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Abstract: With the rapid increase in data scale, real-world datasets tend to exhibit long-tailed class
distributions (i.e., a few classes account for most of the data, while most classes contain only a few
data points). General solutions typically exploit class rebalancing strategies involving resampling
and reweighting based on the sample number for each class. In this work, we explore an orthogonal
direction, category splitting, which is motivated by the empirical observation that naive splitting of
majority samples could alleviate the heavy imbalance between majority and minority classes. To
this end, we propose a novel classwise splitting (CWS) method built upon a dynamic cluster, where
classwise prototypes are updated using a moving average technique. CWS generates intra-class
pseudo labels for splitting intra-class samples based on the point-to-point distance. Moreover, a
group mapping module was developed to recover the ground truth of the training samples. CWS can
be plugged into any existing method as a complement. Comprehensive experiments were conducted
on artificially induced long-tailed image classification datasets, such as CIFAR-10-LT, CIFAR-100-LT,
and OCTMNIST. Our results show that when trained with the proposed class-balanced loss, the
network is able to achieve significant performance gains on long-tailed datasets.

Keywords: deep learning; class-imbalance learning; feature clustering; long-tailed classification;
classwise splitting

MSC: 68T07

1. Introduction

With the emergence of large-scale and high-quality datasets, such as ImageNet [1]
and COCO [2], deep neural networks (DNNs) have achieved resounding success in many
visual discriminative tasks, including image recognition, object detection, and semantic
segmentation. Most existing datasets are carefully well-designed and maintain a roughly
balanced distribution over different categories. However, real-world datasets typically
exhibit long-tailed data distributions [3,4], where a few classes occupy plenty of samples but
the others are associated with only a few samples. Learning in such a real-world scenario is
challenging due to the biased training of high-frequency ones, which undoubtedly hinders
the practical applications of DNNs with significant performance degradation [5,6].

To tackle the imbalanced problem, early rebalancing strategies mainly focus on resam-
pling [7,8] and reweighting [9,10] to pay more attention to minority classes. The intuition
behind the above methods is to adjust the training data distribution based on impor-
tance estimation. Then, logit-based regularization was introduced to calibrate the shifted
distribution between the training test data, encouraging the large margins for minority
classes. These strategies could improve recognition performance for minority categories;
however, the majority categories easily suffer from relatively lower accuracy because of
over-emphasizing minority samples. Recently, it was indicated that the mismatch between
representative and classifier learning plays a vital role in long-tailed recognition [11–13].
Thus, a two-stage training strategy was developed to decouple feature and classifier learn-
ing and has led to significant improvement over joint training. Motivated by this finding,
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the recent state-of-the-art performance has been attained through either self-supervised
pretraining to obtain high-quality representations or employing ensemble experts for fair
classifiers, implicitly increasing the training cost [14].

In this work, we argue that better representations and fair classifiers could be jointly
obtained by decomposing majority classes into smaller ones. We observe that a naively
trained model on decomposed classes with roughly balanced distribution has better recog-
nition performance with respect to the original label space. This motivates our work to
incorporate decomposed classes (called the classwise splitting trick) into the end-to-end
training mode, while maintaining the original label space for long-tailed recognition. To
this end, we exploit three simple techniques to balance both representations and classifiers.
We first explore online clustering to split majority classes for balancing representative
learning. Then, intra-class clusters are maintained via the moving average approach to
reduce computational costs. Finally, a group mapping module is formulated to recover the
original label space for balancing classifier learning. Please refer to Figure 1 for an overall
framework of our work.

The main contributions can be summarized as follows: (1) We design a novel frame-
work to improve the classification of long-tailed datasets by proposing a classwise splitting
(CWS) method. (2) Our framework can achieve significant performance improvement by
clustering majority categories into several subclasses, assigning pseudo-labels, and then
mapping the predictions to the real labels. (3) Experiments show that our framework
can be used as a generic method for visual recognition by outperforming the previous
state-of-the-art performances on long-tailed CIFAR-10 and CIFAR-100 datasets [15].

Figure 1. Overall architecture of the classwise splitting (CWS) method. The framework contains three
parts: a feature-extracting module, a feature clustering module, and a label-mapping module. During
training, the feature-extracting module uses the backbone network to extract the features of input
images, and then the feature clustering module assigns pseudo-labels to the features according to
their intra-class distances, and finally the feature mapping module maps the pseudo-labels to real
labels. During inference, the feature clustering module will be removed.

2. Related Works

Most of the previous efforts on long-tailed datasets could be divided into two regimes:
resampling [7,8] and reweighting [9,10].

Resampling. Resampling is a data-level method widely used to address the problem
of imbalanced classification. It adjusts the training data distribution by undersampling the
majority categories or oversampling the minority categories [16]. However, it is difficult to
reconcile the classification performance of the majority and minority categories. Oversam-
pling can easily lead to the overfitting of samples, while undersampling can lead to the loss
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of some useful information. The more imbalanced the dataset, the more pronounced the
shortcomings of the resampling strategy.

Reweighting. Reweighting is a class-level method that is widely used to address the
problem of imbalance learning by modulating the weighting factors of categories in the
data [17]. The common reweighting methods include focal loss [18], class-balanced (CB)
loss [19], and label-distribution-aware margin (LDAM) loss [20]. Among them, focal loss
applies a moderation term to cross-entropy loss, focusing on learning the minority cate-
gories in the imbalanced dataset. CB loss introduces the effective number to approximate
the expected volume of samples of each category instead of the label frequency. LDAM
loss addresses the overfitting of the majority categories by regularizing the margins.

Two-stage Training Strategy. The two-stage training strategy was initially used to
solve the conflict problem arising from different rebalancing strategies. Due to the overlap-
ping effects between different rebalancing strategies, directly combining two rebalancing
strategies for long-tailed data classification tasks will significantly reduce the model’s gener-
alization ability [20,21]. Kang et al. [13] applied this strategy to decoupling training, which
divides the original joint training method into two stages of training, greatly reducing the
degree of coupling between different modules of the model, and allowing the network
to search for parameters with stronger generalization ability during the training process.
Here, inspired by this strategy, we also adopted a similar approach to [22] to achieve this
goal.

Clustering For Classification. Clustering is a typical unsupervised learning method,
whose core idea is to divide the whole sample set into multiple disjoint subsets by compar-
ing the distances of samples in a low-dimensional space, so as to complete the classifica-
tion [23,24]. The imbalance classification task based on clustering has been widely studied
in recent years [25,26]. Singh et al. [27] use the distance between a minority class sample and
its respective cluster centroid to infer the number of new samples. Swarnalatha et al. [6,28]
divide each class into smaller subclasses, and then classify them based on feature metrics
to achieve compactness. Indeed, clustering-based methods have proven to be helpful
in addressing class imbalance problems in the past. However, they mainly obtain fine
subclasses by clustering the samples directly, and the subclass centers are usually invariant
in the subsequent training tasks. These static clustering methods may limit the upper
optimization of network parameters. Therefore, inspired by previous research, we embed
clustering techniques into the training process of deep neural networks, using the extracted
features for dynamical clustering to obtain pseudo-labels, which in turn are used to train
deep neural networks. Finally, a mapping network is used to establish the correspondence
between the pseudo-labels and the real labels.

3. Method

Preliminaries. Given a training set D = {(xi, yi)}N
i=1 with N training samples, the xi

represents the i-th training sample and yi represents the corresponding label. The total
number of training samples is N = ∑C

c=1 Nc, where C denotes the total number of categories
and Nc denotes the number of training samples of the c-th class. The general assumption
of long-tailed distribution is that the classes are sorted in decreasing order of the sample
number. Assume that the training sample numbers of the c1 and c2 classes are denoted as
Nc1 and Nc2 , respectively, then Nc1 > Nc2 if c1 < c2. In this case, the target of the recognition
task for long-tailed distributed data is to learn a deep neural network f (·, θ) with parameter
θ, which can achieve good recognition performance on a balanced test set.

Given a training sample xi, the network predicts its label y′i = f (xi, θ), where the
prediction error between y′i and the ground truth yi is calculated using a cost function
L(y′i, yi), e.g., a cross-entropy (CE) loss. To train the network f (·, θ), we optimize θ by
minimizing L(y′i, yi) over the whole training set D:

θ∗ = arg min
θ

F(θ;D) ≡
N

∑
i=1
L( f (xi; Θ), yi) (1)
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Naively solving Equation (1) produces an imbalanced feature distribution that has
biased decision boundaries toward common classes. Therefore, we are motivated to learn a
balanced feature extractor by splitting majority classes into sub-classes. Such artificially
balanced label distributions can also balance the weights of the classifier for sub-classes,
then we can transform this pseudo label space into the original one via a mapping module.
The proposed framework is shown in Figure 1.

Our proposed method mainly contains three modules: a feature-extracting module, a
feature clustering module, and a label-mapping module. In order to realize the collaborative
training of multiple modules, we combine unsupervised learning (clustering techniques)
with supervised learning to propose a two-stage classification algorithm. In the first stage,
the feature-extracting module uses a backbone network to extract features from input
images, and the feature clustering module uses clustering technique to assign pseudo-
labels to these features, which are used in the training of the feature-extracting module. We
use the pseudo-labels as input to the label-mapping module and then use ground truth
labels to train this module.

3.1. Feature Clustering Module

The role of the feature clustering module is to cluster the features into a specified
number of subclasses and assign unique pseudo-labels to them. Specifically, during training,
a CNN backbone is used to extract the embeddings of training samples. Then features
belonging to the same category are divided into several subclasses according to their
distance away from the sample center, which is achieved by a dynamic clustering strategy.
Finally, each subclass would be given a pseudo-label for calculating loss. The dynamic
clustering can be described as follows:

dt =
max|Si − SCt|

SN
(2)

if |Si − SCt| ∈ (ndt, (n + 1)dt], n ∈ [0, 1, . . . , SN − 1]

⇒ Si ← Pn
(3)

where SCt denotes the sample center of a certain category in the t-th batch. Si denotes
the i-th sample of this category. SN denotes the subclass number of this category. The
maximum distance between the samples and sample center is equally divided into SN
intervals and the length of each interval is dt.

During training, samples are fed into the framework in batches. In each batch, the
following operation is repeated for each category of samples: the sample center is first
calculated based on the features of all the samples, then the maximum distance between the
sample and the sample center is computed; subsequently, the maximum distance is divided
into several intervals. Eventually, the distance between each sample and the sample center
is counted to decide which interval it belongs to so that a unique pseudo-label is assigned
to that sample accordingly. Notably, the subclass number is taken as a hyperparameter
whose value is related to the total sample number of the category. The sample center and
subclass number are determined as follows:

Sample Center. The mini-batch training strategy is widely used for vision tasks, which
leads to an expensive cost for the cluster center calculation. To efficiently calculate the
sample center, an exponential moving average method is utilized, which makes the sample
center of each category in each batch closer to the overall situation of the corresponding
category in the dataset. The sample center is calculated as follows:

SCt =

{
y1 t = 1

αyt + (1− α)SCt−1 t > 1
(4)

where α (0 < α < 1) indicates the attenuation degree of the weight. yt denotes the
average value of the features of a certain category in the t-th batch. SCt denotes the
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exponential moving average value of the features of a certain category in the t-th batch, i.e.,
sample center.

Subclass number. The determination of the subclass number depends on the degree
of data imbalance and the intra-class distance. On the one hand, our method aims to
generate more subclasses for majority categories, especially for heavily imbalanced data.
On the other hand, we experimentally analyzed the effect of the subclass number and
obtained the following conclusions: the larger the subclass number, the smaller the intra-
class distance of the samples, which will reduce the classification accuracy. Therefore, when
determining the subclass number, we will perform a cluster analysis on this category. The
subclass number should be as large as possible without the intra-class distance being too
small. The ablation experiments of this parameter are detailed in Section 4.

3.2. Label-Mapping Module

To map the pseudo-label space to the real label space, we formulate a label-mapping
module following the feature-extracting module, which a three-layer perceptron is em-
ployed. In the training process, because the feature clustering module will cluster each
category of samples into several subclasses, the total number of pseudo-labels will be
greater than the number of real labels. Therefore, in order to map all pseudo-labels of sam-
ples of the same category to its real label, the input dimension of the three-layer perceptron
should be equal to the number of pseudo-labels, and the output dimension should be equal
to the total number of real labels.

3.3. Two-Stage Training Strategy

Given that the feature-extracting module and the label-mapping module are relatively
independent networks, a two-stage training approach is implemented to update the weight
parameters of the entire framework. The two stages involve separate training processes,
each focusing on updating the weight parameters of a specific module.

In the first stage, the pseudo-labels generated by the feature clustering module are
utilized as the ground truth for the backbone network. The loss is calculated based on
the comparison between the predicted pseudo-labels and the generated pseudo-labels,
allowing for the update of the weight parameters in the feature-extracting module. This
stage aims to optimize the feature extraction process to ensure accurate and discriminative
feature representation. Similarly, in the second stage, the real labels are employed as the
ground truth for the three-layer perceptron in the label-mapping module. The loss is
computed by comparing the predicted labels with the true labels, facilitating the update
of weight parameters in the label-mapping module. This stage focuses on fine-tuning the
label-mapping process to ensure effective alignment between the pseudo-labels and the
true labels.

The first and second stages are performed alternately, allowing for iterative refinement
of the framework. Notably, the loss function remains consistent across both stages of
training, ensuring that the overall objective remains unchanged. By adopting this two-stage
training method, we can effectively optimize the feature extraction and label-mapping
processes within the framework, improving the overall performance and accuracy of
the model.

4. Experiments and Discussions
4.1. Datasets and Experimental Settings

Long-tailed CIFAR-10 and CIFAR-100. CIFAR-10 and CIFAR-100 are commonly used
datasets in long-tailed classification problems; these datasets consist of 60,000 images, with
the training dataset containing 50,000 samples and the test dataset containing 10,000 sam-
ples [29]. To obtain the long-tailed version of the CIFAR dataset and ensure fairness,
we follow [30] to split the existing dataset. Specially, we use the imbalance ratio factor
β = Nmin

Nmax
to control the imbalance degree of the dataset, where Nmax and Nmin represent

the most and the least frequent class numbers from the training samples, respectively. In
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our experiments, the imbalance factors are set to 0.05, 0.02, 0.01, and 0.1, respectively. Our
framework was verified on the long-tailed versions of CIFAR-10 and CIFAR-100 datasets
with different imbalance factors. Notably, the test set remains unchanged. The distribution
of the long-tailed CIFAR-10 dataset is shown in Figure 2.

Figure 2. The distribution of the long-tailed CIFAR-10 dataset with imbalance factors of 0.01 and 0.1.

OCTMNIST. OCTMNIST [31] is a new medical dataset built from the previous retinal
OCT image classification dataset, which contains 109,309 images. For a fair comparison,
we selected four types of data for training and testing. The training dataset is naturally
imbalanced, while the test dataset exhibits a balanced distribution in terms of the number
of samples. OCTMNIST is an application-oriented dataset from the real world, which can
better demonstrate the effectiveness of our method.

Baselines. We compare our method with previous state-of-the-art techniques and
their combinations: (1) Cross-entropy (CE) loss [32], which does not change the loss of
samples; (2) focal loss [18], which increases the loss for hard samples and down-weights
well-classified samples; (3) LDAM loss [20], which regularizes the minority categories to
have larger margins; (4) resampling [33], which resamples the samples according to the
inverse of the effective number of samples in each category; (5) reweighting [34], which
reweights the samples according to the inverse of the effective number of samples in each
category; (6) DRW [20], which makes the model learn the initial feature representation and
then performs reweighting or resampling. The above three loss functions (i.e., CE loss, focal
loss, and LDAM loss) were employed in the experiments, each of which was combined with
three training methods (i.e., reweighting, resampling, and DRW). The parameter settings of
reweighting and resampling methods were consistent with [19].

Implementation Details. We used PyTorch [35] to implement and train all the models
in the work, and we used ResNet [36] architecture for all datasets. For the long-tailed
CIFAR-10 and CIFAR-100 datasets, random initialization was used for our model, which
adopts ResNet-32 as the backbone network. The networks were trained for 200 epochs
with stochastic gradient descent (SGD) (momentum = 0.9). Following the training strategy
in [19], the initial learning rate was set to 0.1 and then decayed by 0.01 at 160 epochs and
again at 180 epochs. Furthermore, we used a linear warm-up of the learning rate in the first
five epochs. We trained the models for the long-tailed CIFAR-10 and CIFAR-100 datasets
on a single NVIDIA RTX 3090 with a batch size of 128.

4.2. Classification Experiment Results

Tables 1 and 2 show the test accuracy of our framework on the long-tailed CIFAR-
10 and CIFAR-100 datasets under different combinations of loss functions and training
methods. The loss curves along with training are shown in Figure 3.

Clearly, without incorporating loss functions and training methods that can mitigate
the data imbalance, our framework can achieve comparable performance to the previous
state-of-the-art techniques. For example, on the long-tailed CIFAR-10 dataset with the
imbalance factor set to 0.1, our framework has a classification accuracy of 87.91%, which
almost exceeds the classification accuracy of all other methods and their combinations
on this dataset. Compared to the long-tailed CIFAR-10 dataset with the imbalance factor
being set to 0.1, our framework improves the baseline performance more significantly on
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the dataset, with the imbalance factor set to 0.01. For example, on the dataset (imbalance
factor = 0.01), the performance improvement of the baseline (CE loss plus none) is up to
about 4%, while the performance improvement of this baseline is only 1.5% on the dataset
(imbalance factor = 0.1). This means that the more imbalanced the data distribution, the
more significant the effect of our framework. The experiments show that our framework
can significantly improve the performance of most combinations of loss functions and
training methods in the baseline.

Table 1. The test accuracy on the long-tailed CIFAR-10 datasets between our method and the baseline.

Dataset Imbalanced CIFAR-10

Imbalance Factor 0.05 0.02 0.01 0.1

Loss Rule Baseline CWS Baseline CWS Baseline CWS Baseline CWS

CE None 83.27 85.12 78.22 79.44 71.07 75.2 86.39 87.91
CE Resampling 83.16 84.93 76.90 78.89 71.31 75.33 86.79 87.99
CE Reweighting 83.48 84.88 78.20 79.17 72.2 75.85 86.44 87.41
CE DRW 85.14 85.94 80.33 81.24 74.64 76.79 86.43 88.14

Focal None 82.67 84.07 76.71 78.69 71.07 73.52 86.66 87.83
Focal Resampling 85.55 85.09 76.70 78.24 70.48 73.93 86.16 87.36
Focal Reweighting 83.15 83.83 79.27 80.15 70.61 75.65 87.1 87.6
Focal DRW 85.75 84.86 80.25 80.85 75.3 76.89 87.45 87.98

LDAM None 84.00 84.84 78.83 79.31 73.93 75.96 86.96 87.17
LDAM Resampling 83.34 83.24 78.40 78.38 73.1 75.86 86.29 86.98
LDAM Reweighting 82.77 83.96 78.68 78.81 73.74 73.98 86.07 86.57
LDAM DRW 85.43 85.33 81.92 80.94 77.68 77.33 88.16 87.24

Baseline: the model without our method; CWS: the model with our method; loss: the loss function of the model;
rule: the training method of the model. There are several baselines due to the variety of loss functions and the
training method. For each baseline, our method can be combined with it. The values in bold indicate that, under
the identical conditions, the accuracy of the model with our method is higher than the model without our method.

Figure 3. The loss curves of baseline (reweighting plus focal loss) trained on long-tailed CIFAR-10
(imbalance factor = 0.1) with or without the CWS method.

Notably, when there is a large number of categories, it is difficult to determine the
subclass number. An inappropriate subclass number can easily lead to non-convergence of
the model. For example, our framework combining LDAM loss and the resampling method
does not work well on the long-tailed CIFAR-100 dataset. This is because for datasets with a
large number of categories, resampling and clustering may result in the absence of samples
in some subclasses.
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Table 2. The test accuracy on the long-tailed CIFAR-100 datasets between our method and the
baseline.

Dataset Imbalanced CIFAR-100

Imbalance Factor 0.05 0.02 0.01 0.1

Loss Rule Baseline CWS Baseline CWS Baseline CWS Baseline CWS

CE None 50.79 52.29 43.71 46.35 38.32 40.28 55.7 57.98
CE Resampling 51.48 48.86 43.13 39.75 33.44 34.6 55.06 54.71
CE Reweighting 48.28 53.28 45.32 44.92 33.99 37.93 57.12 58.61
CE DRW 53.05 52.84 46.84 47.59 41.85 41.88 57.54 58.51

Focal None 51.08 52.42 44.32 44.28 38.71 40.67 55.62 57.91
Focal Resampling 50.06 49.43 43.07 39.31 37.88 33.69 56.03 55.43
Focal Reweighting 47.49 53.05 35.65 44.96 36.02 38.69 57.99 57.87
Focal DRW 52.43 53.36 45.19 45.62 38.65 41.87 57.64 58.29

LDAM None 51.65 54.05 44.32 46.12 39.6 42.64 56.91 58.1
LDAM Resampling 51.06 - 43.43 - 39.43 - 56.4 -
LDAM Reweighting 48.20 50.04 36.69 40.92 29.13 34.24 53.69 56.23
LDAM DRW 53.52 54.21 47.89 46.80 42.04 43.28 58.71 58.75

The meanings of baseline, CWS, loss, and rule are the same as in Table 1. ‘-’ in the CWS column indicates that the
model does not converge. The values in bold indicate that, under the identical conditions, the accuracy of the
model with our method is higher than the model without our method.

To validate the effectiveness of our proposed algorithm in real applications, we report
the experimental results of the algorithm on the medical dataset OCTMNIST. Figure 4
shows the classification results of our proposed method on the OCTMNIST dataset after
combining it with different backbone networks. It can be seen that our method has achieved
optimal ACC and considerably good AUC. Compared with ResNet-50, the accuracy of our
proposed method has obtained a nearly 7.5% improvement, while our method only adds
two MLP parameters based on ResNet-32. Therefore, this can effectively demonstrate the
effectiveness of our proposed method.

Figure 4. The test accuracy of baselines (focal loss plus different training method) or combinations of
baselines and the CWS method on the long-tailed CIFAR-10 (imbalance factor = 0.1) with different
attenuation factors α. (RS: resampling, RW: reweighting).

4.3. Ablation Experiment Results

To choose an appropriate subclass number, we performed a series of ablation experi-
ments on the long-tailed CIFAR-10 and CIFAR-100 datasets, and some of the experimental
results are shown in Tables 3 and 4. It can be seen that the performance of our framework is
not proportional to the subclass number. When the subclass number increases, the classifi-
cation accuracies of some combinations of baselines and the CWS method increase (e.g., CE
plus none, focal plus reweighting), while those of some combinations slightly decrease (e.g.,
CE plus resampling, LDAM plus resampling). This is because a large subclass number leads
to too little discriminability between subclasses. When the subclass number increases to a
certain extent, the combinations (e.g., LDAM plus resampling) cannot converge because
some subclasses have no samples after clustering. Thus, considering the stability and
performance of the framework, the subclass numbers for the long-tailed CIFAR-10 are set
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to [5, 3, 2, 2, 1, 1, 1, 1, 1, 1]. That is, the samples in the largest category were clustered into
five subclasses, and those in the smallest category remained as one category. We repeated
each element in [5, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1] ten times as the subclass number for each
category in the long-tailed CIFAR-100 dataset, i.e., [5, 5, . . . , 5, 3, 3, . . . , 3, 2, 2, . . . , 2, 1, 1, . . . , 1].

We also performed a series of ablation experiments for the attenuation factor α of the
exponential moving average in Equation (4), and the experimental results are shown in
Figure 4. It can be seen that when the attenuation factor is set to 0.99, our framework com-
bined with other loss functions or training methods can achieve the highest performance.
Thus, the attenuation factor α is set to 0.99 in our classification experiments.

Table 3. The test accuracy on the long-tailed CIFAR-10 (imbalance factor = 0.01) with different
subclass numbers.

Subclass Number

[5,3,2,2,1,1,1,1,1,1] [10,8,6,5,3,2,2,1,1,1] [30,24,18,15,3,3,2,2,1,1] [50,40,30,25,9,9,1,1,1,1]

M
et

ho
d

CE plus CWS 75.20 76.10 77.48 78.28
CE plus Resampling plus CWS 75.33 74.68 77.14 77.55
CE plus Reweighting plus CWS 75.85 76.87 78.49 -

CE plus DRW plus CWS 76.79 77.82 78.09 -

Focal plus CWS 73.52 74.12 76.58 77.54
Focal plus Resampling plus CWS 73.93 75.26 77.15 78.19
Focal plus Reweighting plus CWS 75.65 76.27 77.44 -

Focal plus DRW plus CWS 76.89 76.90 77.35 -

LDAM plus CWS 75.96 75.69 76.27 -
LDAM plus Resampling plus CWS 75.86 72.73 - -
LDAM plus Reweighting plus CWS 73.98 73.54 76.21 -

LDAM plus DRW plus CWS 77.33 77.08 77.05 -

The meanings of baseline, CWS, loss, and rule are the same as in Table 1. ’-’ indicates that the model does not
converge.

Table 4. The test accuracy on the OCTMNIST dataset. We compared a large number of baseline
networks with larger parameter quantities than our proposed method.

Method AUC ACC

ResNet-50 (28) 93.9 74.5

ResNet-50 (224) 95.1 75.0

auto-sklearn 88.3 59.5

AutoKeras 95.6 73.6

Google AutoML Vision 96.5 73.2

Ours (ResNet-32 plus CWS) 94.7 82.5
The values in bold indicate that, under the identical conditions, the accuracy of our method is higher than other
methods.

5. Discussion and Conclusions

In this paper, we propose a novel method to enhance the classification performance of
long-tailed datasets by introducing a classwise splitting (CWS) strategy. The core concept
revolves around clustering the sample features into multiple subclasses based on their intra-
class distance. The method consists of three main modules: the feature extraction module,
the feature clustering module, and the label-mapping module. The feature extraction mod-
ule is responsible for extracting informative features from input images. These extracted
features are then fed into the feature clustering module, which performs clustering to
group them into distinct subclasses. Additionally, the feature clustering module assigns
pseudo-labels to the samples within each subclass. Finally, the label-mapping module is
employed to map the pseudo-labels to the corresponding ground truth labels. Experimental
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results conducted on the CIFAR-10-LT, CIFAR-100-LT, and OCTMNIST datasets validate the
effectiveness of our proposed method in tackling long-tailed image classification tasks. The
results demonstrate that our approach significantly improves the classification accuracy of
long-tailed datasets. By introducing the classwise splitting strategy and leveraging the three
modular components, our method demonstrates promising potential in addressing the chal-
lenges posed by long-tailed datasets and achieving enhanced classification performance.

The method we proposed, based on the idea of dynamic reclustering, is a general
visual framework designed for long-tailed distribution data. The experimental results have
demonstrated that our framework can be effectively combined with existing rebalancing
strategies, such as resampling, reweighting, focal loss, and LDAM, indicating its strong
generality. This means that our framework can be applied to other similar long-tailed
distribution tasks.

Moreover, our method introduces a learnable label-mapping network that can effi-
ciently fit a mapping function from pseudo-labels to ground truth labels with a small train-
ing cost. This idea holds heuristic significance for other unsupervised and semi-supervised
learning tasks, as it provides inspiration for achieving an efficient label-mapping in these
scenarios.

However, it is worth noting that the proposed framework’s learnable label-mapping
network may not perform well in joint learning scenarios. The experimental results have
revealed that the upper limit of this method is dependent on the initial subdivision of sub-
classes. The improper subdivision of subclasses can significantly impact the performance
of the final model. Therefore, using our framework requires a two-stage training strategy
to ensure the stability of feature extraction and the feasibility of subsequent downstream
task training. Extensive experimentation is necessary to identify the most suitable subclass
number for each class.

In the future, we will explore ways to automatically determine the optimal number
of subclasses and investigate approaches for joint training to further reduce training costs.
By addressing these challenges, we aim to enhance the efficiency and effectiveness of the
framework.
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