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Abstract: This paper addresses the problem of chaos control in an economic mathematical dynamical
model. By regarding the control variables as the bifurcation parameters, the stability of equilibria
and the existence of Hopf bifurcations of the relevance feedback system are investigated, and the
criterion of controllability for the chaotic system is obtained based on a time-delayed feedback control
technique. Furthermore, numerical simulations are provided to demonstrate the feasibility of our
methods and results.
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1. Introduction

Nowadays, mathematical models and analysis have been extensively used in the field
of economic research [1–4], which can help better understand and predict the dynamical
behavior of economical operating processes. Generally, the economical operating pro-
cess can be described by nonlinear systems [5], which gives rise to the complexity and
diversity of dynamical characteristics. Dynamical properties such as stability, vibration,
deterministic chaos, and the stochastic process usually provide us with useful information
in understanding various physical and biological phenomena [6]. However, more often
than not, the unstable scenarios and irregular behaviors exhibited by economic systems
are unfavorable for the study of state prediction. As we know, when it comes to studying
dynamical economic models, “All stable processes, we shall predict. All unstable processes,
we shall control” [7]. Thus, how to suppress or to stabilize an unstable economic behavior
and convert it into other stable processes has become the core issue of the forecast and
control study for economical systems.

Dynamical chaos happens quite often in nonlinear dynamical models but is usually
undesirable in practice, which severely affects the reliability of prediction. Hence, in applied
economic systems, the need to develop an effective solution to control chaotic vibrations
has become increasingly pressing. At the present stage, two methods are mainly used for
the control of chaos: by applying a specially designed external state feedback controller to
chaotic systems [8–10], or by delayed feedback control method [11,12]. Both methods do
not require an a priori analytical knowledge of systematical dynamics and are applicable
to the experiment. In particular, for the latter method without using any external force,
it does not require any computational analyses and can be particularly convenient for an
experimental application. Therefore, the delayed feedback control method has been widely
used in the study of control and suppression for chaos [11–13].
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Models that describe features and predictive control functions in the field of economics
have proven to be valuable applications. To understand and reliably predict the behavior
of economic management systems, Shapovalov [13] proposed a differential equation model
that describes the behavior of a mid-size firm that takes the following form [14,15]

ẋ = −σx + δy,
ẏ = µx + µy− βxz,
ż = −γz + αxy,

(1)

where α, β, σ, δ, µ, and γ are positive parameters, and the variables x, y, and z denote the
growth of three main factors of production: the loan amount x, the fixed capital y, and the
number of employees z.

By the coordinate transformation (x, y, z)→
(

µ√
αβ

x, µσ

δ
√

αβ
y, µσ

δβ z
)

, t→ t
µ , system (1)

can be reduced to a Lorenz-like system
ẋ = −cx + cy,
ẏ = rx + y− xz,
ż = −bz + xy,

(2)

where c = σ
µ , r = δ

σ , b = γ
µ . Although system (2) is slightly different from the classi-

cal Lorenz system in the coefficient of y in the second equation, which is 1 here, while
in the Lorenz system this coefficient is −1, chaos would occur in system (2) as in the
Lorenz system [16].

In addition, when the contained parameters satisfy the relations σ2/(σ− δ) = µ and
δ < σ < µ, system (1) can be reduced to the well-known Chen system [17]

ẋ = −dx + dy,
ẏ = (c− d)x + cy− xz,
ż = −bz + xy,

(3)

with b = γ, c = σ2

σ−δ = µ, d = σ, d < c, using coordinate substitutions

(x, y, z)→
(

1√
αβ

x,
σ

δ
√

αβ
y,

σ

δβ
z

)
.

As noted above, system (1) can be converted to the Lorenz-like system or the Chen
system under the above conditions (cf. [15,18]). This indicates that the dynamical charac-
teristics of system (1) can be complicated chaos, which was reflected in a series of recent
studies. The quantitative characteristics of global attractor of this model, such as dimension
and entropy, have been studied in Ref. [18]. It shows that when c = 18.3, r = 51 and
b = 5.7, system (2) is chaotic (see Figure 1). Using the time-delayed feedback control ap-
proach in the Shapovalov model, the appearance of chaotic behaviors was inhibited.While
the control method appears feasible in theory, additional research is needed to design and
implement an effective chaos control strategy for the Shapovalov model.

The aim of this article is to show how to control and suppress the occurrence of the
chaotic attractor in system (2), and to control chaotic state to the equilibrium or periodic
orbits. To this end, following the idea of Refs. [19–21], we shall apply the delay feedback
control approach by adding a time-delayed force K[y− y(t− τ)] to the second equation of
system (2). That is, 

ẋ = −cx + cy,
ẏ = rx + y− xz + K[y− y(t− τ)],
ż = −bz + xy,

(4)

where K ∈ R and τ ∈ (0,+∞) are predetermined controllable parameters. Clearly, the
delayed feedback control system (4) has the same equilibria to the corresponding system (2),
and when τ = 0, system (4) becomes (2).

In particular, the work in Refs. [20,21] characterizes the existence of Hopf bifurcations
and the stability of the equilibria for the control system with time delay τ. It should be
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pointed that those in Refs. [20,21] are concerned with how the equilibria lose their original
stability when time delays pass through the critical values. The starting point for these
studies is based on the premise that the homogeneous states of the controlled system are
stable when τ = 0. In this paper, we will attempt to control the chaotic behavior of a
possible appearance in economic model (2). Therefore, considering that the control object
should be aimed at those unstable processes rather than stable processes, we start with the
assumption that the homogeneous states of the controlled system are unstable when τ = 0,
to investigate how the equilibrium point changes from an unstable state to a stable state
with the presence of the delay, which is different from the existing studies [20,21]. This is
not only the starting point of this paper and the end result, but also the core of this paper.

-80
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x

-100

100

y

0

200

z

Figure 1. The chaotic attractor (uncolored trajectory) of system (2) with c = 18.3, r = 51, b = 5.7, and
its projections (colored trajectories) along the coordinate axes.

The paper is organized as follows. In Section 2, we discuss the stability of equilibria
and the existence of Hopf bifurcations of the feedback system and the criterion of the
chaotic system by applying the time-delayed feedback control technique. In Section 3,
numerical simulations are illustrated to demonstrate the feasibility of our methods and
results. Section 4 provides a brief conclusion.

2. Stability and Bifurcation Analysis

In this section, we investigate the effect of control parameters K and τ on the dynamic
stability of system (4), and present the chaos control strategy.

It easy to see that system (2) always has three equilibria: E0 = (0, 0, 0),
E− = (−x0,−y0, z0) and E+ = (x0, y0, z0), where x0 = y0 =

√
b(r + 1) and z0 = r + 1.

We first cite two lemmas [15] on the stability of the equilibrium points of system (2).

Lemma 1. The equilibrium state E0 of system (2) is unstable for all parameter values.
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Lemma 2. If one of the relations r > c(3−(c+b))
b−(c+1) , b > c + 1,

r < c(3−(c+b))
b−(c+1) , 3− c < b < c + 1,

(5)

holds for system (2), then the equilibria E− and E+ of system (2) are stable. If both relations (5) are
not satisfied, then the equilibria E− and E+ of system (2) are unstable.

Now we consider how to eliminate or suppress the possible chaotic motion in system (2).
Firstly, this requests that the equilibria of system (2) are unstable. From Lemmas 1 and 2,
this requires that both conditions described in (5) are not satisfied. On the other hand,
considering the economic significance of system (2), it is worth nothing that the system
exhibits symmetric invariance about the z-axis. In what follows, for simplicity we only
discuss the stability of E+ of system (4).

By linearizing system (4) at E+ = (x0, y0, z0), the associated Jacobi matrix J(E+) takes
the following form

J(E+) =

 −c c 0
r− z0 1 + K− Ke−λτ −x0

y0 x0 −b

, (6)

By substituting x0 = y0 =
√

b(r + 1) and z0 = r + 1 into (6), the characteristic equation
corresponding to J(E∗) will be

λ3 + (b + c− 1− K)λ2 + (br + bc− bK− cK)λ + 2bc(r + 1)− bcK

+
[
λ2 + (b + c)λ + bc

]
Ke−λτ = 0. (7)

Let

m2 = b + c− 1− K, m1 = br + bc− (b + c)K, m0 = 2bc(r + 1)− bcK,

n2 = K, n1 = (b + c)K, n0 = bcK.

Then Equation (7) reduces to

λ3 + m2λ2 + m1λ + m0 + (n2λ2 + n1λ + n0)e−λτ = 0. (8)

Therefore, the stability problem of equilibrium E+ of system (4) is transformed into the
distribution problem of the roots of the transcendental Equation (8). In the discussion that
follows, we also need the following result, which was proved by Ruan and Wei in Ref. [22].

Lemma 3. For the exponential polynomial

p
(

λ, e−λτ1 , · · · , e−λτm
)
= λn + p(0)1 λn−1 + · · ·+ p(0)n−1λ + p(0)n

=
[

p(1)1 λn−1 + · · ·+ p(1)n−1λ + p(1)n

]
e−λτ1 + · · ·+

[
p(m)

1 λn−1 + · · ·+ p(m)
n−1λ + p(m)

n

]
e−λτm ,

as (τ1, τ2, · · · , τm) vary, the sum of orders of the zeros of p
(
λ, e−λτ1 , · · · , e−λτm

)
on the open right

half plane can change only if a zero appears on or crosses the imaginary axis.

Obviously, λ = iω (ω > 0) is a root of (8) if and only if

−ω3i−m2ω2 + m1ωi + m0 + (−n2ω2 + n1ωi + n0)e−ωτi = 0.

Separating the real and imaginary parts, one can get that{
−ω3 + m1ω + n1ω cos ωτ + (n2ω2 − n0) sin ωτ = 0,
−m2ω2 + m0 + (n0 − n2ω2) cos ωτ + n1ω sin ωτ = 0.

(9)
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It follows from (9) that
ω6 + p0ω4 + q0ω2 + r0 = 0, (10)

where
p0 = m2

2 − 2m1 − n2
2, q0 = m2

1 − 2m0m2 + 2n0n2 − n2
1, r0 = m2

0 − n2
0.

Let z = ω2, and Equation (10) can be written as

h(z) := z3 + p0z2 + q0z + r0 = 0. (11)

Since limt→+∞ = +∞ and h(0) = r0, then (11) has at least one positive real root when
r0 = m2

0 − n2
0 < 0.

In Refs. [20,23], the distribution of roots of (11) is discussed in detail. We present here
only the relevant results, providing a concise overview for further study without delving
into excessive details.

Lemma 4. For the polynomial Equation (11)

(i) If r0 < 0 , then (11) has at least one positive root;
(ii) If r0 ≥ 0 and ∆ = p2

0 − 3q0 ≤ 0 , then (11) has no positive roots;

(iii) If r0 ≥ 0 and ∆ = p2
0− 3q0 > 0 , then (11) has positive roots if and only if z∗1 = −p0+

√
∆

3 > 0
and h(z∗1) ≤ 0.

Now, suppose that Equation (11) has positive roots. Without loss of generality, we
assume that it has three positive roots, defined by z1, z2, and z3. Consequently, Equation (10)
then has three positive roots: ω1 =

√
z1, ω2 =

√
z2 and ω3 =

√
z3.

From (9), we can derive

τ
(j)
k =

1
ωk

{
arccos

[
n1ω2

k(ω
2
k −m1)− (m2ω2

k −m0)(n2ω2
k − n0)

(n1ωk)2 + (n2ω2
k − n0)2

]
+ 2jπ

}
, (12)

where k = 1, 2, 3; j = 0, 1, 2, . . ., then ±ωki is a pair of purely imaginary roots
of (8) when τ = τ

(j)
k .

Define
τ0 = τ

(0)
ko

= min
k∈{1,2,3}

τ
(0)
k . (13)

Note that when τ = 0, Equation (8) reduces to

λ3 + (m2 + n2)λ
2 + (m1 + n1)λ + m0 + n0 = 0. (14)

The above analysis proves that (8) has no purely imaginary roots for any τ ≥ 0 when
(11) has no positive roots. Thus, applying Lemmas 3 and 4 to Equation (8), we can obtain
the following result.

Lemma 5. For the transcendental Equation (8)

(i) If r0 ≥ 0 and ∆ = p2
0 − 3q0 ≤ 0, then all roots with positive real parts of (8) have the same

sum to those of the polynomial Equation (14) for all τ ≥ 0;
(ii) If either r0 < 0 or r0 ≥ 0, ∆ = p2

0 − 3q0 > 0, z∗1 > 0 and h(z∗1) ≤ 0, then all roots
with positive parts of (8) have the same sum to those of the polynomial Equation (14) for
τ ∈ [0, τ0).

Let λ(τ) = α(τ) + iω(τ) be a root of (8) near τ = τ
(j)
k satisfying α(τ

(j)
k ) = 0,

ω(τ
(j)
k ) = ωk. Noticing that λ is a continuously differentiable function of τ, substituting

λ(τ) into the left hand side of (8) and taking derivative with respect to τ, we can obtain

(3λ2 + 2m2λ + m1)
dλ

dτ
+ (2n2λ + n1)e−λτ dλ

dτ
− (n2λ2 + n1λ + n0)e−λτ

(
τ

dλ

dτ
+ λ

)
= 0.
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This gives(
dλ

dτ

)−1
=

(3λ2 + 2m2λ + m1) + (2n2λ + n1)e−λτ − (n2λ2 + n1λ + n0)τe−λτ

(n2λ2 + n1λ + n0)λe−λτ

=
(3λ2 + 2m2λ + m1)eλτ

(n2λ2 + n1λ + n0)λ
+

2n2λ + n1

(n2λ2 + n1λ + n0)λ
− τ

λ
.

Thus

sign
[

d(Reλ)

dτ

]
τ=τ

(j)
k

=sign

[
Re
(
(3λ2 + 2m2λ + m1)eλτ

(n2λ2 + n1λ + n0)λ
+

2n2λ + n1

(n2λ2 + n1λ + n0)λ
− τ

λ

)−1]
τ=τ

(j)
k

=signRe

 (m1 − 3ω2
k + 2m2ωki)

(
cos ωkτ

(j)
k + i sin ωkτ

(j)
k

)
−n1ω2

k + i(−n2ω2
k + n0)ωk

+
n1 + i2n2ωk

−n1ω2
k + i(−n2ω2

k + n0)ωk


=sign

1
R0

[{
(m1 − 3ω2

k) cos ωkτ
(j)
k − 2m2ωk sin ωkτ

(j)
k

}
(−n1ω2

k) +
{
(m1 − 3ω2

k) sin ωkτ
(j)
k

+2m2ωk cos ωkτ
(j)
k

}
(−n2ω2

k + n0)ωk − n2
1ω2

k + 2n2ω2
k(−n2ω2

k + n0)
]

=sign
1

R0

[
(3ω2

k −m1)ωk

{
n1ωk cos ωkτ

(j)
k + (n2ω2

k − n0) sin ωkτ
(j)
k

}
+2m2ω2

k

{
(n0 − n2ω2

k) cos ωkτ
(j)
k + n1ωk sin ωkτ

(j)
k

}
− n2

1ω2
k + 2n2ω2

k(−n2ω2
k + n0)

]
=sign

1
R0

[
(3ω2

k −m1)ωk{ω3
k −m1ωk}+ 2m2ω2

k{m2ω2
k −m0}

−n2
1ω2

k + 2n2ω2
k(−n2ω2

k + n0)
]

=sign
1

R0

[
(3ω2

k −m1)(ω
2
k −m1) + 2m2(m2ω2

k −m0)− n2
1ω2

k + 2n2ω2
k(−n2ω2

k + n0)
]

=sign
1

R0

[
3ω4

k + 2(m2
2 − 2m1 − n2

2)ω
2
k + (m2

1 − 2m0m2 + 2n0n2 − n2
1)
]

=sign
1

R0

[
3ω4

k + 2p0ω2
k + q0

]
=sign

ω2
k

R0

[
h′(ω2

k)
]

=sign
[

h′(ω2
k)
]

=sign
[
h′(zk)

]
,

where R0 = n2
1ω4

k +
(
n0 − n2ω2

k
)2, zk = ω2

k , and ωk are the three positive roots of
Equation (10). We observe that if h′(zk) 6= 0, then the following transversality conditions

d(Reλ)

dτ

∣∣∣∣
τ=τ

(j)
k

6= 0

are satisfied.
We recall that, under both relations (5) is violated, the equilibrium E+ of system (4)

with τ = 0 is unstable, and the polynomial Equation (14) then has at least one root with a
positive real part. In view of Lemma 5, the multiplicity of roots with positive real parts of
Equation (8) can change only if a root appears on or crosses the imaginary axis as the time
delay τ varies. Based on the above analyses, and with the Hopf bifurcation theorem for
functional differential equations, in summary we obtain the following result.



Mathematics 2023, 11, 2994 7 of 13

Theorem 1. Let τ
(j)
k and τ0 be defined by (12) and (13), respectively. For the delayed feedback

control system (4)

(i) If r0 ≥ 0 and ∆ = p2
0 − 3q0 ≤ 0, then the equilibrium E+ of system (4) is unstable

for all τ ≥ 0;
(ii) If either r0 < 0 or r0 ≥ 0, ∆ = p2

0 − 3q0 > 0, z∗1 > 0 and h(z∗1) ≤ 0, then the equilibrium
E+ of system (4) is unstable for τ ∈ [0, τ0);

(iii) If the conditions of (ii) are satisfied, and h′(zk) 6= 0, then system (4) undergoes a series of

Hopf bifurcations at the equilibrium E+ when τ = τ
(j)
k .

3. Numerical Simulations

In this section, we numerically validate the previous analytical findings. As an ex-
ample, we take the fixed values of c = 18.3, r = 51 and b = 5.7 in the delayed feedback
control system (4), and consider K and τ as the controlling parameters. Then, system (4)
takes the form: 

ẋ = −18.3x + 18.3y,
ẏ = 5.1x + y− xz + K[y− y(t− τ)],
ż = −5.7z + xy,

(15)

The system (15) has three equilibria E0 = (0, 0, 0), E− = (−x0,−y0, z0) and E+ =
(x0, y0, z0), where x0 = y0 =

√
296.4 and z0 = 52. Clearly, when K = 0 or τ = 0,

system (15) is chaotic (cf. Figure 1).
From the discussions in the previous section, we get the corresponding characteristic

equation of system (15) at E+

λ3 + (23− K)λ2 + (395.01− 24K)λ + 10848.24− 104.31K + (λ2 + 24λ + 104.31)Ke−λτ = 0. (16)

In the case of τ = 0, (16) reduces into

λ3 + 23λ2 + 395.01λ + 10848.24 = 0. (17)

By a direct calculation we get the three roots of Equation (16):

λ1 ≈ −24.75, λ± ≈ 0.87± 20.92i.

In particular, we obtain the following expressions for the expected parameters

p0 = 2K− 261.02,

q0 = −342986.14 + 7534.18K,

r0 = 2263159.83(52− K),

∆ = p2
0 − 3q0 = 4K2 − 23646.62K + 1097089.86.

From Theorem 1, we know that when K > 52, the characteristic (16) always has roots with
positive real parts for all τ > 0. Thus, for the purpose of controlling chaos, we consider
K < 52, and we also recognize that ∆ > 0 if K < 0. So we take K = −2.

In this case, we have

h(z) = z3 − 265.02z2 − 358054.66z + 122210630.76. (18)

It follows from (12) and (18) that
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z1 ≈ 407.0160, z2 ≈ 481.5423, z3 ≈ −623.5383,

ω1 ≈ 20.1746, ω2 ≈ 21.9441.

τ
(j)
1 ≈ 0.0714 +

2jπ
ω1

, h′(z1) ≈ −76719,

τ
(j)
2 ≈ 0.0757 +

2jπ
ω2

, h′(z2) ≈ 82358,

∆ ≈ 1144399.58, z∗1 ≈ 444.93, h(z∗1) ≈ −1.4832× 106.

In particular, we get τ0 = min{τ(0)
1 , τ

(0)
2 } = τ

(0)
1 and Hopf bifurcation values

τ
(0)
1 ≈ 0.0714 < τ

(0)
2 ≈ 0.0757 < τ

(1)
2 ≈ 0.3620 < τ

(1)
1 ≈ 0.3828 < · · · .

Based on these calculations and Theorem 1, we therefore know that the steady states
E± of system (15) are unstable when τ ∈ [0, τ

(0)
1 ). This property is illustrated by the

numerical simulations in Figures 2 and 3. When τ
(0)
1 < τ < τ

(0)
2 , the steady states E± are

asymptotically stable (cf. Figure 4).
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Figure 2. Instability of the steady states E+ ((left) column) and E− ((right) column) of system (15).
Here K = −2, τ = 0.03, initial value (x(0), y(t), z(0)) = (20, 20, 50), t ∈ [−0.03, 0].
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When τ = τ
(j)
1 or τ = τ

(j)
2 , system (15) undergoes a sequence of Hopf bifurcations

near the equilibria E±. Moreover, properties of the bifurcated periodic solutions, such as
stability and direction, can be clearly demonstrated by applying the normal form theory
and the center manifold reduction for functional differential equations. We will not cover
them in the present paper. To illustrate and test the existence of the stable bifurcating
periodic solutions that might appear in system (15), we only give a tentative computation.
Let τ = 0.22 > τ

(0)
2 so that the steady states E± of system (15) are unstable. Meanwhile, a

family of periodic orbits bifurcate from E± might emerge. This property is illustrated by
the numerical simulations in Figure 5.

-30

30

x

-40

40

y

20

120

z

Figure 3. Chaos still exists in system (15). Here K = −2, τ = 0.03, initial value
(x(0), y(t), z(0)) = (20, 20, 50), t ∈ [−0.03, 0].
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Figure 4. The local asymptotic stability of the steady states E+ (left) and E− (right) of system (15).
Here K = −2, τ = 0.073, initial value (x(0), y(t), z(0)) = (20, 20, 50), t ∈ [−0.073, 0].
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Figure 5. Instability of E± and stable bifurcating periodic solutions of the system (15) from E±. Here
K = −2, τ = 0.22, initial value (x(0), y(t), z(0)) = (20, 20, 50), t ∈ [−0.22, 0].

The above calculated results indicate that when the steady states are stable or the bifur-
cating periodic solutions are asymptotically stable, chaos will disappear, which means that
the original chaotic attractor of system (15) can be effectively controlled when the proper
control parameters are selected. At this point, a specific control scheme for controlling
chaos is now complete, and the operational processing goes as follows.

First, note that when K = 0 or τ = 0, system (15) becomes
ẋ = −18.3x + 18.3y,
ẏ = 5.1x + y− xz,
ż = −5.7z + xy,

(19)

and it is chaotic (cf. Figure 1). In order to achieve the purpose of controlling chaos, we add
the delayed feedback item to system (19) at a certain moment, such as at t = 8. Then, the
dynamical character of system (19) can change. Figure 6 shows the state response curves of
x, y, and z. It is interesting to observe that after adding the feedback controller, system (19)
will eventually converge to the steady states or the periodic solutions, depending on the
different control parameters.
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Mathematics 2023, 11, 2994 11 of 13

-60

-40

-20

0

20

40

60

y

0 2 4 6 8 10 12 14 16 18
t

-60

-40

-20

0

20

40

60

y

0 5 10 15 20
t

20

30

40

50

60

70

80

90

100

z

0 5 10 15 20

t

0

20

40

60

80

100

z

0 5 10 15 20

t

Figure 6. Response curves of the components of system (19) when adding the delayed feedback item
−2[y− y(t− τ)] to its second equation. The figures in the (left) and (right) columns correspond to
τ = 0.073 and τ = 0.22, respectively. Here, the initial value (x(0), y(0), z(0)) = (20, 20, 50).

4. Conclusions

In this paper, a time-delayed feedback control approach was used to control the chaotic
behavior of possible appearance in the Shapovalov model (2). By adding a time-delayed
force to the second equation of system (2), we investigated the effect of time delay on the
stability of equilibria E± = (±x0,±y0, z0) of system (2). Consequently, we have proposed
a simple but effective scheme that can be used to control and suppress the occurrence of
the chaotic attractor in system (2). Both theoretical analysis and numerical simulations
demonstrate that the chaos can be changed into equilibrium states or stable periodic orbits
by using this scheme. This way, the unpredictable chaotic behaviors may be suppressed,
which improves the dynamic and static performance of the economic system. This is
significant for the study on state prediction of economic processes.

It should also be noted that the Shapovalov model (2) and the corresponding control
model (4) are two completely different systems. Hence, their dynamic characteristics may
not be the same. Further details about this sort of information are beyond the scope of this
article. However, note that when adding time-delayed term K[y− y(t− τ)] to the second
equation of system (2) only, the other two equations of (2) remain unchanged, and it then
becomes (4). From a modeling standpoint, the initial value conditions are changing with
the introduction of the time-delayed feedback item in Shapovalov model (2). That is, in the
study of dynamics of (2), we are of the opinion that the growth of the variable y(t) with
time t not only depends on the current state y(0), but also depends on the previous states
y(−τ). In fact, the factor affecting every indicator of a firm is various, and it is indisputable
that the volume of the upfront investment of fixed capital is one of the main factors. Given
that the y in model (2) stands for fixed capital of a mid-size firm, it is believed that the delay
functional differential Equation (4) is a more accurate mathematical description for the
firm than the ordinary differential Equation (2). The analysis and simulation results in this
paper also show that the proposed chaos control scheme based on model (4) is reasonable
and feasible.
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In the present paper we only add a time-delayed term to the second equation of (2)
for the sake of simplicity. As a result, we have obtained a control system with delay that is
capable of controlling chaos. It is also worth pointing out that, in theory by adding time-
delayed force to any or all of the equations in (2), we can get different delayed feedback
control systems, which can be used to realize the purpose of chaos control. It should
also be noted that we used a standard linearization method to analyze the stability of
the equilibrium point of the delayed feedback system (4). The obtained result about the
dynamical behavior of the equilibrium point is of a local character rather than a global one.
It would be difficult to give the exact scope of parameter values in which the equilibrium
point is locally asymptotically stable, as this requires the global stability analysis, so we
will address this important problem in future work.
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