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Abstract: Most research about compartmental models of infection disease often consider the trans-
mission rate as a constant, which is not ideal for the dynamic surveillance of infectious diseases. This
study fully utilized continuously updated real-time epidemiological data and proposed a SEAIUHR
model incorporating asymptomatic and symptomatic infectiousness, reported and unreported cases,
inpatient and non-inpatient cases, and vaccine inoculation. This study proposed a novel approach
based on our model to calculate the time-varying transmission rate with an under-report rate, vacci-
nation efficiency, and relaxation of social distancing behavior. The proposed method was evaluated
based on epidemiological data from the United States. The results suggest that using this approach to
combine epidemiological data can provide a clearer understanding of the spread rule of epidemic,
offering data support for subsequent related research.

Keywords: time-varying transmission rate; vaccination; data-driven; infectious disease modeling
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1. Introduction

Mathematical modeling has been extensively used in many different fields of study in-
cluding medicine, physics, economics, and so on [1–20]. Medical research issues, especially
high-level medical research achievements, often rely on the establishment of reasonable
medical mathematical models [7–20]. For example, Tripathi et al. [7] provided several
examples of designing various mathematical models that can help us better comprehend
dynamics at the single-cell and population levels. Gupta et al. [8] proposed a dynamic
Boolean network to categorize gene regulation between two non-coding RNAs (ncRNAs)
in gastric cancer, which opens up a new avenue for gastric cancer treatment in response
to DNA damage caused by these ncRNAs. Lee et al. [9] utilized Bayesian inference and
simulation to determine the relative contribution of each spatial structure and used it to
generate hypotheses concerning the drivers of disease. The results demonstrated that
Bayesian hierarchical models performed at least as well as existing modeling frameworks
while permitting extensions in the future and multiple sources of spatial connectedness.

Furthermore, a compartment model of infectious diseases is crucial in understanding
and controlling the transmission dynamics of infectious diseases, helping identify their
epidemiological trends, making overall predictions, and offering interventions. The estab-
lished model with the use of new epidemiological data can provide theoretical support for
the prevention and control of infectious diseases, expose the mechanism of transmission,
and facilitate the development of national and even international health policies [10]. After
the outbreak of infectious diseases such as Ebola, COVID-19, and Plague, several domes-
tic and foreign scholars refined the existing infectious disease models in use to analyze
their epidemiological characteristics [11–20]. For example, a study [11] used two modi-
fied susceptible-infected-removed (SIR) models to simulate the transmission dynamics of
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Ebola, and the results showed that although there are currently no specific drugs to treat
Ebola, effective isolation measures can better manage and control its transmission. Another
study [13] improved the conventional susceptible-exposed-infected-removed (SEIR) model
by incorporating four populations including people, rodents, fleas, and environmental
pathogens in order to study the dynamics of Plague. The findings demonstrated that the
spread of Plague to humans and rodents largely depends on the infected flea population.

As is well known, suitable models and reliable data are necessary to ascertain the
spread mechanism of emerging infectious diseases, and a key point in establishing compart-
mental models of infection disease is to determine epidemiological characteristics. Though
a large number of works, such as [11–20] and the references therein, have made it possible
to research on the development of these disease with the previous models quantitatively or
qualitatively, there still remains some uncertainties in the theoretical framework. To assure
a vaccine’s efficacy and safety, it typically takes 10 to 15 years to produce one to combat
emerging infectious diseases. However, for a few infectious diseases, the duration for vac-
cine research and development has greatly decreased. The most noticeable of these quick
developments is vaccine efficacy, which describes the strength of a vaccine’s preventative
effect and may influence the alleviation effect of nations implementing vaccinations. In
addition, this is especially important when there are, inevitably, some unreported cases
in the population which are also contagious, or some mild patients cannot be admitted
for treatment during large-scale outbreaks of diseases. A few scholars have conducted
in-depth discussions around these aspects.

Further, it is essential to determine the transmission rate (τ), which helps shed
more light and understanding on the spread and control strategies of emerging and
re-emerging infectious diseases [21]. The parameters of compartmental models, includ-
ing the transmission rate, are often chosen based on individual decisions or assump-
tions. For example, certain infectious disease models may assume that τ remains as a
constant [12,13,15,18,20,22–24] or a piecewise constant [25,26] over the whole epidemic.
However, a dynamic transmission rate is more reasonable than a constant one. Several
studies have provided a time-varying form of transmission rate [27–30]. For instance,
in reference [27], the author hypothesized that social distancing behavior would change
due to fear of death, proposing a dynamic transmission rate. Although the calculation
of transmission rate in the above literature is limited, since it will not change with newly
released real-time data once it has been determined and the transmission rate may change
due to many factors, not only a fear of increased deaths, including various preventive
measures and changes in social distancing behavior. Their study provides reference for
our research.

In this study, we frame a model to understand the complex interactions between the
time-varying transmission rate and the epidemiological data, including daily reported
cases data and daily vaccination data. Daily vaccination data, although they are unre-
fined, provide a better understanding of the effect of vaccine inoculation. We quantified
the impact of changes in social distance behavior, vaccine efficacy, and unreported rates
on transmission rates, using the established mathematical model to infer time-varying
transmission rates. Finally, it was applied by using epidemiological data from the United
States and our model’s stability and sensitivity were analyzed by varying vaccine efficacy
and analyzing the resulting effects.

The remainder of this study is organized as follows: the formulation process by which
an epidemic compartmental model is detailed in Section 2.1 and the transformation of our
model is presented in Section 2.2, while the method of calculating the time–transmission
rate is described in Section 2.3. Section 3 presents the application for epidemiological
time-series datasets. The main conclusions of the study are made in Section 4.
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2. Materials and Methods
2.1. Epidemic Model

Our model is a system of ordinary differential equations for the epidemic population
compartments and we divide the population into seven compartments: susceptible indi-
viduals (S), exposed individuals (E), asymptomatic infectious individuals (A), reported
symptomatic infectious individuals (I), under-reported symptomatic infectious individuals
(U), hospitalized individuals (H), and recovered individuals (R). The following reasonable
assumptions are made to simplify the problem.

Hypothesis 1. S(t), E(t), A(t), I(t), U(t), H(t), and R(t) denote, at time t, the number of the
seven population categories, S, E, A, I, U, H, and R, respectively.

Hypothesis 2. It is well known that not all cases are reported by government agencies. There
inevitably exist some undocumented infections in the population due to some uncontrollable reasons.
We define this type of population as U. Reported symptomatic infectious individuals are isolated
immediately, and cause no further infections. However, A and U are infectious; thus, S may be
infected by them. Assuming the transmission rate is τt, at time t, the increment content of E equals
τt[A(t) + U(t)]S(t).

Hypothesis 3. E has been infected but is not yet capable of propagating the infection. Assuming
average duration of the exposed period is 1

α , at time t, the increment content of A equals αE(t).

Hypothesis 4. Assuming that a symptomatic infection can only be converted through A, the
average duration of the asymptomatic infectious period is 1

η , and the report rate of symptomatic
infectious individuals is f1, so at time t, the increment content of I and U equal f1ηA(t) and
(1− f1)ηA(t), respectively.

Hypothesis 5. Assuming that average duration of a reported symptomatic infectious period is 1
γ ,

the hospitalization rate is f2, so at time t, the increment content of H equals f2γI(t).

Hypothesis 6. V(t) is the daily number of vaccinated individuals, and NU(t) is the number of
unvaccinated individuals. So, S(t)

NU(t) , E(t)
NU(t) , A(t)

NU(t) , I(t)
NU(t) , and U(t)

NU(t) , denote, at time t, the fraction
of S, E, A, I, and U in the unvaccinated individuals, respectively. Assuming that vaccine efficacy
is e, at time t, the number of S, E, A, I, and U who have recovered due to vaccination equal
e S(t)

NU(t)V(t), e E(t)
NU(t)V(t), e A(t)

NU(t)V(t), e I(t)
NU(t)V(t), and e U(t)

NU(t)V(t).

Hypothesis 7. Assuming that the average duration of an unreported symptomatic infectious period
and hospitalized period are 1

υ and 1
γβ

, respectively, at time t, the increment content of R equals

γβ H(t) + (1− f2)γI(t) + υU(t) + e S(t)+E(t)+A(t)+I(t)+U(t)
NU(t) V(t).

Under the above hypotheses, the diagram for the model is shown in Figure 1.

Figure 1. Schematic diagram of the model compartments: susceptible, exposed, asymptomatic infected,
reported symptomatic infected, under-reported symptomatic infected, hospitalized, and recovered.
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The SEAIUHR model is governed by the following nonautonomous ordinary differen-
tial equations

S′(t) = −τt[A(t) + U(t)]S(t)− e S(t)
NU(t)V(t),

E′(t) = τt[A(t) + U(t)]S(t)− αE(t)− e E(t)
NU(t)V(t),

A′(t) = αE(t)− ηA(t)− e A(t)
NU(t)V(t),

I′(t) = f1ηA(t)− γI(t)− e I(t)
NU(t)V(t),

U′(t) = (1− f1)ηA(t)− υU(t)− e U(t)
NU(t)V(t),

H′(t) = f2γI(t)− γβ H(t),
R′(t) = γβ H(t) + (1− f2)γI(t) + υU(t) + e S(t)+E(t)+A(t)+I(t)+U(t)

NU(t) V(t).

(1)

Due to the fact that no individuals were vaccinated at the beginning of the infectious
disease (i.e., t = t0), the total population N at t0 is

N = S0 + E0 + A0 + I0 + U0 + H0,

The total number of vaccinated individuals from t1 to t2 (t2 > t1) is∫ t2

t1

V(s)ds,

The cumulative number of vaccinated individuals is

CV(t) =
∫ t

t0

V(s)ds,

So
CV′(t) = V(t), (2)

The number of unvaccinated individuals is

NU(t) = N − CV(t). (3)

The state variables H and R are decupled from the rest of model (1), so we will not focus
on their dynamic in the following. Then, using (2) and (3), model (1) is transformed into

S′(t) = −τt[A(t) + U(t)]S(t)− e S(t)
N−CV(t)CV′(t),

E′(t) = τt[A(t) + U(t)]S(t)− αE(t)− e E(t)
N−CV(t)CV′(t),

A′(t) = αE(t)− ηA(t)− e A(t)
N−CV(t)CV′(t),

I′(t) = f1ηA(t)− γI(t)− e I(t)
N−CV(t)CV′(t),

U′(t) = (1− f1)ηA(t)− υU(t)− e U(t)
N−CV(t)CV′(t).

(4)

The number of the cumulative reported cases grows exponentially approximately with
time, evolving at the early stage [26]. The cumulative reported confirmed cases at time t,
denoted by CI(t), are formatted as follows:

CI(t) = aexp(bt)− c, t ≥ t0. (5)

The parameters a, b, and c are to be determined by the least squares estimation method.
It is obvious that the cumulative reported confirmed data are zero at t0. Then, we obtain

t0 =
1
b

ln
c
a

. (6)
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2.2. Transformation of the System (4)

In order to frame a model which can be easily tractable, a few simplifying conversions
are in order. The simplifying method can contribute to our model, making it possible to
calculate the time-varying transmission rate that will offer data support for subsequent
related research.

Set

ψ(t) := exp(e
∫ t

t0

−CV′(s)
N − CV(s)

ds),

then,

ψ(t) = (
N − CV(t)
N − CV(t0)

). (7)

By integrating the first equation of system (4), we obtain

S(t) = S0exp
{
−
∫ t

t0

τs[A(s) + U(s)]ds + (e
∫ t

t0

−CV′(s)
N − CV(s)

ds)
}

,

Therefore, we obtain

S(t) = S0exp
{
−
∫ t

t0

τs[A(s) + U(s)]ds
}

ψ(t). (8)

By setting

S(t) :=
S(t)
ψ(t)

,

we have
S′(t) = −τt[A(t) + U(t)]S(t).

Define

E(t) :=
E(t)
ψ(t)

,

so we have

E′(t) =
E′(t)
ψ(t)

+ e
E(t)

N − CV(t)
CV′(t)

ψ(t)
. (9)

Substituting (8) into the second equation of system (4), we obtain

E′(t) = τt[A(t) + U(t)]S0exp
{
−
∫ t

t0

τs[A(s) + U(s)]ds
}

ψ(t)− αE(t)− e
E(t)

N − CV(t)
CV′(t). (10)

Substituting (10) into (9), we obtain

E′(t) = τt[A(t) + U(t)]S(t)− αE(t).

For the same reason, define

A(t) :=
A(t)
ψ(t)

, I(t) :=
I(t)
ψ(t)

, U(t) :=
U(t)
ψ(t)

.

By using the same method for the remaining equations of system (4), we obtain

A′(t) = αE(t)− ηA(t),

I′(t) = f1ηA(t)− γI(t),

U′(t) = (1− f1)ηA(t)− υU(t).



Mathematics 2023, 11, 2955 6 of 13

Thus, system (4) is transformed as follows:
S′(t) = −τt[A(t) + U(t)]S(t),
E′(t) = τt[A(t) + U(t)]S(t)− αE(t),
A′(t) = αE(t)− ηA(t),
I′(t) = f1ηA(t)− γI(t),

U′(t) = (1− f1)ηA(t)− υU(t).

(11)

and

S(t0) = S(t0), E(t0) = E(t0), A(t0) = A(t0), I(t0) = I(t0), U(t0) = U(t0).

2.3. Method of Calculating the Time-Varying Transmission Rate

In reality, a dynamic τ could be adequate to capture the course of an epidemic. Our
goal is to apply the transformed system (11) to calculate the time-varying transmission
rate using daily reported cases data and daily vaccination data. Daily reported cases
are extremely erratic; hence, we use a 7-day moving average to smooth these data and
use ψ(t) for normalization. Let di(t1), di(t2), di(t3), . . ., be the 7-day moving average of
daily reported cases normalized by ψ(t), where t1, t2, t3, . . ., are discrete variables. And we
use the least squares method to discretize these discrete data. The continuous version of
di(t1), di(t2), di(t3), . . ., denoted by DI(t), is formatted as follows

DI′(t) = f1ηA(t)− DI(t).

hence, A(t) normalized by ψ(t) to satisfy

A(t) =
DI′(t) + DI(t)

f1η
. (12)

Substituting (12) into the third equation of system (11), we obtain

E(t) =
DI′′(t) + (η + 1)DI′(t) + ηDI(t)

α f1η
. (13)

Substituting (13) into the second equation of system (11), we obtain

τt =
[DI′′′(t) + (α + η + 1)DI′′(t) + (αη + η + α)DI′(t) + αηDI(t)]

α f1ηS(t)(A(t) + U(t))
. (14)

We assume that I(t)
U(t) = f1

1− f1
and A(t) = DI′(t)+DI(t)

f1η ψ(t) in terms of (12). Therefore,
the time-varying transmission rate before social distancing behavior relaxation is formatted
as follows

τt =
f1[DI′′′(t) + (α + η + 1)DI′′(t) + (αη + η + α)DI′(t) + αηDI(t)]

αS(t)[(DI′(t) + DI(t))ψ(t) f1 + (1− f1)I(t)]
. (15)

According to the common rule of disease development, there is an increasing return
to normal of social distancing behavior in most cases. Therefore, we introduce a social
behavior relaxation parameter δ (i.e., degree of relaxation) to quantify the impact of in-
creasing return of social distancing behavior on time-varying transmission. After a period
of relaxation, there is no further change, in social distance. Therefore, the subsequent
transmission rate is divided into two stages, namely t1 ≤ t ≤ t2 and t ≥ t2, where t1 and
t2 correspond to the day before the change in social distance and the time of no further
change in social distance, respectively. In this study, we suggest that the probability of
asymptomatic infected individuals and unreported symptomatic infected individuals trans-
mitting to susceptible individuals is the same, but A(t), U(t), and S(t) vary as time evolves.
We calculate the subsequent time-varying transmission rate including δ, A(t), U(t), and
S(t) based on τt1 .
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For t1 ≤ t ≤ t2, the transmission rate is formatted as follows:

τt = τt1 [1 + δ(t− t1)]
(A(t) + U(t))S(t)

(A(t1) + U(t1))S(t1)
. (16)

For t ≥ t2, the transmission rate is formatted as follows:

τt = τt1 [1 + δ(t2 − t1)]
(A(t) + U(t))S(t)

(A(t1) + U(t1))S(t1)
. (17)

3. Application
3.1. Data Preparation

This study used Formulas (15)–(17) to simulate epidemiological time-series datasets
in the United States. Furthermore, daily reported cases data, daily vaccination data, and
demographic data were obtained from the Center for Systems Science and Engineering at
Johns Hopkins University [31], the Centers for Disease Control and Prevention [32], and
the US Census Bureau [33], respectively.

3.2. Results

Firstly, using the cumulative confirmed cases as shown in Table 1, we fixed the value
of parameter c as 1, and then estimated the values of parameters a = 14.57 and b = 0.37
using the least squares method. According to Equation (6), we calculated t0 = −7.24, which
corresponds to 21 February 2020. From 15 June 2021 to 1 October 2021, social distancing
behavior gradually returned. After 1 October 2021, there was no further change in social
distancing behavior. Therefore, t1, and t2 correspond to 15 June 2021 and 1 October 2021,
respectively.

Table 1. The cumulative data of confirmed cases.

Data 03/08 03/09 03/10 03/11 03/12 03/13 03/14 03/15 03/16

Cases 213 472 696 987 1264 1678 2995 3782 4661

It can be seen, from Formulas (15)–(17), that the selection of susceptible individuals
and parameter values is essential for calculating time-varying transmission rate. Parameter
values are exhibited in Table 2. According to the chronology in the US, we set the number
of susceptible individuals as: (1) S(t) = N from 21 February 2020 to 31 March 2020;
(2) S(t) = 3

10 N from 1 April 2020 to 30 April 2020; (3) S(t) = 1
2 N from 1 May 2020 to 13

December 2020; and (4) S(t) = 3
10 N after 14 December 2020.

Table 2. Parameter values of system (11).

Parameter Value Source

N 331,108,434 [33]
e 0.63 [34]
f1

5
17 [35]

1
α 3 [36]
1
η 5 [37]
1
υ 7 [38]

In Figure 2, the blue vertical bars are the daily reported cases from t0 to t1, the red dots
are the 7-day moving average of daily reported cases, and the green graph is the continuum
cubic spline interpolation of red dots. Shown in Figure 3a, we plotted ψ(t) from t0 to t1,
and the daily number of reported cases was normalized using ψ(t) (i.e., di(t)), as shown in
Figure 3b.
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Figure 2. Diagram of daily reported cases, 7-day moving average of daily reported cases, and
the continuum cubic spline interpolation of 7-day moving average of daily reported cases from 21
February 2020 to 15 June 2021.
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Figure 3. In (a), we plot ψ(t) from 21 February 2020 to 15 June 2021. In (b), we plot di(t)
ψ(t) from 21

February 2020 to 15 June 2021.

By using parameters values as shown in Table 2 and Formula (15), the time-varying
transmission rate from t0 to t1 can be determined, which was graphed and is shown in
Figure 4. It can be seen that τt1 = 1.06976518931823× 10−9, S(t1) = 99,332,530, A(t1) =
243,350, and I(t1) = 16,946, U(t1) = 40,670 from the model output, whereupon we
calculated the time-varying transmission rates from t1 to t2 and after t2 in terms of
τt1 , S(t1), A(t1), U(t1), and Formulas (16) and (17), as presented in Figures 5 and 6. The
blue, red, and green lines correspond to the transmission rate of δ = 0.03, δ = 0.02,
and δ = 0.01. In what follows, vaccine efficacy was set to 0, 0.63, and 1; the peaks of
time-varying transmission rates at each stage and the time of occurrence are presented in
Tables 3–5, respectively. Meanwhile, e = 0 means that the vaccine is completely ineffective,
and e = 1 means that the vaccine is completely effective.

Furthermore, conditional on Tables 3–5, we can obtain some conclusions. Due to
vaccine inoculation beginning in the US on 14 December 2020, there is no significant
difference in peak values of time-varying transmission rates for e = 0, 0.63, 1 during the
first stage. It can be seen that when the vaccine is not effective at all, the situation of peak
value is much worse at the second and third stages. However, the circumstances are better
when the vaccine is fully effective.
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Table 3. Peak values of time-varying transmission rates and the time of occurrence at each stage (e = 0).

τt

Time Peak Value

First stage 3 March 2020 5.34452× 10−9

Second stage
δ = 0.01 4.51811× 10−8

δ = 0.02 6 September 2021 6.56731× 10−8

δ = 0.03 8.61651× 10−8

Third stage
δ = 0.01 2.32183× 10−7

δ = 0.02 3 January 2022 3.52739× 10−7

δ = 0.03 4.73295× 10−7

Table 4. Peak values of time-varying transmission rates and the time of occurrence at each stage (e = 0.63).

τt

Time Peak Value

First stage 3 March 2020 5.34379× 10−9

Second stage
δ = 0.01 3.40048× 10−8

δ = 0.02 6 September 2021 4.94278× 10−8

δ = 0.03 6.48508× 10−8

Third stage
δ = 0.01 1.74748× 10−7

δ = 0.02 3 January 2022 2.65483× 10−7

δ = 0.03 3.56218× 10−7

Table 5. Peak values of time-varying transmission rates and the time of occurrence at each stage (e = 1).

τt

Time Peak Value

First stage 3 March 2020 5.34286× 10−9

Second stage
δ = 0.01 3.15718× 10−8

δ = 0.02 6 September 2021 4.58912× 10−8

δ = 0.03 6.02107× 10−8

Third stage
δ = 0.01 1.62245× 10−7

δ = 0.02 3 January 2022 2.46488× 10−7

δ = 0.03 3.30730× 10−7

Figure 4. Diagram of the time-varying transmission rate from 21 February 2020 to 15 June 2021.
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Figure 5. Diagram of the time-varying transmission rate from 15 June 2021 to 1 October 2021, with
δ = 0.03, δ = 0.02, and δ = 0.01.

Figure 6. Diagram of the time-varying transmission rate from 1 October 2021 to 22 November 2022,
with δ = 0.03, δ = 0.02, and δ = 0.01.

4. Conclusions

In the present study, we formulated a SEAIUHR compartment model that reflects
the relationship between susceptible, exposed, asymptomatic, symptomatic, hospitalized,
and recovered individuals under vaccination. By introducing ψ(t), we transformed the
SEAIUHR model into a model that can be easily tractable. We linked the model to factors
that may lead to disease transmission including under-report rate, vaccination efficiency,
and relaxation of social distancing behavior. A data-driven approach was adopted to
calculate the time-varying transmission rate in terms of time series with daily reported
cases data and daily vaccination data. The extremely erratic daily reported cases data
were smoothed using the weekly moving average, and the least squares method was used
to continuously process the discrete data. By using the cumulative confirmed cases, we
concluded that the starting time for the compartments is t0. The transmission rate after
day t1 is based on the model transmission rate on this day. We set two dates, t1 and t2,
in terms of the reduction in social distancing measures, such that t1 ≤ t ≤ t2 and t ≥ t2;
the transmission rate changed with A(t), U(t), and S(t); and the social behavior relaxation
parameter was δ.
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The designed method was applied to epidemiological time-series datasets in the
United States. According to chronology and Formula (6), t0, t1, and t2 correspond to 21
February 2020, 15 June 2021 and 1 October 1, 2021, respectively. The model outputs were
analyzed with the under-report rate (1− f1) as 12

17 , vaccine efficacy (e) as 0.63, and social
behavior relaxation parameters δ = 0.03, δ = 0.02, and δ = 0.01. The model output
shows the time-varying transmission rate of everyday. Meanwhile, we demonstrated the
model’s stability and sensitivity to changes in input variables by varying the value of e and
analyzing the resulting effects.

The method to calculate time-varying transmission rate via a data-driven approach,
in comparison to a constant or a piecewise constant transmission rate, can capture the
actual transmission dynamics and provide data support for subsequent research. When
dealing with the emerging and re-emerging infectious diseases that may arise, the model
compartments can be appropriately adjusted to adapt to varied epidemic characteristics,
but the method of transmission rate of our research has high universality. High universality
means that the calculation method proposed in our study can be applied to calculate the
transmission rate of these diseases after determining the compartment model according to
the characteristics of infectious diseases.

However, this study does have certain limitations. First, here we failed to consider
immunized individuals and dead individuals. These could be added to our model, and
other phenomena could be included as well, such as a fading rate of immunity by age
class, provided the relevant parameters are known. Second, the majority of parameters
change over time as the infectious disease progresses, but we fixed a few of them according
to existing studies to reduce uncertainty. Each parameter value will need to be enhanced
further in future research.
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