17.4% >5% 8.7%
>10 m 4.35% >10% 4.35%

In high-rise buildings, the error may seem large due to the camera pitch movement
for capturing the rooftop. However, we would like to highlight that the relative error is
still admissible; e.g., since the high-rise buildings are taller than 500 m, 15 m of error in
estimation is almost 3% of relative error, which is not that significant in reality.

4.2.3. Height Estimation Analysis of a Building with Variable Distances

For this experiment, we collected samples of random buildings with a height of
148 m from cities in North America using Street View. The samples were taken from
different distant locations in the same direction by varying the camera–building distance.
In Figure 13a, on the horizontal axis (x-axis), incremental distances from the targeted
building and the capturing camera are considered in meters, whereas on the y-axis, the
relative error is plotted. The graphs show that the relative error in the estimated height
from varying distances is between 0.3 to 3.15%. The average relative error is equivalent to
2.0%, which is barely notable for a high-rise building of 148 m.

4.2.4. Height Estimation Analysis of a Building with Variable Directions

Sometimes, the direction from which we are capturing the building image does not
provide a clear view of the targeted building because of the density of the buildings in
urban areas or due to vegetation. In this situation, we would have to capture the building
image from different directions that are available. In the experiment, we collected a sample
of buildings from various directions, maintaining almost the same distance in each case. In
Figure 13b, on the horizontal axis (x-axis), distance from the target building is taken from
all possible directions in meters, whereas on the y-axis, the relative error is plotted. The
graphs show that the relative error in estimated height by varying directions is between 0.3
to 2.25%, which is hardly notable for a 148 m high building.

(a) (b)
Figure 13. Relative error analysis of a low-rise building and a high-rise building with DLIPHE.
(a) Multi-angled equidistant image capturing for building height estimation (low-rise). (b) Multi-
angled equidistant image capturing for building height estimation (high-rise).

4.2.5. Accuracy

The estimation of the accuracy for this kind of data type would be different, as it is not
a classification problem. Therefore, for calculating the accuracy of our methodology, some



Mathematics 2023, 11, 3004 17 of 20

measures have been considered. In this computation, the buildings that fall under <2%
relative error are categorized as accurate, while the rest are errors, giving us an accuracy of
39%. We have calculated the same for <4%, <7%, and <10% of relative error, which gave us
the accuracies of 83%, 96%, and 96%, respectively.

Here, for an average case, we can consider the range of <4 to <10% relative error;
however, their respective accuracy lies between 83 to 96%.

4.2.6. Efficiency Evaluation Using Normalized Error

One more measure considered for the evaluation of the results obtained from DLIPHE
is the normalized error (En). Normalized error is a statistical evaluation basically used to
compare proficiency and performance measures of the testing results. It determines the
confirmation of the testing. The normalized error can be evaluated as:

En =
xob − xre f√
U2

ob + U2
re f

(17)

where (Table 3)
Ure f = K ∗Uc or Ure f = 1.96 ∗Uc (18)

Table 3. Symbol table.

Representation Description

xob observed or calculated value
xre f reference or actual value
Uob expanded uncertainty of observed value
Ure f expanded uncertainty of reference value
Uc combined uncertainty (2% considered)
K coverage factor (95%)

Using (17), the normalized error is obtained. If the value results between −1 and +1,
then the result is acceptable; otherwise the measurement needs to be reconsidered.

Figure 14b represents the accuracy graph from the sample dataset. We randomly
considered a set of estimated results and plotted the normalized error graph in Figure 14b.
In the dataset, the majority of the building samples are estimated correctly, as they are in
the range from −1 to +1. A few of the samples in the set exceed the ranges, which shows
that some of the samples in the dataset have errors higher than the range and that, therefore,
the estimated result cannot be considered.

(a) Accuracy graph. (b) Normalized error.
Figure 14. Accuracy and normalized error graphs.



Mathematics 2023, 11, 3004 18 of 20

4.3. Analysis of Errors

In this section, a challenging scenario for the DLIPHE methodology is analyzed. Some
other challenging cases will be investigated in future work.

In rural areas, buildings are often surrounded by vegetation and other objects, which
makes height estimation more challenging, as it can block the entire rooftop. In this case,
while performing segmentation, the algorithm will struggle to detect and classify the edges
of the facade. Take Figure 15a as an example: the trees on the right-hand side are partially
blocking the facade structure, which makes building identification difficult.

(a) (b) (c)

Figure 15. Difficult situations: (a) building view obscured by vegetation, (b) overlapping buildings,
(c) slanted buildings.

In dense urban areas, the building view may overlap one another, and it might be
difficult to detect the boundaries in a 2D image. Take Figure 15b, for example, as high-rise
building boundaries are blocked by the low-rise building. Although we can try to avoid
taking overlapping facade images by capturing the image from different headings or angles,
sometimes it is not easy to acquire the image, especially in urban areas.

Figure 15c is an example of a slanted high-rise building. For this type of sample case,
it is difficult to estimate the approximate height. This situation can also be avoided by
manipulating the pitch and distance of the camera in Google Street View API. By applying
the aforementioned methods, an absolute error can be slightly reduced.

5. Conclusions

Recently, there has been increasing interest in the area of EHF for future 6G networks
because of unparalleled seamless and fast data delivery. However, owing to its extremely
short wavelength, it suffers higher diffraction and reflection losses. UAVs and eVTOL are
promising technologies to improve the propagation environment of mmWave in urban
areas. In this paper, we focus on the study of diffraction losses experienced by UAVs and
eVTOL, which hover over buildings. Although estimating obstacle heights in a cityscape
is vital for investigating the effect on diffraction losses, most existing stochastically de-
signed models have been studied for different scenarios and are therefore not suited for
future UAM scenarios due to continuous changes in the environment by UADs. In this
paper, we have proposed a building height estimation technique called DLIPHE, which
uses deep learning and image processing techniques via the Street View API to capture
the building’s image and which then applies deep convolutional neural network-based
semantic segmentation to label the building’s instance. Furthermore, image processing
techniques are applied for the building’s contour extraction. Using the building’s foot-
print from OpenStreetMap and the camera projection framework, the building’s height
is estimated. The developed technique has been tested on a set of low-rise and high-rise
buildings over 50 to 600 m, respectively. Experimental results show that the proposed
methodology achieves a decent accuracy on low-rise and high-rise buildings. Through
various experiments, we have also tried to show that the DLIPHE achieves low relative
error in high-rise buildings. The proficiency of the results achieved has also been checked
with the help of normalization error. On high-rise buildings, the methodology struggles
more compared to low-rise buildings. In the future, we will investigate automating the
whole process, as the high-rise building needs to control the pitch angle with the respective



Mathematics 2023, 11, 3004 19 of 20

distance to capture the street-view image. In the future, we shall also present a method to
design a communication path based on the estimation of different building heights.

Author Contributions: Methodology, S.P., A.L.I., S.A.J.F. and D.S.R.; Writing—review & editing,
C.-T.L. and C.-C.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Electronics and Information Technologies
(MeitY), Government of India through grant No. 13(38)/2020-CC&BT, and Deanship of Scientific
Research at King Khalid University through Small Groups Project under grant number RGP1/136/44.
This work was supported in part by the National Science and Technology Council in Taiwan under
contract no: NSTC 110-2410-H-165-001-MY2.

Acknowledgments: The authors express their gratitude to the Ministry of Electronics and Information
Technologies (MeitY), Government of India, for their support for this research through grant No.
13(38)/2020-CC&BT. The authors also extend their appreciation to the Deanship of Scientific Research
at King Khalid University for funding this work through Small Groups Project under grant number
RGP1/136/44. This work was supported in part by the National Science and Technology Council in
Taiwan under contract no: NSTC 110-2410-H-165-001-MY2. The work of Agbotiname Lucky Imoize
is supported in part by the Nigerian Petroleum Technology Development Fund (PTDF) and in part
by the German Academic Exchange Service (DAAD) through the Nigerian-German Postgraduate
Program under Grant 57473408. The authors also thank the competent bodies of OpenStreetMap,
Emporis, the open-source keras library of DeepLabV3+, and Cityscapes for the resources made
publicly available for researchers.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Verma, S.; Kawamoto, Y.; Kato, N. Energy-efficient group paging mechanism for QoS constrained mobile IoT devices over LTE-A

pro networks under 5G. IEEE Internet Things J. 2019, 6, 9187–9199. [CrossRef]
2. Cao, H.; Garg, S.; Kaddoum, G.; Singh, S.; Hossain, M.S. Softwarized Resource Management and Allocation With Autonomous

Awareness for 6G-Enabled Cooperative Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2022, 23, 24662–24671.
[CrossRef]

3. Kim, B.; Kim, H. 6G for UAM communications: Challenges and Visions. In Proceedings of the 2022 13th International Conference
on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 19–21 October 2022;
pp. 1526–1528. [CrossRef]

4. Verma, S.; Kawamoto, Y.; Kato, N. A network-aware Internet-wide scan for security maximization of IPV6-enabled WLAN IoT
devices. IEEE Internet Things J. 2020, 8, 8411–8422. [CrossRef]

5. Zeng, T.; Semiari, O.; Saad, W.; Bennis, M. Performance Analysis of Aircraft-to-Ground Communication Networks in Urban
Air Mobility (UAM). In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain,
7–11 December 2021; pp. 1–6. [CrossRef]

6. Tiwari, P.; Lakhan, A.; Jhaveri, R.H.; Gronli, T.M. Consumer-Centric Internet of Medical Things for Cyborg Applications based on
Federated Reinforcement Learning. IEEE Trans. Consum. Electron. 2023. [CrossRef]

7. Zrar Ghafoor, K.; Kong, L.; Zeadally, S.; Sadiq, A.S.; Epiphaniou, G.; Hammoudeh, M.; Bashir, A.K.; Mumtaz, S. Millimeter-
Wave Communication for Internet of Vehicles: Status, Challenges, and Perspectives. IEEE Internet Things J. 2020, 7, 8525–8546.
[CrossRef]

8. Cui, H.; Zhang, J.; Geng, Y.; Xiao, Z.; Sun, T.; Zhang, N.; Liu, J.; Wu, Q.; Cao, X. Space-air-ground integrated network (SAGIN) for
6G: Requirements, architecture and challenges. China Commun. 2022, 19, 90–108. [CrossRef]

9. Liu, R.; Liu, A.; Qu, Z.; Xiong, N.N. An UAV-Enabled Intelligent Connected Transportation System With 6G Communications for
Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2023, 24, 2045–2059. [CrossRef]

10. Swaminathan, N.; Reddy, S.R.P.; RajaShekara, K.; Haran, K.S. Flying Cars and eVTOLs—Technology Advancements, Powertrain
Architectures, and Design. IEEE Trans. Transp. Electrif. 2022, 8, 4105–4117. [CrossRef]

11. ITU-R Recommendation. P.526-9: Propagation by Diffraction; ITU-R Recommendation: Geneva, Switzerland, 2005.
12. Izadi, M.; Saeedi, P. Three-dimensional polygonal building model estimation from single satellite images. IEEE Trans. Geosci.

Remote Sens. 2011, 50, 2254–2272. [CrossRef]
13. Sampath, A.; Shan, J. Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds. IEEE Trans.

Geosci. Remote Sens. 2009, 48, 1554–1567. [CrossRef]
14. Wang, Z.; Jiang, L.; Lin, L.; Yu, W. Building height estimation from high resolution SAR imagery via model-based geometrical

structure prediction. Prog. Electromagn. Res. 2015, 41, 11–24. [CrossRef]
15. Brunner, D.; Lemoine, G.; Bruzzone, L.; Greidanus, H. Building height retrieval from VHR SAR imagery based on an iterative

simulation and matching technique. IEEE Trans. Geosci. Remote Sens. 2009, 48, 1487–1504. [CrossRef]

http://doi.org/10.1109/JIOT.2019.2928589
http://dx.doi.org/10.1109/TITS.2022.3209899
http://dx.doi.org/10.1109/ICTC55196.2022.9952882
http://dx.doi.org/10.1109/JIOT.2020.3045733
http://dx.doi.org/10.1109/GLOBECOM46510.2021.9685135
http://dx.doi.org/10.1109/TCE.2023.3242375
http://dx.doi.org/10.1109/JIOT.2020.2992449
http://dx.doi.org/10.23919/JCC.2022.02.008
http://dx.doi.org/10.1109/TITS.2021.3122567
http://dx.doi.org/10.1109/TTE.2022.3172960
http://dx.doi.org/10.1109/TGRS.2011.2172995
http://dx.doi.org/10.1109/TGRS.2009.2030180
http://dx.doi.org/10.2528/PIERM14073001
http://dx.doi.org/10.1109/TGRS.2009.2031910


Mathematics 2023, 11, 3004 20 of 20

16. Díaz, E.; Arguello, H. An algorithm to estimate building heights from Google street-view imagery using single view metrology
across a representational state transfer system. In Dimensional Optical Metrology and Inspection for Practical Applications V.
International Society for Optics and Photonics; SPIE: Baltimore, MD, USA, 2016; Volume 9868, p. 98680A.

17. Yuan, J.; Cheriyadat, A.M. Combining maps and street level images for building height and facade estimation. In Proceedings of
the 2nd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics, Burlingame, CA, USA, 31 October 2016; pp. 1–8.

18. Zhao, Y.; Qi, J.; Zhang, R. Cbhe: Corner-based building height estimation for complex street scene images. In Proceedings of the
World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 2436–2447.

19. Anguelov, D.; Dulong, C.; Filip, D.; Frueh, C.; Lafon, S.; Lyon, R.; Ogale, A.; Vincent, L.; Weaver, J. Google Street View: Capturing
the World at Street Level. Computer 2010, 43, 32–38. [CrossRef]

20. Kopf, J.; Chen, B.; Szeliski, R.; Cohen, M. Street Slide: Browsing Street Level Imagery. ACM Trans. Graph. 2010, 29, 1–8. [CrossRef]
21. Haklay, M.; Weber, P. Openstreetmap: User-generated street maps. IEEE Pervasive Comput. 2008, 7, 12–18. [CrossRef]
22. Chen, Y.; Weng, Q.; Tang, L.; Wang, L.; Xing, H.; Liu, Q. Developing an intelligent cloud attention network to support global

urban green spaces mapping. ISPRS J. Photogramm. Remote Sens. 2023, 198, 197–209. [CrossRef]
23. Castro Eras, L.E.; Nakata da Silva, D.K.; Correia, L.; Brito Barros, F.J.; Leite de Araujo, J.P.; Protasio dos Santos Cavalcante, G.

A Radio Propagation Model for a Rainforest–River Environment Using UTD and Geometrical Optics. IEEE Antennas Wirel.
Propag. Lett. 2022, 21, 54–58. [CrossRef]

24. Zabihi, R.; Vaughan, R.G. Simplifying Through-Forest Propagation Modelling. IEEE Open J. Antennas Propag. 2020, 1, 104–112.
[CrossRef]

25. Lee, J.H.; Choi, J.S.; Lee, J.Y.; Kim, S.C. 28 GHz Millimeter-Wave Channel Models in Urban Microcell Environment Using
Three-Dimensional Ray Tracing. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 426–429. [CrossRef]

26. Lemos Cid, E.; Alejos, A.V.; Garcia Sanchez, M. Signaling Through Scattered Vegetation: Empirical Loss Modeling for Low
Elevation Angle Satellite Paths Obstructed by Isolated Thin Trees. IEEE Veh. Technol. Mag. 2016, 11, 22–28. [CrossRef]

27. Liasis, G.; Stavrou, S. Satellite images analysis for shadow detection and building height estimation. ISPRS J. Photogramm. Remote
Sens. 2016, 119, 437–450. [CrossRef]

28. Qi, F.; Zhai, J.Z.; Dang, G. Building height estimation using Google Earth. Energy Build. 2016, 118, 123–132. [CrossRef]
29. Zeng, C.; Wang, J.; Zhan, W.; Shi, P.; Gambles, A. An elevation difference model for building height extraction from stereo-image-

derived DSMs. Int. J. Remote Sens. 2014, 35, 7614–7630. [CrossRef]
30. Liu, C.J.; Krylov, V.A.; Kane, P.; Kavanagh, G.; Dahyot, R. IM2ELEVATION: Building Height Estimation from Single-View Aerial

Imagery. Remote Sens. 2020, 12, 2719. [CrossRef]
31. Yuan, J.; Cheriyadat, A.M. Automatic Generation of Building Models Using 2D Maps and Street View Images. arXiv 2016,

arXiv:1601.07630.
32. Mou, L.; Zhu, X.X. IM2HEIGHT: Height estimation from single monocular imagery via fully residual convolutional-

deconvolutional network. arXiv 2018, arXiv:1802.10249.
33. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic

Image Segmentation. In Proceedings of the ECCV, Munich, Germany, 8–14 September 2018.
34. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.
35. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. arXiv 2016, arXiv:1610.02357.
36. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
37. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes

Dataset for Semantic Urban Scene Understanding. arXiv 2016, arXiv:1604.01685.
38. Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 25, 120–123.
39. Emporis, Provider of International Skyscraper and High-Rise Building Data! Available online: www.emporis.com (accessed on

22 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MC.2010.170
http://dx.doi.org/10.1145/1778765.1778833
http://dx.doi.org/10.1109/MPRV.2008.80
http://dx.doi.org/10.1016/j.isprsjprs.2023.03.005
http://dx.doi.org/10.1109/LAWP.2021.3117522
http://dx.doi.org/10.1109/OJAP.2020.2969127
http://dx.doi.org/10.1109/LAWP.2018.2793872
http://dx.doi.org/10.1109/MVT.2016.2550008
http://dx.doi.org/10.1016/j.isprsjprs.2016.07.006
http://dx.doi.org/10.1016/j.enbuild.2016.02.044
http://dx.doi.org/10.1080/01431161.2014.975375
http://dx.doi.org/10.3390/rs12172719
www.emporis.com

	Introduction
	Contributions
	Organization

	Related Work
	Diffraction Loss Estimation Methods
	Method Based on High-Resolution Optical Imagery
	Method Based on Street Scene Imagery

	Proposed Methodology
	System Model
	DLIPHE
	Google Street View API Call Using REST
	Image Segmentation Using the DeepLabv3+ Model
	Image Thresholding
	Contour Detection
	Building Footprint Extraction
	Pinhole Camera Projection Framework

	Experiment Methodology and Results
	Dataset
	Low-Rise Buildings
	High-Rise Buildings

	Results of DLIPHE
	Building Height Estimation on Low-Rise Buildings
	Building Height Estimation on High-Rise Buildings
	Height Estimation Analysis of a Building with Variable Distances
	Height Estimation Analysis of a Building with Variable Directions
	Accuracy
	Efficiency Evaluation Using Normalized Error

	Analysis of Errors

	Conclusions
	References

