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Abstract: A signed graph is an ordered pair Σ = (G, σ), where G is a graph and σ : E(G) −→
{+1,−1} is a mapping. For e ∈ E(G), σ(e) is called the sign of e and for any sub-graph H of
G, σ(H) = ∏

e∈E(H)
σ(e) is called the sign of H. A signed graph having a sign of each cycle +1

is called balanced. Two vertices in a graph G are called antipodal if dG(u, v) = diam(G). The
antipodal graph A(G) of a graph G is the graph with a vertex set that is the same as that of G,
and two vertices u, v in A(G) are adjacent if u, v are antipodal. By the d-antipodal graph GA

d of
a graph G, we refer to the union of G and A(G). Given a signed graph Σ = (G, σ), the signed
graph ΣA

d = (GA
d , σd) is called the d-antipodal signed graph of G, where σd is defined as follows:

σd(e) = σ(e) if e ∈ E(G) and otherwise, σd(e) = ∏
P∈Pe

σ(P), where Pe is the collection of all diametric

paths in Σ connecting the end vertices of an antipodal edge e in ΣA
d . In this article, the balance

property and canonical consistency of d-antipodal signed graphs of Smith signed graphs (connected
graphs having a highest eigenvalue of 2) are studied.

Keywords: signed graphs; balanced and consistent signed graphs; marked graphs; Smith graphs;
antipodal signed graphs

MSC: 05C10

1. Introduction

The book [1] by Harary may be referred for basic terminologies in graph theory. A
graph G is an ordered pair (V, E), where V is a non-empty set whose elements are called
vertices and E is a collection of unordered pair of distinct vertices whose elements are called
edges of the graph G. We use V(G) and E(G) to denote the vertex set and the edge set of
the graph G. By a signature on a graph G, we mean a function σ : E(G) → {+1,−1}.
A graph G together with a signature σ is called a signed graph and will be denoted by
Σ = (G, σ). The graph G is referred as the underlying graph of the signed graph Σ = (G, σ).
The signed graph with all positive (negative) edges having the underlying graph G is
denoted by G+( G−). By the vertex set of Σ, we refer to the vertex set of the underlying
graph G. For any edge e ∈ E(G), σ(e) is referred to as the sign of the edge e in Σ.

By the sign of a sub-graph H of a signed graph Σ = (G, σ), we mean the product of
the sign of the edges in H, and it is denoted by σ(H). The concept of a signed graph was
first introduced by Harary in [2] to model social problems. A signed graph is said to be
balanced if every cycle in it has the sign +1. In [2], Harary characterized balanced signed
graphs as the signed graph whose vertex set can be partitioned into V1, V2 such that any
negative edge connects a vertex from V1 to a vertex in V2 and a positive edge connects a
pair of vertices either from V1 or from V2. We refer to such a partition of a balanced signed
graph as Harary’s partition.
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The term “antipodal” was first coined by R. Singleton [3] to refer to a pair of vertices,
the distance between which is equal to the diameter of the graph. By antipodes of a vertex
in a graph, we refer to the vertices that are antipodal to it. Given a graph G(V, E), by its
antipodal graph A(G), we refer to the graph with vertex set V(A(G)) = V(G) such that for
u, v ∈ V(A(G)), {u, v} ∈ E(A(G)) if u and v are antipodes in G. The concept of an antipode
was first used to establish regularity in Moore graphs, i.e., finite undirected graphs which
are regular, connected with diameter k ≥ 1 and girth 2k + 1. D H Smith [4] had used a ver-
sion of antipodal graphs while studying distance transitive graphs to characterize primitive
and imprimitive graphs. R Aravamudhan [5] studied the behavior of antipodal graphs
with regard to completeness, connectedness, etc., and they derived necessary and sufficient
conditions for a graph to be an antipodal graph of a graph in terms of its compliment.
Acharya and Acharya [6] have studied self antipodal graphs and given important charac-
terizations. Further works can be found in [7]. S-antipodal graphs have been introduced by
Nair and Vijaykumar [8] as an induced sub-graph of antipodal graphs whose vertex set
comprises those vertices having maximum eccentricity in which two vertices are joined
by an edge if they are at a diametrical distance. P S K Reddy et al. [9] introduced Smaran-
dachely antipodal signed digraphs and obtained some structural characterizations. In [10],
Reddy and Prashanth have introduced the S-antipodal signed graph A∗(Σ) of a signed
graph Σ = (G, σ) inspired by the complement of a graph in which the sign of an edge uv is
the product of canonical marking of u and v and reported several characterizations of the
balanced S-antipodal signed graph of a signed graph.

In this article, the concept of a d-antipodal graph of a graph has been introduced.
This has been inspired by real-life situations where we want to study the changes brought
in the network by introducing antipodal edges while retaining the original edges of the
network. Such a graph has many real-life applications in networking, defense, diplomatic
relationships, etc. For example, consider a graph representing the diplomatic relationship
among various countries. It might be interesting to investigate how the network will
behave if diplomatic relationship develops between its antipodes.

2. Preliminaries

Given a graph G, its antipodal graph, A(G), is a graph that has a vertex set that is the
same as that of G, and two vertices in A(G) are adjacent if they are at a distance of diam(G)
in G. By the d-antipodal graph GA

d of a graph G, we refer to the union of the graphs G and
A(G).

Remark 1. The following are true for d-antipodal graphs:

• The d-antipodal graph of an even cycle is 3-regular because each vertex in an even cycle has
exactly one antipodal vertex.

• The d-antipodal graph of an odd cycle is 4-regular because each vertex in an even cycle has
exactly two antipodal vertices.

• The d-antipodal graph of K1,n for n ≥ 2 is n-regular because every pair of pendant vertices in
K1,n consists of antipodes.

• Cn and K1,4 are the only Smith graphs whose d-antipodal graphs are regular.

Given a signed graph Σ = (G, σ), the d-antipodal signed graph of Σ, denoted by ΣA
d ,

is the signed graph (GA
d , σd) with sign function σd defined as follows:

σd(e) =

σ(e), if e ∈ E(G)

∏
P∈Pe

σ(P), otherwise

andPe is the collection of all diametric paths in Σ connecting the end vertices of an antipodal
edge e in ΣA

d .

Remark 2. Restriction of σd to Σ = (G, σ) is σ.
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A marking on a graph G is a function µ : V(G)→ {+1,−1}. A graph G provided
with a marking µ is called a marked graph. A signed graph Σ = (G, σ) provided with a
marking µ is called a marked signed graph, and it is denoted by Σµ.

Let µ be a marking on a graph G. By the mark of a sub-graph H of G, we mean the
product of the marks of the vertices in H, and it is denoted by µ(H). The concept of a
marked graph was first introduced by Harary and Cartwright in [11] to model a social
problem. A marked graph is said to be consistent if every cycle in it has the mark +1. The
following theorem characterizes marked graphs.

Theorem 1 ([12]). Any marked graph with a mark of each vertex +1 is consistent.

Proof. Let Σ be a marked graph with a mark of each vertex +1. Since in any cycle of Σ,
each vertex will have a mark +1, it will be consistent. Hence, Σ is consistent.

Theorem 2 ([12]). Any marked graph with a mark of each vertex −1 is consistent if and only if its
underlying graph is bipartite.

Proof. Let Σ be a marked graph with a mark of each vertex −1. Then, each cycle in Σ will
be consistent if and only if it has an even number of vertices. Since a graph is bipartite if
and only if each of its cycles is even, so the result follows.

The following corollary is immediate from Theorem 2.

Corollary 1. If a marked graph is consistent, then the sub-graph induced by its vertices with a
mark −1 is bipartite.

Furthermore, in [13], it was noted that a marked graph is consistent if and only if for
any spanning tree T of it, all its fundamental cycles are positive and all common paths
shared by a pair of fundamental cycles have end points with the same marking. For more
literature on consistency, we refer to [13–18].

Given a signed graph ∑ = (G, σ), we can associate a natural marking

µ : V(Σ)→ {−1,+1}

as follows: For any vertex v ∈ V(Σ)

µ(v) =

+1, if v is isolated;

∏
u∈N(v)

σ(uv), otherwise;

where N(v) is the set of all vertices adjacent to v in Σ. This marking µ is known as the
canonical marking of the signed graph Σ, and we use Σµ to denote the corresponding marked
signed graph. A signed graph Σ is said to be canonically consistent if it is consistent with
respect to the canonical marking.

Remark 3. All signed cycles are canonically consistent.

Unless otherwise stated, for a given signed graph Σ, we use µ to represent the canonical
marking on Σ and µd to represent the canonical marking on ΣA

d .
Throughout this article, edges of the underlying graph are represented by bold lines,

antipodal edges are represented by dotted lines and paths are represented by dashed lines.
A blue color used to represent edges with the +1 sign, and a red color is used to represent
edges with the −1 sign of a signed graph.
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3. d-Antipodal Signed Graphs

In the theory of graph spectra, an important role is played by graphs with the largest
eigenvalue of 2. In the literature, these graphs are known as Smith graphs [19]. There are
six different classes of Smith graphs, as shown in Figure 1.
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Remark 4. A Smith signed graph is balanced and consistent if and only if either it is acyclic or it
has an even number of negative edges.

The Smith signed graph (C+
n , σ) is balanced and consistent, and so is its d-antipodal ΣA

d .
The Smith signed graph Σ shown in Figure 2 is balanced and consistent, but its d-antipodal
ΣA

d is neither balanced nor consistent. In this article, the balanced and consistent Smith
signed graphs are characterized that have balanced and consistent d-antipodal values.
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Theorem 3. Let Σ = (G, σ) be a balanced signed graph and V1, V2 be Harary’s partition of its
vertex set. Then, ΣA

d is balanced if and only if for each pair of antipodes u ∈ V1, v ∈ V2, the number
of distinct diametric paths in Σ joining u, v with a sign of −1 is odd.

Proof. Suppose ΣA
d is balanced. Let u, v ∈ V be two antipodes. On the contrary, let us

assume that there is even number of distinct negative u− v diametric paths P1, P2, ..., Pn in
Σ. Let a be the antipodal edge joining u and v in ΣA

d . Clearly, σd(a) = +1 is the product
of the signs of an even number of diametric paths with a sign of −1. Consider a cycle
Pia, 1 ≤ i ≤ n, then σd(Pia) = −1. This contradicts that ΣA

d is balanced. Hence, the number
of distinct negative paths must be odd.

Conversely, suppose that for each pair of antipodes u ∈ V1, v ∈ V2, the number of
distinct u− v diametric paths in Σ with a sign of −1 is odd. We want to show that ΣA

d is
balanced. We complete the proof by showing that V1 and V2 is Harary’s partition for ΣA

d .
Let e = {u, v} be any edge in ΣA

d . If e ∈ E(Σ), then there is nothing to prove. So, let e
be an antipodal edge.
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Case 1: σd(e) = −1. In this case, there is a u− v diametric path in Σ with a negative
sign and hence with an odd number of negative edges. Since each negative edge in Σ
connects a vertex from V1 to a vertex from V2, so u, v cannot be from the same set of the
partition V1, V2.

Case 2: σd(e) = +1. In this case, either all the diametric u− v paths in Σ has a sign
of +1 or the number of distinct u− v diametric paths in Σ with a sign of −1 is even. The
existence of u − v diametric paths in Σ with a sign of −1 demands that u, v should be
from different parts of the partition. So, by assumption, the second possibility is ruled out.
Hence, either u, v ∈ V1 or u, v ∈ V2.

Thus every edge in ΣA
d with sign +1 connects two vertices from the same part of the

partition V1, V2 and every edge in ΣA
d with sign −1 connects a vertex from V1 to a vertex in

V2. Therefore, V1, V2 is a Harary’s partition of the vertex set of ΣA
d and so it is balanced.

Remark 5. For any tree T, its antipodal edges are the chords of TA
d with respect to the spanning

tree T.

Remark 6. For any tree T, the fundamental cycles of TA
d with respect to the spanning tree T

are balanced.

4. Smith Signed Graphs

Let Σ = (Cn, σ). The d-antipodal graph of a cycle does not have any new edge for
n = 3. However, diam(Cn) = bn/2c, where bn/2c stands for the greatest integer less than
or equal to n/2 . However

|E(ΣA
d )|=

{
3n/2, if n is even
2n, if n is odd.

An immediate question is whether the d-antipodal signed graph of a balanced cycle is
balanced or not? Here, we have characterized the d-antipodal signed graph of cycles and
obtained some results on balancedness, consistency and regularity.

Proposition 1. Let Σ = C−2n. Then, ΣA
d is balanced if and only if 2|n.

Proof. Let the vertices of Σ be labeled by v1, v2, ..., v2n in cyclic order. Then, V1 = {vi | i =
1, 3, · · · , 2n− 1} and V2 = {vi | i = 2, 4, · · · , 2n} gives a partition of V(Σ) in which each
edge of G connects a vertex from V1 to a vertex from V2. Since Σ is balanced, this partition
also serves as Harary’s partition of the balanced graph Σ. We note that if e is an antipodal
edge in ΣA

d , then σd(e) = +1.
First, assume that ΣA

d is balanced. Then, the cycle v1v2 · · · vn+1v1 in ΣA
d must be

balanced. As this cycle contains n negative edges, so n must be even.
Conversely, suppose that n is even. Then, each antipodal edge in ΣA

d is positive and
both the end vertices of such an edge is either from V1 or from V2. So, V1, V2 forms a
partition of V(ΣA

d ) such that each negative edge connects a vertex from V1 to a vertex from
V2 and positive edges connect vertices within the same set. Hence, ΣA

d is balanced.

Proposition 2. Let Σ = (C2n, σ) be a balanced cycle with Harary’s partition V1, V2 of V(Σ).
Then, ΣA

d is balanced if and only if vi and vi+n are in the same partition for each 1 ≤ i ≤ n.

Proof. First, suppose ΣA
d is balanced and let V1, V2 be Harary’s partition of V(ΣA

d ). Then,
each cycle in ΣA

d is balanced and hence Σ is also balanced. Furthermore, since E(Σ) ⊂ E(ΣA
d ),

so V1, V2 is also Harary’s partition of V(Σ). Since Σ has an even number of negative edges,
so each antipodal edge in ΣA

d must have a sign of +1. As for each i = 1, 2, · · · , n, the
vertices vi, vi+n are antipodes, so both must be either in V1 or in V2.

Conversely, since Σ is balanced, so it has even number of negative edges. Hence
each antipodal edges in ΣA

d must have sign +1. Since the antipodal vertices of Σ are vi,
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vi+n for each i = 1, 2, · · · , n, so V1, V2 also forms Harary’s partition of V(ΣA
d ). So, ΣA

d is
balanced.

We have the following characterization for odd cycles.

Proposition 3. Let Σ = (C2n+1, σ); then, ΣA
d is balanced if and only if Σ is balanced.

Proof. First, suppose that Σ is balanced with Harary’s partition of V(Σ) as V1, V2. In Σ,
each diametric path has a length of n and there is exactly one diametric path between each
pair of antipodes. Let us label the vertices of Σ using v1, v2, · · · , v2n+1 in cyclic order.

Each vertex vi ∈ V, 1 ≤ i ≤ n has two antipodes vi+n, vi+n+1. Without a loss of
generality, suppose that vi ∈ V1 and let e = {vi, vi+n}, e′ = {vi, vi+n+1} be the two
associated antipodal edges.

Case 1: Suppose, σd(e) = +1. Then, the number of negative edges in the diametric
path joining the vertices vi and vi+n in Σ must be even. Since each negative edge in Σ joins
a vertex from V1 to a vertex from V2, so both the end vertices of e must be in the same part,
i.e., vi+n ∈ V1 .

Case 2: Suppose, σd(e) = −1. Then, the number of negative edges in the diametric
path joining the vertices vi and vi+n in Σ must be odd. Since each negative edge in Σ joins
a vertex from V1 to a vertex from V2, so the two end vertices of e must be from different
parts, i.e., vi+n ∈ V2.

A similar argument holds for the end vertices of the antipodal edge e′.
Thus, each antipodal edge with a sign of +1 connects vertices from the same part and

an antipodal edge with a sign of −1 connects a vertex from V1 to a vertex from V2. Hence,
V1 and V2 gives a partition of V(ΣA

d ) such that each negative edge of ΣA
d connects vertices

from different sets and each positive edge connects vertices from the same set. That is,
V1, V2 serves as Harary’s partition of the vertices in ΣA

d . Hence, ΣA
d is balanced.

Remark 7. If the sign of each edge in a signed graph Σ is +1, then Σ and ΣA
d both are canonically

consistent.

However, (Σ, µ) being canonically consistent need not imply that its d-antipodal
marked graph is canonically consistent . For example, the graph in Figure 2 is canonically
consistent but its d-antipodal is not canonically consistent . Hence, the conditions under
which the canonical consistency of signed graphs is invariant under the d-antipodal opera-
tion of canonically consistent signed graphs is essential. The following results give some
characterization for signed cycles.

Proposition 4. If Σ = (C−n , σ), then ΣA
d is canonically consistent for any n ∈ N.

Proof. We observe that µ(vi) = +1, vi ∈ V(Σ) for each i.
Case 1: n is even. Suppose n = 2l for some l ∈ N. Then, σd(ail) = +1; hence,

µd(vi) = +1 remains positive in (ΣA
d , µd). Thus, it is canonically consistent.

Case 2: n is odd. In this case, each antipodal edge in ΣA
d will have the same sign.

Since each vertex is incident with exactly two antipodal edges, so each vertex in ΣA
d has a

canonical marking of +1. Hence, the result follows.

Corollary 2. Let Σ = C−2n. Then, ΣA
d is balanced and canonically consistent if and only if 2|n.

Lemma 1. Let Σ = (C2n, σ). If there exist antipodes u, v ∈ V(Σ) such that µ(u)µ(v) = −1,
then ΣA

d is not canonically consistent .

Proof. Let Σ = (C2n, σ) have antipodes u, v ∈ V(Σ) with µ(u)µ(v) = −1. Since in ΣA
d ,

{u, v} is the only edge that is incident with u or v apart from the edges that were present
in Σ, so the marks of u and v remain opposite in ΣA

d . At most, their marks may become
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interchanged depending on whether Σ is balanced or not. Therefore, µd(u)µd(v) = −1. Let
Puv and P′uv be the two diametric paths in Σ joining u to v.

If possible, suppose that ΣA
d is canonically consistent. Let C1, C2 be the cycles in ΣA

d
consisting of the edge {u, v} and the paths Puv, P′uv, respectively. Then, by the consistency
of ΣA

d , each of the cycles C1, C2 has an even number of vertices with a mark of−1. However,
these two cycles have exactly one vertex with the mark of −1 in common, namely u or v.
So, the cycle Σ in ΣA

d which the symmetric difference of C1 and C2 has an odd number of
vertices with a mark of −1. This contradicts our assumption that ΣA

d is consistent. Hence,
the result follows.

Proposition 5. Let Σ = (C2n, σ) be balanced. Then, ΣA
d is canonically consistent if and only if

Σ = C−2n or Σ = C+
2n.

Proof. First, assume that Σ = C−2n or Σ = C+
2n. In each case, the number of negative edges

in Σ is even. Since the two diametric paths connecting a pair of antipodes contain each
edge of Σ exactly once, so the sign of an antipodal edge in ΣA

d is +1. Hence,

µd(v) = µ(v) = +1 for all v ∈ V(ΣA
d ).

So, ΣA
d is canonically consistent.
Conversely, suppose that Σ has edges with a sign of +1 as well as with a sign of −1.

Since Σ is balanced, so the total number of negative edges in both the diametric paths
connecting a pair of antipodes is even. Hence, the sign of each antipodal edge in ΣA

d is
positive. If we have antipodes u, v ∈ V(Σ) such that µ(u)µ(v) = −1, then by Lemma 1, ΣA

d
is not canonically consistent.

So, let for each pair of antipodes u, v ∈ V(Σ), µ(u) = µ(v). Then, Σ must have a pair
of antipodes with negative marking.

If for all u ∈ V(Σ), µ(u) = −1, then the signs of the edges of Σ are alternately +1 or
−1. Since Σ is balanced and half of the edges in it are negative, so n must be even. Thus,
both the cycles in ΣA

d that are generated by an antipodal edge consist of an odd number of
vertices each with mark −1 and so, ΣA

d is not canonically consistent.
Otherwise, let x, y ∈ V(Σ) be antipodes such that µ(x) = µ(y) = +1. Then, both the

edges incident with x are of the same sign and those with y are of same sign. We consider
the following cases:

Case 1. The edges incident with x and those incident with y are opposite in sign,
as shown in Figure 3. In this case, each of the cycles in ΣA

d generated by the antipodal
edge {x, y} contains an odd number of vertices with a mark of −1, and so, both are not
consistent. Hence, ΣA

d is not canonically consistent.
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Case 2. The edges incident with x and those incident with y are of the same sign. As we
move along the cycle clockwise, starting from x, let x′ be the first vertex with µ(x′) = −1.
The existence of x′ is guaranteed, because it has at least two edges with different signs.
Furthermore, we must obtain such a vertex before reaching y, because antipodes have the
same sign. Notice that the signs of all the edges in the x–x′ path in Σ not containing y are
the same.

Let s, t be the vertices adjacent to x′ in Σ, as shown in Figure 4. Let s′, y′, t′ be the
antipodes of s, x′, t in Σ, respectively. Since antipodal vertices have the same marking, the
signs of all the edges in the y − y′ path in Σ not containing x are the same sign as that
of the edges incident with x. So, the pair of edges {s, x′}, {s′y′} has the same sign and
the pair of edges {x′, t}, {y′, t′} has the same sign. Since µ(x′) = µ(y′) = −1, each of the
cycles generated by introducing the antipodal edge {x′, y′} in Σ will have an odd number
of vertices with a mark of −1 in ΣA

d , and hence, these cycles are not consistent in ΣA
d . So,

ΣA
d is not canonically consistent. Hence, the proof is complete.
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Corollary 3. Let Σ = (C2n, σ) be balanced. Then, ΣA
d is balanced and canonically consistent if

and only if either of the following holds:

1. Σ = C−2n and n is even.
2. Σ = C+

2n.

Theorem 4. Let Σ = (C2n+1, σ) and n > 1. Then, ΣA
d is canonically consistent if and only if

µd(u) = +1 for every vertex u in ΣA
d .

Proof. Let Σ = (C2n+1, σ). If µd(u) = +1 for every vertex u in ΣA
d , then obviously ΣA

d is
consistent.

Conversely, let ΣA
d have a vertex u with µd(u) = −1. We need to show that ΣA

d is not
consistent. We shall prove this by the method of contradiction. If possible, suppose that ΣA

d
is consistent. Let v, w be the antipodes of u. Let x be the vertex adjacent to v other than w
and let y be the vertex adjacent to w other than v in Σ.

Let C1 be the cycle in ΣA
d consisting of the antipodal edge {u, v} and let u− v be the

sub-path of Σ containing x. Let C2 be the cycle in ΣA
d consisting of the antipodal edge

{u, w} and let u− w be the sub-path of Σ containing y. Let C3 be the triangle uvwu. As
ΣA

d is consistent, each C1, C2, C3 and Σ are consistent. Now, C3 is consistent, which implies
µd(v)µd(w) = −1. Without a loss of generality, let µd(v) = −1. Then, µd(w) = +1 and the
u− v sub-path in Σ containing x should have an even number of vertices with a mark of
−1 in ΣA

d . In addition, the u− w sub-path in Σ containing y should have an even number
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of vertices with a mark of −1 in ΣA
d . Therefore, the number of vertices in ΣA

d with a mark
of −1 is odd and hence µd(Σ) = −1, which is a contradiction. Hence, ΣA

d cannot be
consistent.

Proposition 6. Let Σ = (C2n+1, σ) be balanced and n > 1. If Σ has three consecutive edges
with signs in the order (i) − 1,+1,+1 or (ii) + 1,−1,+1 or (iii) − 1,−1,−1, then ΣA

d is
not consistent.

Proof. Consider four vertices v1, v2, v3, v4 in Σ such that

{v1, v2}, {v2, v3}, {v3, v4} ∈ E(Σ).

Let the antipodes of v1, v2, v3, v4 be a, b; b, c; c, d; d, e, respectively.
(i) Let σ({v1, v2}) = −1, σ({v2, v3}) = +1, σ({v3, v4}) = +1. Then, by Theorem 4

µd(v) = +1, ∀v ∈ V(ΣA
d )

and so σd({v3, c}) = σd({v3, d}). If possible, let ΣA
d be consistent.

Case 1. σd({v3, c}) = σd({v3, d}) = +1. Since Σ is balanced, so σd({d, c}) = +1.
Now, σd({v3, c}) = σd({d, c}) = σd({v2, v3}) = +1 implies that σd({v2, c}) = +1 and
using the consistency of ΣA

d , we conclude σd({v2, b}) = −1. So, σd({b, c}) = −1. Hence,
µd(c) = −1, which is a contradiction to Theorem 4. Thus, ΣA

d is not consistent. (Figure 5 is
a representation of this case.)
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Case 1. σd({v3, c}) = σd({v3, d}) = +1. Since Σ is balanced, so σd({d, c}) = +1. Now, 286

σd({v3, c}) = σd({d, c}) = σd({v2, v3}) = +1 implies that σd({v2, c}) = +1 and using the 287

consistency of ΣA
d we conclude σd({v2, b}) = −1. So, σd({b, c}) = −1. Hence, µd(c) = −1, 288

a contradiction to the Theorem 4. Thus, ΣA
d is not consistent.(Figure 5 is a representation 289
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Case 2. σd({v3, c}) = σd({v3, d}) = −1. Since Σ is balanced, so σd({d, c}) = +1. 291
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Figure 5. Representative diagram: Case 1.

Case 2. σd({v3, c}) = σd({v3, d}) = −1. Since Σ is balanced, so σd({d, c}) = +1. Now,
σd({v3, v2}) = σd({d, c}) = +1 and σd({v3, d}) = −1 implies that σd({v2, c}) = −1 and
using the consistency of ΣA

d , we conclude σd({v2, b}) = +1. So, σd({b, c}) = −1 (Refer to
the Figure 6). Hence, µd(c) = −1, which is a contradiction to Theorem 4. Thus, ΣA

d is not
consistent.
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c1redundant: σd(v3d) = +.
How-
ever,
this
im-
plies
σ(Σ) = σ(v3v2...cv3)× σ(v3v4...cv3)× σ(dc) = −
and
hence
con-
tra-
dicts
that
Σ
is
bal-
anced.

c2 Text
added.

c3 Text
added.

c1to the Figure 6). Hence, µd(c) = −1, a contradiction to the Theorem 4. Thus, ΣA
d is not 294

consistent. 295
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315

Case 2: σd({v2, c}) = σd({v2, b}) = +1. Proceeding in the way as we have taken in 316

case 1, we can show that Σ is not consistent, a contradiction. 317

Hence ΣA
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edge with sign +1 in the graph there will be exclusive two edges with sign −1. This 327

implies that 2n+ 1 is a multiple of 3. Let 2n+ 1 = 3k. Then k must be odd and the number 328
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d . On the contrary, 329
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Figure 6. Representative diagram: Case 2.
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(ii) Let σ({v1, v2}) = +1, σ({v2, v3}) = −1, σ({v3, v4}) = +1. Then, by Theorem 4

µd(v) = +1, ∀v ∈ V(ΣA
d )

and so σd({v2, c})σd({v2, b}) = −1. If possible, let ΣA
d be consistent.

Case 1: σd({v2, c}) = −1 and σd({v2, b}) = +1. Since Σ is balanced, so σd({b, c}) = −1.
Therefore, σd({v3, c}) = +1 and a consistency of ΣA

d implies σd({v3, d}) = −1. Hence,
σd({d, c}) = +1, which in turn implies that σd({v3, d}) = +1. Therefore, µd(v3) = −1.

Case 2: σd({v2, c}) = +1 and σd({v2, b}) = −1. In this case also, applying an argu-
ment similar to Case 1, we can show that µd(v3) = −1.

Hence, in either case, ΣA
d has a vertex with a sign of −1, which is a contradiction. So,

ΣA
d is not consistent.

(iii) Let σ({v1, v2}) = −1, σ({v2, v3}) = −1, σ({v3, v4}) = −1. Then, by Theorem 4

µd(v) = +1, ∀v ∈ V(ΣA
d )

and so σd({v2, c}) = σd({v2, b}). If possible, let ΣA
d be consistent. Since Σ is balanced, it has

at least one edge with sign +1.
Case 1: σd({v2, c}) = σd({v2, b}) = −1. In this case, since Σ is balanced and each of

the antipodal paths connecting v2, c and v2, b has an odd number of negative edges, so
σd({b, c}) = +1. Now, σd({v2, b}) = −1 implies that the antipodal path connecting v2 and
c has an odd number of negative edges and hence the antipodal path joining v3 and c has
an even number of edges with a sign of −1. So, σd({v3, c}) = +1. Now, the consistency
of ΣA

d implies that σd({v3, d}) = +1, which in turn implies that σd({c, d}) = −1. Finally,
σd({v3, c}) = σd({v3, d}) = +1 implies that each of the antipodal paths connecting v3, c
and v3, d has an aeven number of edges with a sign of −1. Since the union of the antipodal
paths connecting v3, c and v3, d together with the edge {c, d} is Σ, so σd(Σ) = −1, which is
a contradiction.

Case 2: σd({v2, c}) = σd({v2, b}) = +1. Proceeding in the way as we have taken in
case 1, we can show that Σ is not consistent, which is a contradiction.

Hence, ΣA
d is not consistent.

Theorem 5. Let Σ = (C2n+1, σ) be balanced and Σ 6= C+
2n+1. Then, ΣA

d is canonically consistent if
and only if the signs of any three consecutive edges has the pattern either−1,−1,+1 or−1,+1,−1
or +1,−1,−1.

Proof. First, suppose that Σ has three consecutive edges with a sign pattern different from
−1,−1,+1; −1,+1,−1 and +1,−1,−1. Since Σ is balanced, so it must have an edge with
sign +1. So, Σ must have three consecutive edges with a sign pattern of either −1,+1,+1
or +1,−1,+1 or −1,−1,−1. In each of these cases, ΣA

d is not consistent.
Conversely, let the sign of the edges follow the given patterns. Then, for every single

edge with a sign of +1 in the graph, there will be two exclusive edges with a sign of −1.
This implies that 2n + 1 is a multiple of 3. Let 2n + 1 = 3k. Then, k must be odd and the
number of edges in Σ with a sign of −1 is 2k. We claim that σd(v) = +1, ∀v ∈ ΣA

d . On the
contrary, assume that µd(v) = −1 for some v ∈ ΣA

d . Let u, w be the vertices adjacent to v in
Σ. Let x, y be the antipodes of v, as shown in Figure 7. We consider the following cases:
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Case 1: σd({u, v}) = σd({v, w}) = −1. Then, by the assumption of sign pattern,
σd({x, y}) = +1. So, each of the diametric paths connecting v, x and v, y should have an
odd number of edges with a sign of −1. Therefore, σd({v, x}) = σd({v, y}) = −1, which is
a contradiction to our assumption that µd(v) = −1.

Case 2: σd({u, v}) = +1 and σd({v, w}) = −1. Then, by the assumption of a sign
pattern, σd({x, y}) = −1. So, if the diametric path connecting v to x has an odd number
of negative edges, then the diametric path connecting v to y should have an even num-
ber of negative edges and vice versa. Thus, either σd({v, x}) = −1, σd({v, y}) = +1 or
σd({v, x}) = +1, σd({v, y}) = −1. In either case, µd(v) = +1, which is a contradiction.

Thus, in each case, we have arrived at a contradiction. Hence, ΣA
d is canonically

consistent.

5. The Smith Graph H7

Consider the labeling of the vertices of H7 using v1, v2, v3, v4, v5, v6, v7, as shown in
Figure 8. Let Σ = (H7, σ). We shall investigate the conditions under which Σ is balanced
and canonical consistent.

Version June 24, 2023 submitted to Mathematics 10 of 13

b

u
b

v
b

w

b

y′
b

x
b

y

b

x′

Figure 7. Representation diagram: Case 1.

v1

v2

v3

v4

v5

v6

v7

Figure 8. The Smith graph H7.

c1 Text
added.
c2 all
the
cases

Case 1: σd({u, v}) = σd({v, w}) = −1. Then by the assumption of sign pattern, 332

σd({x, y}) = +1. So, each of the diametric paths connecting v, x and v, y should have odd 333

number of edges with sign −1. Therefore, σd({v, x}) = σd({v, y}) = −1, a contradiction 334

to our assumption that µd(v) = −1. 335

Case 2: σd({u, v}) = +1 and σd({v, w}) = −1. Then by the assumption of sign 336

pattern, σd({x, y}) = −1. So, if the diametric path connecting v to x has odd number 337

of negative edges then the diametric path connecting v to y should have even number 338

of negative edges and vice-versa. Thus, either σd({v, x}) = −1, σd({v, y}) = +1 or 339

σd({v, x}) = +1, σd({v, y}) = −1. In either case, µd(v) = +1, a contradiction. 340

Thus, in c1each case c2, we have arrived at a contradiction. Hence, ΣA
d is canonically 341

consistent. 342

5. The Smith graph H7 343

Consider the labeling of the vertices of H7 using v1, v2, v3, v4, v5, v6, v7 as shown the 344

Figure 8. Let Σ = (H7, σ). We shall investigate the conditions under which Σ is balanced 345

and canonical consistent. 346

Proposition 7. If Σ = (H7, σ), then ΣA
d is balanced. 347

Proof. Since Σ is acyclic so it is balanced. Let V1 and V2 be its Harary’s partition of vertices. 348

We claim that, V1 and V2 also serves as the Harary’s partition of vertices for ΣA
d . Let a15, a17 349

and a57 be the antipodal edges joining the pair of antipodal vertices v1, v5; v1, v7 and v5, v7 350

respectively. Now σd(aij) = −1 implies that the path in Σ joining vi and vj has odd number 351

of edges with sign −1 and so vi and vj belongs to different partitions. Also σd(aij) = +1 352

implies that the path in Σ joining vi and vj has even number of edges with sign −1 and 353

so vi and vj belongs to the same partition. Hence V1, V2 serves as the desired Harary’s 354

partition of ΣA
d and so it is balanced. 355

Lemma 2. If Σ = (H7, σ) has an edge with sign −1 then there exist a vertex in ΣA
d with mark 356

−1. 357

Figure 8. The Smith graph H7.

Proposition 7. If Σ = (H7, σ), then ΣA
d is balanced.

Proof. Since Σ is acyclic, so it is balanced. Let V1 and V2 be Harary’s partition of vertices.
We claim that V1 and V2 also serve as Harary’s partition of vertices for ΣA

d . Let a15, a17
and a57 be the antipodal edges joining the pair of antipodal vertices v1, v5; v1, v7 and v5, v7,
respectively. Now, σd(aij) = −1 implies that the path in Σ joining vi and vj has an odd
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number of edges with a sign of −1 and so vi and vj belongs to different partitions. In
addition, σd(aij) = +1 implies that the path in Σ joining vi and vj has an even number of
edges with a sign of −1 and so vi and vj belong to the same partition. Hence, V1, V2 serves
as the desired Harary’s partition of ΣA

d and so it is balanced.

Lemma 2. If Σ = (H7, σ) has an edge with a sign of −1, then there exists a vertex in ΣA
d with a

mark of −1.

Proof. Consider the labeling of H7, as shown in Figure 8. Let e be any edge in Σ with
σ(e) = −1. If possible, let µd(v) = +1 for all v ∈ V(ΣA

d ). We consider the following cases:
Case 1: e is a pendant edge. Without loss of generality, let e = {v1, v2}. Then,

σd({v2, v3}) = −1, otherwise µd(v2) = −1, and hence, exactly one of the edges {v4, v3},
{v6, v3} has a sign of −1; otherwise, µd(v3) = −1. Without a loss of generality, assume that
σd({v4, v3}) = −1 and σd({v6, v3}) = +1. Then, σd({v6, v7}) = +1 and σd({v4, v5}) = −1;
otherwise, at least one of v4, v6 will have a mark of −1. In this case, both the antipodal
edges incident with v1 has a sign of +1 and so µd(v1) = −1, which is a contradiction.

Case 2: e is a non-pendant edge. Without a loss of generality, let e = {v3, v2}. Then,
σd({v2, v1}) = −1; otherwise, µd(v2) = −1. Since {v2, v1} is a pendant edge, so as in case
1, it will lead to a contradiction.

Hence, the result follows.

Theorem 6. If Σ = (H7, σ), then ΣA
d is balanced and canonically consistent if and only if Σ = H+

7 .

Proof. By Proposition 7, ΣA
d is always balanced. So, first suppose that ΣA

d is canonically
consistent. First, we show that µd(v3) = +1. On the contrary, let us assume that µd(v3) =
−1. Since ΣA

d is canonically consistent, so µd(v1v2v3v4v5v1) = +1, and this in turn implies
that µd(v1)µd(v2) 6= µd(v4)µd(v5). Similarly,

µd(v1v2v3v6v7v1) = +1 =⇒ µd(v1)µd(v2) 6= µd(v6)µd(v7).

Consequently, µd(v4)µd(v5) = µd(v6)µd(v7). Then

µd(v5v4v3v6v7v5) = µd(v5)µd(v4)µd(v3)µd(v6)µd(v7) = −1

This implies that ΣA
d is not consistent, which is a contradiction. So, the only possibility is

µd(v3) = +1.
We now claim that the canonical marking of each of the vertices v1, v5, v7 is +1.

Without a loss of generality, let µd(v1) = −1. Since ΣA
d is canonically consistent, so the

mark of the cycle v1v5v7v1 must be +1, and hence µd(v5)µd(v7) = −1. Then, at least one
of the pairs of cycles v1v2v3v6v7v1, v1v2v3v6v7v5v1 or v1v2v3v4v5v1, v1v2v3v4v5v7v1 has an
opposite canonical marking. So, ΣA

d is not consistent, which is a contradiction. This proves
our claim.

We now claim that the canonical marking of each of the vertices v2, v4, v6 is +1.
Without a loss of generality, let µd(v2) = −1. The canonical consistency of ΣA

d implies
that µd(v4) = µd(v6) = −1. Now, µd(v2) = −1 implies that σd({v1, v2}) = −1 or
σd({v3, v2}) = −1. If σd({v1, v2}) = −1, then σd({v5, v7}) = −1. Since µd(v5) = µd(v7) =
+1, so σd({v6, v7}) = −1 and σd({v4, v5}) = +1. This in turn implies that σd({v3, v4}) =
−1 and σd({v3, v6}) = +1. However, σd({v3, v2}) = +1. Therefore, µd(v3) = −1, a con-
tradiction. If σd({v3, v2}) = −1, then σd({v4, v3})σd({v6, v3}) = −1 because σd(v3) = +1.
Without a loss of generality, let σd({v4, v3}) = +1 and σd({v6, v3}) = −1. Then, the cycles
v1v2v3v6v7v1, v1v2v3v4v5v1 will have opposite canonical markings, which is a contradiction.
So, the canonical marking of each of the vertices v2, v4, v6 must be +1.

Thus, each of the vertices in ΣA
d has a canonical marking of +1 and so, by the Lemma 2,

Σ = H+
7 .
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Remark 8. If Σ = (Hi, σ), i = 8, 9 then ΣA
d will have exactly one cycle, and so it is always

balanced. However, ΣA
d will be canonically consistent if and only if the non-diametric edge in Σ has

a sign of +1.

Double-Headed Snake (Wn), n ≥ 6

In this section, we consider the d-antipodal graph of the Smith graph Wn, n ≥ 6. We
label the vertices of Wn using v1, v2, · · · , vn, as shown in Figure 9. The antipodal pairs in
Wn are v1, v3; v1, v4; v2, v3; v2, v4 and the antipodal edges are represented by dotted lines.
Let ai,j be the antipodal edge joining a pair of antipodes vi, vj.
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Figure 9. d-antipodal graph of the Smith graph Wn, n ≥ 6.

The following remark about the d-antipodal graph of the Smith graph Wn, n ≥ 6
follows from Theorem 3.

Remark 9. Let Σ = (Wn, σ), for n ≥ 6. Then, ΣA
d is balanced.

Proposition 8. If Σ = (Wn, σ), then ΣA
d is canonically consistent if and only if all the six edges

incident with both the vertices of degree 3 in Σ are of the same sign.

Proof. First, assume that ΣA
d is canonically consistent . If possible, let there be a pair of

edges e, e′ among the six edges incident with the two vertices of degree 3 in Σ that have
opposite signs. We consider the following two cases:

Case 1: e and e′ are pendant edges with a vertex in common. Without a loss of
generality, let e = {v1, v5} and e′ = {v2, v5}. In this case, σd(a13)σd(a23) = −1 and
σd(a14)σd(a24) = −1. Therefore,

µd(v1) = σd(e)σd(a13)σd(a14)

= [−σd(e′)][−σd(a23)][−σd(a24)]

= −µd(v2)

Since ΣA
d is consistent, both the cycles v1v5v2v3v1 and v1v5v2v4v1 should have a mark of

+1, and this is possible only if µd(v3) = µd(v4) 6= µd(v5). Hence,

µd(v1v3v2v4v1) = µd(v1)µd(v3)µd(v2)µd(v4)) = µd(v1)µd(v2) = −1,

which is a contradiction. Therefore, σ(e) = σ(e′)—that is, pendant edges in Σ sharing a
common vertex should have the same sign.

Case 2: e and e′ are pendant edges with no vertex in common. Without a loss of
generality, let e = {v1, v5} and e′ = {vn, v3}. By case 1, σd({v1, v5}) = σd({v2, v5}) and
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σd({vn, v3}) = σd({vn, v4}), which in turn implies that all the antipodal edges have the
same sign. Hence, µd(v1) = µd(v2) and µd(v3) = µd(v4). However,

µd(v1) = σd(e)σd(a13)σd(a14)

= −σd(e′)σd(a13)σd(a23)

= −µd(v3)

Since the mark of the cycle v1v5v2v3v1 is +1, so µd(v5) = +1. In addition, the mark of the
cycle v3vnv4v2v3 is +1, so µd(vn) = −1. Therefore, the mark of the cycle v1v5v2v4vnv3v1 is
−1, which is a contradiction. Hence, all the four pendant edges should have the same sign
in Σ.

Case 3: e and e′ have a vertex in common, and only one of these edges is a pendant.
Without a loss of generality, let e = {v1, v5} and e′ = {v5, v6}. By case 2, all pendant edges
have the same sign and all the four vertices v1, v2, v3, v4 have the same marking. Therefore,
µd(v1) 6= µd(v5) and so the mark of the cycle v1v5v2v3v1 is −1, which is a contradiction.
Hence, the result follows.

Conversely, let all the edges in Σ incident with both the vertices of degree 3 have the
same sign. Then,

µd(vi) = +1, for i = 1, 2, 3, 4, 5, n.

Since each cycle in ΣA
d consists of either an even number of vertices entirely from the set

{vi : i = 1, 2, 3, 4, 5, n} or an even number of vertices from the set {vi : i = 1, 2, 3, 4, 5, n}
and the vertices on the path connecting v6 to vn−1, so the mark of each cycle in ΣA

d must be
positive. Hence, ΣA

d is canonically consistent.

6. Conclusions

In this paper, the concept of d-antipodal signed graphs has been introduced. The
underlying graph of the d-antipodal signed graph of a signed graph Σ = (G, σ) is the
union of G and its antipodal graph A(G). The sign assignment to the antipodal edges is
inspired by similar works available in the literature. We have characterized balanced and
canonically consistent Smith signed graphs whose d-antipodal signed graphs are balanced
and canonically consistent. In particular, it is shown that

1. For any sign assignment to the cycle C2n+1, its d-antipodal is canonically consistent
and each vertex in the d-antipodal has a sign of +1.

2. For any sign assignment to the double-headed snake Wn, its d-antipodal is canonically
consistent if and only if both the degree three vertices are of the same sign.

3. For any sign assignment to the Smith graph H7, its d-antipodal is canonically consis-
tent if and only if all its edges have a sign of +1.
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