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Abstract: Many industries, including healthcare, banking, the auto industry, education, and re-
tail, have already undergone significant changes because of artificial intelligence (AI). Business-to-
Customer (B2C) e-commerce has considerably increased the use of AI in recent years. The purpose of
this research is to examine the significance and impact of AI in the realm of fashion e-commerce. To
that end, a systematic review of the literature is carried out, in which data from the Web Of Science
and Scopus databases were used to analyze 219 publications on the subject. The articles were first
categorized using AI techniques. In the realm of fashion e-commerce, they were divided into two
categories. These categorizations allowed for the identification of research gaps in the use of AI.
These gaps offer potential and possibilities for further research.
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1. Introduction

E-commerce has grown significantly in recent years, both in terms of the number of
users and the number of commercial websites. eMarketer [1] estimated that the growth
of e-commerce sales in 2020 over the previous year would be 27.6%, for a total of USD
4.28 trillion. Statista [2] projected that e-retail sales would increase to USD 5.4 trillion by
2022. Despite the fact that the past few years have been difficult for retail, the COVID-19
pandemic is significantly affecting e-commerce due in major part to a shift in consumer
behavior [3]. Merchants of non-essential items, such as clothing and footwear, are ex-
periencing a decline in sales, while retailers of vital goods, such as food, consumables,
and healthcare, have seen an increase in online shopping [4]. The COVID-19 pandemic
has fundamentally altered international trends and compelled quick reforms in several
industries. Despite the challenges the industry is facing, Statista [5] reports that the fashion
industry is the largest Business-to-Customer (B2C) e-commerce market segment. By the
end of 2025, the industry is projected to have a total market value of USD 1003.5 billion.

Artificial intelligence (AI) has altered numerous industries over the past few decades,
including healthcare [6,7], manufacturing [8,9], transportation [10,11] and retail [12,13],
The application of AI is also on the rise in e-commerce strategies [14–17]. Many merchants
are already utilizing artificial intelligence (AI) technologies as a driving force for the
development of e-commerce in a competitive environment where consumers are becoming
more demanding. As an example, consider how e-commerce behemoths like Amazon,
Alibaba, and eBay invest in research and development to integrate visual recognition
techniques, develop algorithms to meet user content preferences, or adjust pricing based
on in-the-moment comparisons of rival products. E-commerce makes more information
available to both consumers and rival businesses. E-commerce retailers are compelled to
take on new AI techniques due to fierce online market rivalry.

Within this context, the goals of this investigation can be listed as follows: First,
to analyze the current trend of AI in the fashion e-commerce sector and the future of AI
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technology. Second, to understand how the sector’s use of AI technology enhances firm
profitability. Third, to identify knowledge gaps that might be investigated by future scholars.
In order to accomplish these objectives, the following research approach is presented.

2. Research Approach

The research questions (RQs) plus the methodology to respond to them and, conse-
quently, deal correctly with the previously detailed objectives are presented herein.

The following research issues are addressed in this study:

• RQ1: What are the uses of AI technology in the e-commerce world of fashion?
• RQ2: How can the fashion sector use AI to its fullest potential in order to increase

customer satisfaction and financial success?
• RQ3: What are the hot topics and upcoming research directions in the field of AI for

the e-commerce industry of fashion?

A narrative literature review (NLR) method was employed in this research as, com-
pared to others such as the ones mentioned in Ref. [18], the (a) systematic, (b) scoping, (c)
argumentative, (d) integrative, or (e) theoretical literature reviews, the NLR is better ori-
ented to identify gaps in the existing knowledge base [19]. The narrative literature review
methodology employed in this evaluation follows the suggestions of Green, Johnson, and
Adams [20] and Ferrari [21] for the narrative overview variant. These narrative overviews
are recognized as great, up-to-date papers [21]. Several research studies in the literature
reviews of information systems, technological applications, and management science have
effectively used this methodology [22,23], and that is the reason this methodology has been
chosen. Thus, the main steps of a narrative document review approach are as follows:

1. Determine the research questions;
2. Develop inclusion and exclusion criteria;
3. Conduct a thorough search of relevant databases and other sources;
4. Review and select studies based on inclusion and exclusion criteria;
5. Extract data from selected studies, and analyze and synthesize data extracted from

studies.

It is important to note that the methodology may vary slightly depending on the
specific research question or topic and the type of research being conducted. In our case,
we have incorporated a sixth step, which is:

6. Validation of results.

Thus, this manuscript’s contribution is an analysis of the current trend of AI in the
fashion e-commerce sector, the future of AI technology, and how the sector’s use of AI
technology enhances firm profitability, by applying an NLR process to identify and analyze
research literature in the field of AI for the e-commerce industry of fashion. The NLR
method is commonly used in research studies to provide an unbiased, comprehensive,
and rigorous analysis of the existing literature. For that reason, the authors have not
discussed the pros and cons of each of the techniques, in order to reduce the possibility of
biasing the study, as the reasons for using one or another technique can be extremely varied.

Based on the research initiative that uses the NLR as a core, Figure 1 explains the flow
this work has followed to respond to the three RQs.



Mathematics 2023, 11, 2943 3 of 32

Figure 1. Review methodology. The character * denotes a wildcard.
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As indicated in Figure 1, this research starts from the formulation of the three research
questions shown at the beginning of Section 2. Afterwards, it defines the scope (inclusion
and exclusion criteria concerning sources and keywords) and performs the search based on
it. Lastly, as a third step, analysis and synthesis of data extracted from studies to respond
to RQ1, RQ2, and RQ3 are performed, resulting in responses to each of the questions
as follows:

• RQ1: What are the uses of AI technology in the e-commerce world of fashion? Re-
sponse: Summary table of purposes with references.

• RQ2: How can the fashion sector use AI to its fullest potential in order to increase cus-
tomer satisfaction and financial success? Response: Table of methods and techniques
used with references, table of reference datasets used to train and test the tools (and
gain confidence on them), and table of datasets and purposes per dataset.

• RQ3: What are the hot topics and upcoming research directions in the field of AI for
the e-commerce industry of fashion? Response: Further research section.

Thus, the rest of the paper is structured as follows. The criteria for inclusion and
exclusion of items are described in Section 3. Section 4 discusses the uses of the techniques
in the scope of the article. Section 5 addresses the second research question and describes
the AI approaches used to increase consumer satisfaction along with the main fashion
databases used in the articles included in the review. The third research question and the
validation of the results are addressed in Sections 6–8, looking at forecasting future trends,
as they present the research gaps that have been found.

Analysis and synthesis of data extracted from studies to respond to RQ1, RQ2, and
RQ3 are as follows:

• RQ1: What are the uses of AI technology in the e-commerce world of fashion? Re-
sponse: Summary table of purposes with references (Section 3).

• RQ2: How can the fashion sector use AI to its fullest potential in order to increase
customer satisfaction and financial success? Response: Table of methods and tech-
niques used with references, table of reference datasets used to train and test the tools
(and gain confidence about them), and table of datasets and purposes per dataset
(Section 4).

• RQ3: What are the hot topics and upcoming research directions in the field of AI for
the e-commerce industry of fashion? Response: Hot topics and conclusions sections
(Sections 5 and 6, respectively).

3. Article Inclusion and Exclusion Criteria and Overall Results

Article selection was made using scientific databases, specifically Web of Science and
Scopus, two of the most important repositories for publications. To examine all relevant
studies in the field and complete RQ1’s aim, no time restrictions were imposed during the
search procedure. The search terms include 60 fashion e-commerce synonyms as well as AI
synonyms. The final search terms utilized for the investigation are shown in Table 1.

Table 1. Final query implemented for filtering the repositories for publications. The * is used as a
wildcard character.

Scientific Database Search String

Web of Science

TS=(((“artificial intelligence” OR “big data” OR “computer vision” OR
“data analytics” OR “data mining” OR “deep learning” OR “image
processing” OR “machine learning” OR “natural language” OR “neural
network” OR “sentiment analy*”) AND (fashion OR cloth* OR textile* )
AND (ecommerce OR e-commerce)))

Scopus

TITLE-ABS-KEY ((“artificial intelligence” OR “big data” OR “computer
vision” OR “data analytics” OR “data mining” OR “deep learning” OR
“image processing” OR “machine learning” OR “natural language” OR
“neural network” OR “sentiment analy*”) AND (fashion OR cloth* OR
textile* ) AND (ecommerce OR e-commerce))
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A total of 392 references were discovered using these search terms, including 108 du-
plicates between the two sources; 124 were in Web of Science and 268 in Scopus.

Ultimately, 252 references were examined. Due to the ambiguity of the word fashion
and the lack of association with the issue under study, 65 articles were discarded after
reading them. Many of these articles refer to fashion trends in the context of AI used
in e-commerce rather than specifically in the fashion business. For the literature review,
245 research articles were read. The distribution of documents over the years is shown in
Figure 2, and it has been observed that the number of papers published in the previous
three years has significantly increased.

Figure 2. Number of papers published by year.

4. RQ1: Uses of AI Technology in the e-Commerce World of Fashion

The information extraction process used to answer research questions RQ1, RQ2,
and RQ3 is detailed in this section. Based on Ref. [24], this study divides artificial intelli-
gence (AI) into three major categories: computer vision (CV), natural language processing
(NLP), and other machine learning (ML) applications. The reasoning behind this division
is that, when dealing with garment data, most authors process the images of the garments,
their text description, or other data, with the first two being the more prevalent ones.
This process has been carried out by taking into account recent research on AI in fashion
e-commerce. Figure 3 shows the classification of the number of manuscripts by topic and
subtopic in accordance with the study objectives. In the same figure, the number of articles
linked to each topic is displayed in brackets.

It is important to note that certain research publications are featured in more than
one classification section because they either use a variety of AI methodologies or provide
answers to many research questions.
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Figure 3. Number of articles per topic and subtopic found in the literature review.

5. RQ2: How the Fashion Sector Can Use AI to Its Fullest Potential in Order to
Increase Customer Satisfaction and Financial Success

In order to correctly apply the potential of AI to the B2C fashion retail sector, it is
necessary to identify both where it can be utilized and how it can be applied. The wideness
of the ‘how’ term involves approaching the question from different angles.

If the articles read are approached in a more specific manner, additional sorting
information regarding the databases used by the studied articles can be offered, as well as
the techniques they apply and the specific purpose they have. Thus, these sections respond
to how the sector can use AI, identifying:

• Most of the common algorithms used in the sector (Section 5.1);
• The purposes pursued when using each of the datasets (Section 5.2);
• The databases used to train and test the algorithms used (Section 5.3); and
• Actual examples of the way AI can be applied to customer satisfaction and lucrative-

ness (Section 5.4).

We respond to the four bullets in the list with several tables and figures. These tables
and or figures show the amount of times each database, technique, purpose, etc., appears in
the literature review. In all cases, the specific purposes, techniques, or databases appearing
just once have been merged onto a single ‘Others’ group, to make feasible a clean and clear
visualization of the charts (see e.g., Table 2).

Table 2. Databases used.

Database Frequency

Retailshop 41
Collected 37
CollectedfromtheInternet 31
DeepFashion 21
Collectedfromreviewsofretailshops 19
Collectedfromsocialmedia 10
Fashion-MNIST 10
Collectedfromscanner 4
ImageNet 4
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Table 2. Cont.

Database Frequency

Polyvore 4
Virtualfitting 4
Amazon 3
Kaggle 3
MPV 3
VITON 3
Amazon5-core 2
AmazonDresses 2
DeepFashion3D 2
LookBook 2
Taobao 2
CzechRetailshop 2
Others 30

5.1. Families of Algorithms Used in the B2C Fashion Retail Sector

As can be seen in Table 3, a plethora of AI techniques are used to process garment
information for classification. They have been grouped by traditional machine learning
techniques and deep learning techniques. Multiple authors use different techniques to solve
the problems efficiently, with all of them being suitable in the right situation. In the follow-
ing subsections, some of the AI algorithms used in the articles in this review are described
(Table 4).

Table 3. Techniques applied.

Technique/Method Frequency

CNN 59
BigData 18
DCNN 16
ML 14
NN 12
Survey 11
GAN 9
DL 8
Imageprocessing 7
kNN 7
randomforest 7
Review 6
DNN 5
LSTM 5
NaiveBayes 5
Siamesenetwork 5
Decisiontree 4
k-means 4
LAC 4
SVM 4
Word2vec 4
Collaborativefiltering 3
CorrelationalNN 3
Fuzzylogic 3
GraphCNN 3
BERT 2
Classificationalgorithms 2
CNNLSTM 2
DART 2
GaussianMixtureModels 2
H-CNN 2
Kneser–Ney 2
LR 2
RBFSVM 2
Regressionmodels 2
SSD 2
Others 56
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Table 4. Specific purpose.

Technique/Method Frequency

CNN 59
BigData 18
DCNN 16
ML 14
NN 12
Survey 11
GAN 9
DL 8
Imageprocessing 7
kNN 7
randomforest 7
Review 6
DNN 5
LSTM 5
NaiveBayes 5
Siamesenetwork 5
Decisiontree 4
k-means 4
LAC 4
SVM 4
Word2vec 4
Collaborativefiltering 3
CorrelationalNN 3
Fuzzylogic 3
GraphCNN 3
BERT 2
Classificationalgorithms 2
CNNLSTM 2
DART 2
GaussianMixtureModels 2
H-CNN 2
Kneser–Ney 2
LR 2
RBFSVM 2
Regressionmodels 2
SSD 2
Others 56

5.1.1. Traditional Machine Learning Techniques

Several traditional (not deep learning) algorithms have been applied to this task. One
of the simplest sorting algorithms used in machine learning is the KNN algorithm. This
classification approach uses space analysis to analyze the k-nearest neighbors [25]. Two
other commonly used algorithms for fashion article classification are decision trees and
random forests [26]. The naive Bayes utilizes a series of simplification operations based
on the Bayes theorem and is based on the theory’s streamlining processes. The notion
is that the classifier may be used to categorize the number of independent variables if
there are too many of them. It is useless to apply probability tables when the number of
independent variables is too big, which leads to the reductions that simplify the sample
and give it the moniker “naive Bayes” [27]. A hyperplane that separates an n-dimensional
representation of the data into two distinct areas serves as the foundation for support
vector machines (SVM) classifiers. The area between two classes, also known as spatial
regions, that maximizes the margin m between them is referred to as the hyperplane. This
margin is computed from the distance of the specimens that are closest to the hyperplane
and is defined as the longest distance between the specimens of the classes [28]. K-means
is a vector quantization technique that was first used in signal processing to divide n
observations into k clusters, with each observation belonging to the cluster that has the
closest mean (also known as the cluster centroid or cluster center), which serves as a
prototype for the cluster [29]. Recommender systems employ a method called collaborative
filtering. By gathering preferences or taste data from several users, collaborative filtering is
a technique for automatically predicting (filtering) a user’s interests (collaborating) [30].
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A probabilistic model called a Gaussian mixing model posits that all of the data points
are produced by combining a limited number of Gaussian distributions with unknown
parameters [31]. Finally, fuzzy logic is an approach to computing based on degrees of
truth that imitates human reasoning rather than Boolean logic [32]. The DART algorithm
is an iterative improvement on multiple additive regression trees (MART), which is more
robust towards class imbalances [33]. The Kneser–Ney algorithm calculates the probability
of a word following a particular context by computing the raw probability of the word
following the context and subtracting a discounting amount [34]. Finally, DDS is a single-
shot detector algorithm that predicts the boundary boxes and the classes directly from
feature maps in one single pass [35].

5.1.2. Deep Learning Techniques

Deep learning, commonly referred to as deep structured learning, is one of several
machine learning techniques built on representation learning and artificial neural networks.
Unsupervised, semi-supervised, and supervised learning are all possible [36]. Multiple
deep learning algorithms have been used for this task in the literature.

Convolutional neural networks (CNN, or ConvNet) are a form of artificial neural
network (ANN) that is often used to assess visual pictures. CNNs, also known as shift-
invariant or space-invariant artificial neural networks, are based on the shared-weight
architecture of the convolution kernels or filters that slide along input features and create
translation-equivariant outputs known as feature maps (SIANN). Contrary to common
perception, most convolutional neural networks downsample the input, which prevents
them from translating invariantly. They are used in financial time series, natural language
processing, brain–computer interfaces, image and video analysis, segmentation, classifica-
tion, recommender systems, medical image analysis, and image and video recognition [37].
Multiple neural network layers make a deep convolutional neural network (DCNN). Con-
volutional and pooling layers, two different kinds, are often alternated. From left to right
in the network, each filter’s depth rises. Usually, the final level consists of one or more
completely linked layers [38]. Multiple variations of CNNs have been used, such as ap-
plication of hierarchical classification, which takes advantage of the hierarchical structure
of categories by embedding CNNs into a category hierarchy [39], or graph convolutional
neural networks, which represent similarities using a graph architecture and perform CNN,
multiplying the input neurons by a set of weights [40].

Long short-term memory (LSTM) networks have been also employed in this task [41],
both as standalones or as a combination with CNNs. Convolutional neural network long
short-term memory is an architecture that uses CNN layers for feature extraction and LSTM
to support sequence prediction, usually used for images and video inputs [42].

The natural language processing (NLP) tool Word2vec was introduced in 2013. With the
help of a huge text corpus, the Word2vec technique employs a neural network model to
learn word connections. Once trained, a model like this may identify terms that are sim-
ilar or propose new words to complete a phrase. As the name suggests, Word2vec uses
a specific set of integers called a vector to represent each unique word. Given vectors
that are properly selected to capture the semantic and syntactic characteristics of words,
the degree of semantic similarity between the words represented by those vectors can be
determined using a straightforward mathematical function (cosine similarity) [43]. Another
NLP processing model commonly used is BERT, or bidirectional encoder representations
from transformers. Its innovation is applying the bidirectional training of transformers to
language modeling [44].

A Siamese neural network, also known as a twin neural network, is a type of artificial
neural network that uses the same weights to calculate equivalent output vectors from two
distinct input vectors simultaneously. A precomputed version of one of the output vectors
frequently serves as a benchmark for comparison with the other output vector. Despite
being more precisely referred to as a distance function for locality-sensitive hashing, this is
comparable to comparing fingerprints [45].
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5.2. AI in B2C Retail and Application Areas of the Techniques

RQ1 is centered on the general AI trend in the fashion e-commerce sector. Figure 3’s sum-
mary of the literature review illustrates numerous subtopics employing various AI methods.

Numerous papers on computer vision (CV) focus on the early stage of exploita-
tion and interpretation of the data offered by the photographs. These studies aim to
enhance the annotation process’s object identification, segmentation, and classification
algorithms [34,35,39,40,46–120]. Another group of studies develops techniques for advising and
helping customers by pairing products or examining the textures of garments [78–81,84,121–128].
Additionally, some authors [32,129–152] are developing virtual reality technology to help cus-
tomers with clothing fitting. Finally, CV can be used to spot fake logos and clothes [153,154].
Several techniques, including image processing and deep learning using convolutional
neural network designs, are employed for all of these applications.

In order to transition the traditional buying experience to e-commerce, NLP is mostly
utilized for fashion advice and recommendations [34,78,79,124,126,155–168]. Another
significant area of study focuses on gathering data from consumers using sentiment analysis
techniques, such as via reviews or social media[42,44,169–180]. Finally, studies on picture
tagging using textual content analysis have been conducted [55,61,73,89,94,95,98,104,107,
113,116,118,181–184].

A number of publications concentrate on using ML and data analytics together to
enhance the administration of e-commerce businesses. Some authors have researched subjects
like budget management, inventory issues, and sales and demand forecasting [177,185–209].
Other authors [33,210–236] aim to forecast product return or purchase intention by predicting
consumer behavior. Several studies investigate personalized recommendation systems using
ML approaches in relation to consumer behavior [230,231,237–249].

5.2.1. Fashion e-Commerce and Research Problems

This section provides an overview of the key research issues that have been raised in
studies that have analyzed and applied AI approaches. The goal of each task determines
how it is divided.

Garment Representation

A considerable number of articles concentrate on how clothing is represented in
fashion accessories. It is the earliest stage of information exploration and interpretation,
with the goal of being accurate so that it may be used in particular applications. The majority
of fashion studies begin with a precise detection task. Classification, landmark recognition,
and item retrieval are the three sub-tasks that make up fashion detection.

Data labeling. The quality of the data used directly affects the accuracy levels of
the AI models. When data are unlabeled, the process of adding tags to the data enables
machine learning models to learn and recognize those things. Machine-based annotation is
a revolutionary method of labeling that allows data annotation to be done more quickly
without sacrificing quality [183].

Clothes classification. An image is used as the input for the image classification job,
which then generates the classification label using metrics like probability or precision.
The number of distinct tags from the labeled data determines how many classes the model
can categorize. Some classifications are distinct in the fashion industry, based on the
problem to be approached, such as classifying apparel by category (such as t-shirt or frock)
and by attribute (such as white or round neck). The convolutional neural network (CNN) is
the most frequently used algorithm for classifying clothing [58]. Deep convolutional neural
networks (DCNNs) [63], also known as these networks’ deep architectures, are used in a
number of studies. Examples include VGG16 [57,62] and VGG19 [60].

Detection of landmarks. Fashion landmark identification anticipates where functional
clothing keypoints like the neckline and cuff will be located. Because of the nature of the
clothing, this is a more complicated challenge than pose estimation. A number of states,
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such as wrinkles or sags, can be found in clothing. In this review, two papers [35,66] that
used DCNNs to improve this task are discussed.

Product retrieval. Finding comparable or identical objects in databases is the purpose
of item retrieval tasks. The AI community has paid a lot of attention to fashion retrieval,
mostly because it can be challenging to describe clothing in words and users typically find
it simpler to search by image. The majority of research focuses on identifying identical
or nearly identical clothing or even detecting plagiarism. The use of DCNN algorithms
to resolve retrieval tasks has become popular due to deep learning advancements [54,86].
For this objective, generative adversarial networks (GAN) are also helpful [71,75]. In these
networks, two neural networks compete to make predictions with greater accuracy. Finally,
several studies employ support vector machines (SVMs) [64,87] during the classification
phase of the item retrieval task.

Customer Satisfaction

There are two primary categories of customer-centered applications in this review.
By using these programs, you can attempt to recreate the offline buying experience online.

Recommender systems. The goal of recommender systems is to provide users with
useful suggestions. There are two main types of approaches for this task: content-based
methods and collaborative filtering methods. Content-based approaches solely rely on past
client information, such as purchases, browsing patterns, and search queries. The recom-
mender system creates a model with the user’s characteristics using these data and looks
for profiles with attributes that are comparable to the user’s. The interactions between
users and objects constitute the foundation of collaborative approaches. These techniques
do not need users to provide any information. Recommender systems connect users based
on how they engage with the product.

There are additional recommender systems that are concerned with fashion and trends.
These models typically use text and visual data to derive brand-new traits pertaining to
style. The consumer is then given recommendations for related clothing, fashionable
clothing, or clothing that goes well together.

The creation of fashion recommendation systems uses a range of AI models. To im-
prove the prediction’s accuracy, researchers also change the algorithms and tweak the
parameters. One of the most popular models is CNN, which consists of many lay-
ers, with the number of layers being tailored to the results of the recommendation sys-
tem [81,123,128,163]. Numerous studies using deep neural networks (DNN) for recommen-
dation tasks have been conducted [84,159].

Virtual fitting systems. Virtual fitting solutions are bridging one of the biggest gaps
between e-commerce and physical stores: the inability to try on clothing. The ability to take
body measurements and determine clothing size and fit are the two key topics discussed.
Studies that employ 2D photographs and the ones that use 3D reconstructions are two
distinct sorts of research cases.

The fit of virtual clothing is frequently evaluated using neural networks [144], includ-
ing CNN [140] and GAN variations [141]. The employment of alternative algorithms, such
as the naive Bayes (NB) algorithm for classification [149], the Viola–Jones (VJ) algorithm for
body tracking [148], or the fuzzy neural network (FNN) [32], has also been the subject of
some research.

Customer Behavior Forecasting

Many clients and items can be managed by businesses thanks to AI, which also makes
it simple for them to understand every aspect of each product’s storage, distribution,
and sale. Simple and real-time control and management are possible. Although many
studies use historical data to build their forecasting models, social media is becoming a
larger and more common source of information in recent years. Social media platforms
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provide insight into how consumers feel about things, making it possible to forecast future
sales or alter products to better meet customer needs.

Sentiment analysis. An analysis of the mood on social media reveals how consumers
feel online about a product or brand. It is an examination of feelings and opinions, not
just a basic tally of mentions or comments. This kind of study enables businesses to
understand their target market, spot trends, enhance customer experience, and spot crises
in their earliest phases [174]. Many studies [42,169] use CNN for sentiment analysis,
and occasionally [44] a final fine-tuning algorithm like BERT is constructed. The studies
employ both SVM [172] and NB [179] for classifying opinions [179].

Business administration. The main focus of artificial intelligence in company manage-
ment is on creating prediction models based on past data in order to improve management
and uncover new customer-facing opportunities. Profit maximization, sales forecasting,
shipping logistics, inventory management, and fraud detection are some of the key duties in
this study problem. The majority of recent studies have an ML method focus [185–187,209].

Multimodal Systems

Combining various approaches is a very active topic of AI research. Since many
of the works included in this review use a combination of CV and NLP techniques to
achieve the goal, it was simple to see this effect [34,55,94,95,102,107,116,126,156,157]. When
information from many modalities is included in a research problem, such as text–image,
video–audio, or another combination, it is referred to as multimodal research. Compared
to multimodal systems, a crossmodal system is a model that only receives data from a
separate modality, such as when requesting an image response via text. A model produced
by a multimodal system may have the same modality as the input or a different modality.
In other words, multimodal systems can integrate several modalities together, such as text
and visual. In particular, a crossmodal system, shown in Figure 4, is the process of using
one modality to gain information in another modality.

Figure 4. Example scheme of a multimodal and crossmodal system.

Twenty-two publications on multimodal systems for item retrieval, classification,
and apparel recommendation have been found in this study. The percentage of completed
work for the various jobs may be seen in Figure 5.
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Figure 5. Fraction of multimodal manuscripts per task type.

5.2.2. Summary

The papers examined are summarized in this section. Tables 5–7 present the research’s
techniques, objectives, and dataset.

Table 5. Summary of methods with references.

Methods Citations

ALS [235]

associationrules [247]

AttentionCNN [163]

AttentionDeepLearning [161]

Bayesiannetworks [227]

BEAM [167]

BERT [44,78]

BigData [177,189,192–194,198–200,205,206,212,214,216,225–227,241]

BPR [235]

CF [247]

Classificationalgorithms [217]

CNN [46–49,52,57,58,60–62,66,68–70,72,74,76,78,81–83,91,93,96–98,100–
102,104,105,112,123,128,137,140,145,154,156,158,166,250–253]

CNNLSTM [42,169]

Collaborativefiltering [238,240,249]

CollaborativefilteringCNN [243]

CorrelationalNN [73,95]

DART [33]

DCNN [54,55,63,86,88,90,103,108,111,159,170,254]

Decisiontree [42,131,179,220]

Deformationalgorithm [151]

DL [50,134,135,195,211,241,245]

DNN [84,183,187,246]

Domaindictionary [178]

DPM [110]

ELR [201]
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Table 5. Cont.

Methods Citations

FastkNN [152]

FCNN [56]

FNN [32]

Fuzzylogic [106,113]

GAN [71,75,99,129,134,141,155,251]

GA-RF [65]

GaussianMixtureModels [109,118]

gradientboostingdecisiontree [42]

GraphCNN [40,122]

GraphDCNN [89]

GRU [230]

GSN [87]

H-CNN [39,157]

HOG [153]

HypergraphNN [80]

Imageprocessing [119,120,130,132,135,136,147]

k-center [117]

k-means [114,203,232,244]

k-medoids [115]

Kneser–Ney [34]

kNN [54,137,222,235,237,250]

LAC [107,116]

Lassoregression [222]

LDA [160]

LightGBM [173]

LinearSVC [182]

logisticregression [42]

LR [179,220]

LSTM [85,126,163,171,176]

MDNN [77]

ML [130,132,133,136,185,197,209,223,224,228,229,234,236,244]

Modularontology [184]

MT-GAN [67]

MultimodalNN [124]

NaiveBayes [149,165,176,179,220]

NN [94,144,164,168,174,195,202,208,213,218]

OLS [222]

Pareto [209]

Pareto/NBD [207]

PCA-SVD [125]

randomforest [33,42,186,215,220,231]

RBFSVM [175,220]

RCNN [51]
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Table 5. Cont.

Methods Citations

R-CNN [59]

Recommender [201]

Regressionmodels [142,174]

RepTree [203]

review [121,138,188,190,204,248]

RFM [207]

R-GCN [242]

RNN [80]

Robotandpressuremeasurements [146]

SEM [239]

siamesenetwork [46,75,79,156]

SSD [35,92]

Survey [53,127,143,150,162,181,191,196,210,219,221]

Survey:kanomodel [139]

SVM [64,87,153,179]

SVM.REPTree [172]

SVP [222]

UCB [233]

VAR [207]

VGG-IE [65]

Viola–Jones [148]

word2vec [98,102,167]

word2vecSVMperf [180]

XGBoost [176]

Table 6. Summary of purposes with references.

Purpose Citations

Clothesclassification [34,39,46–49,52,56–58,60–63,65,67–69,74,76,82–84,89–
93,96,101,105,107,110,111,114,116,118]

Customerbehavior [33,210–215,217–249]

Datalabeling [55,61,94,95,98,104,107,111,113,116,181–184]

Itemretrieval [40,50,51,53–55,59,62,64,70,71,73,75,77,81,84–88,94,95,98–
104,106,112,113,115,117,119,120,153,154]

Landmarkdetection [35,66,72,97,108,109]

Management [33,177,185–200,202–209,216,217]

Recommender [34,78–81,121–128,155–168,201,202,250–254]

Sentimentanalysis [42,44,169–180]

Virtualfitting [32,129–136,138–146,149–152]

Table 7. Summary of databases with references.

Databases Citations

ACS [83]

AdidasAG [82]

Amazon [34]

amazon.com [158]
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Table 7. Cont.

Databases Citations

Amazon5-core [163]

AmazonDresses [94]

AmazonFashion [122]

Amazonfashiondataset [73]

ane-commerceplatform [50]

ASOS [124]

CCP [97]

Clothing1M [70]

Collar-6 [49]

Collected [76,91–93,96,98,100,110,112,114,136,137,145,149,151,152,201,223,
224,227,230,231,235,236,245,247,251]

Collectedfromreviewsofretailshops [42,44,160,165,169,170,174,178–180,183]

Collectedfromscanner [46,132]

Collectedfromsocialmedia [107,116,172,175,222]

CollectedfromtheInternet [81,95,102,104,117,128,153,155,167,168,176,177,192,203,225,226,
228,234,238,252]

CollectedfromtheInternetandsocialmedia [206]

Colorful-Fashion [35]

CzechretailshopsfromtheInternet [54]

DARN [103]

DeepFashion [48,52,55,62,64,67,69,77,79,84,89,101,103,123,154,250]

DeepFashion2 [154]

DeepFashion3D [135]

DeepFashion-C [57]

DressCode [129]

FashionAI2018 [72]

FashionDNA [88]

Fashionista [108]

FashionLandmarkdetection [57]

FashionMNIST [39,74,87]

Fashion-MNIST [58,62,65,68]

FashionVC [166]

Feidegger [123]

FindFashion [40]

GoogleAnalytics [212]

ImageNet [47,56,63]

Image-Net [157]

iPER [141]

Kaggle [60,125,173]

LookBook [75]

MovingFashion [51]

MPV [134,140]

POG [159]
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Table 7. Cont.

Databases Citations

Polyvore [78,126]

PolyvoreMayland [166]

retailshop
[33,156,185–

187,195,196,198,199,202,207,208,211,214–
216,229,232,246,254]

RetailshopfromtheInternet [218,237]

RetailshopsfromtheInternet [71,99,105,109,111,144,182,189,209]

Street2Shop [79]

Taobao [80]

TaobaoiFashion [122]

ThePraguetexturesegmentationdata-generatorandbenchmark [118]

Tianchi [159]

Virtualfitting [137,147,148]

VITON [134,140]

WFID [86]

5.3. Fashion Datasets

A quality dataset is essential for an AI-based model to produce the results that are
expected. The fashion-related datasets that were found in the examined publications are
summarized in this section. Table 8 presents the datasets and lists the name of each dataset,
the publication year, the problem to be solved, some features, and the data source. It is
significant to note that many authors choose to modify and produce datasets based on
those shown below, or even to collect data from the internet, in order to address particular
research issues.

Table 8. Summary of datasets in the reviewed articles.

Dataset Year Task Key Features Source

Fashionista 2012 garment labeling 158k images, annotated with tags,
comments, links

chitopia.com, accessed on 1 June
2023

ACS 2013 clothes classification 80,000 images, 15 types of clothes shopping websites

CCP 2014 garment labeling 2k high-resolution street fashion
photos shopping websites

Colorful-Fashion 2014 garment labeling 2k 600 × 400 images, annotated with
13 colors

chitopia.com, accessed on 1 June
2023

DARN 2015 clothes retrieval 545k images, annotated upper
clothing image pair shopping websites

DeepFashion 2016 landmark detection 800k images (categories, attributes,
landmarks) Forever21, Mogujie

DeepFashion-C 2016 landmark detection
289k images, annotated with
bounding box pose variation,

category, and attributes
shopping websites and Google

FLD 2016 landmark detection 123k images annotated, clothing type
and pose variation type Deep Fashion

LookBook 2016 clothes retrieval
84k images; 75k images are

associated with 10k top product
images

Bongjashop, Jogunshop, Stylenanda,
SmallMan, WonderPlace

Clothing1M 2017 clothes classification 1 million images in 14 classes shopping websites

chitopia.com
chitopia.com
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Table 8. Cont.

Dataset Year Task Key Features Source

Fashion-MNIST 2017 clothes classification 70k images, 28 × 28 greyscale
images, 10 classes Zalando

Amazon 5-core 2018 sentiment analysis
41 million reviews, in which
all users and items have at

least 5 reviews

amazon.com, accesed on 1
June 2023

Feidegger 2018 text–image retrieval
8k images of dresses, each

image with 5 textual
annotations in German

Zalando

ExpFashion 2018 clothes recommendation 853k outfits; outfits consist of:
one top and one bottom piece

polyvore.com, accesed on 1
June 2023

Polyvore68K 2018 clothes recommendation Polyvore68K-ND and
Polyvore68K-D, 175k items

polyvore.com, accesed on 1
June 2023

VITON 2018 virtual try on
32k pairs of frontal view
women and top clothing

images

Womens e-commerce clothing reviews 2018 sentiment analysis 23k customer reviews and
ratings

DeepFashion2 2019 parsing, landmark detection,
retrieval, pose estimation 491k images DeepFashion, shopping

websites

FindFashion 2019 clothes retrieval 565k images, merges two
existing datasets Steet2Shop, DeepFashion

iPER 2019 virtual try on
206 video sequences,

30 subjects in random actions,
103 clothes

Amazon Fashion 2020 clothes retrieval 53k images with text
description

amazon.com, accesed on 1
June 2023

MPV 2020 virtual try on
37k/14k people/clothes

images; person with different
poses

Tianchi 2020 recommendation
28k user profiles and
2.8 million records of

purchase behavior
Alypay

5.4. AI Applied to Customer Satisfaction and Lucrativeness

The application of AI technologies to increase customer satisfaction and business
profitability is documented in RQ2. Retailers are categorized as B2C since end users are
their main clients [255]. Customer happiness benefits the company in a number of ways,
such as through increasing future sales or lowering product returns. In this examination of
the literature, a number of studies that aim to please the customer and encourage online
apparel shopping have been discovered. A chatbot for buying assistance is still being
researched [164,210], and there are also cutting-edge studies to anticipate how clothing
will fit [137,149,211] and personalization of recommendations based on style or purchase
histories [126,237–239]. When examining the sample of chosen articles from a business
standpoint, it is important to draw attention to specific studies on demand forecasting,
customer purchase intent, and inventory management.

Decathlon, a sports products company with more than 1000 locations globally, was
a successful case study. Decathlon launched its online store in the Netherlands, where
machine learning technology is being used to analyze and monitor customer behavior in
real time and recommend products. As a result, in 2018, their income increased by 10.7%,
while the average order value rose by 5.2%. The international jewelry company Pandora
is an additional and more recent case study. Virtual Try-On, a web-based augmented
reality tool, has been made available across the full inventory as of January 2021. While
browsing on their mobile devices, customers can try on a piece of jewelry that is perfectly
proportioned [19,256].

amazon.com
polyvore.com
polyvore.com
amazon.com
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6. RQ3: Hot Topics and Upcoming Research Directions in the Field of AI for the
e-Commerce Industry of Fashion

After responding to how AI can be actually applied to B2C fashion retail, RQ3 seeks
to identify potential future research topics related to e-commerce and artificial intelligence.
This analysis identifies four expanding areas where research is anticipated to make progress
using the NLR approach.

6.1. Smart City (SC) Oriented e-Commerce

There are several research issues associated with e-commerce of fashion in smart
cities that could be explored. AI is a key enabling technology to realize smarter cities and
address their challenges [257]. Even though e-commerce was not the primary focus of the
smart city paradigm’s initial approach, there are currently several studies that show its
significance [258–261]. Next, we list some research challenges that could be addressed by
bringing together the AI and smart city paradigms and the fashion domain:

• Supply chain optimization [262]: Smart cities offer new opportunities for optimizing
the fashion supply chain, from sourcing materials to manufacturing and distribution.
Indeed, AI and other complementary technologies, e.g., IoT, could be used to improve
supply chain efficiency, reduce waste, and improve sustainability.

• Personalization of fashion e-commerce [194]: As smart cities become more con-
nected and data-rich, there is an opportunity to provide more personalized fashion
e-commerce experiences. There is a need to keep exploring how AI and machine
learning algorithms can be used to recommend products that are tailored to individual
consumers based on their preferences, shopping behavior, and location data.

• Customer behavior and preferences [263]: Smart cities generate vast amounts of
data about consumer behavior and preferences that can be used to inform fashion e-
commerce strategies. Further research should explore how these data can be leveraged
to understand consumer trends, predict future demand, and create more targeted
marketing campaigns.

6.2. Omnichannel Shopping Experience for Customers

Omnichannel provides consumers with a buying experience that incorporates the
benefits of numerous channels into a single customer journey [264,265]. The variety of
consumer gadgets makes this task increasingly challenging for retailers. By using the
internet and new purchasing technology, many consumers want easier yet richer shopping
experiences [266]. For a true omnichannel experience, data must be gathered and analyzed
from all channels. For retailers looking to reimagine their businesses using various tech-
nologies, such as augmented reality, virtual reality, and mobile applications, SC has some
cutting-edge options [267].

6.3. Social Network Information for e-Commerce Marketing

As data sources for the creation of artificial intelligence solutions, social networks
are becoming increasingly significant. Social networks are the sources that transmit the
perspective of society in real time and have a big impact on how individuals engage with
one another. Businesses can now manage information that would normally be impossible
to manage or require an excessive amount of time and resources to gather. Social networks
have a significant impact on the fashion industry. Networks enable direct communication
with customers wherever they are in the retail industry. On the other hand, data analysis
enables trend forecasting and the creation of fresh marketing approaches [268,269].

6.4. Matching of Fashion Products

E-commerce has compelled businesses to alter their pricing strategies, ensuring uni-
form pricing and competitor discounts [270]. Through the use of AI techniques, items that
appear to be different but actually refer to the same entity can be automatically identified
from various web sources. However, the fashion sector still faces a lot of obstacles for
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further improvement. Numerous merchants may sell the same clothing items in several
markets and languages. Fashion items may have several names, graphics, and descriptions,
making their identification more difficult than with other types of items. The categorizing of
clothing remains a difficult task. The subjective nature of the perception of garments causes
different classes to share many characteristics, making classification a challenging task.
A future line of research is suggested to enhance fashion categorization performance due to
the nature of the product, using a hybrid approach comparing photos and textual metadata.

7. Validation of Results

Two subject matter experts in the field have reviewed and validated the results ob-
tained in this research. Specifically, an academic expert in the field with experience in the
retail B2C sector and an ex-director of a high-end brand that provides athletic clothing
with experience in research and development in the retail sector (see Refs. [271–273] for
further details) were selected for this study. After reviewing this research, they agreed on
the results proposed herein, thus validating the developed work.

8. Concluding Remarks

Rapid change is a hallmark of the fashion industry. E-commerce behemoths (such as
the aforementioned Decathlon, Pandora, or Amazon) are currently using AI technology
to optimize their own e-commerce platforms and boost their level of competition. New
AI technologies and methodologies connected to the e-commerce fashion business are
promising and are supported by ongoing research advances.

The study’s objective was to carry out an NLR to see what the uses of AI technology in
the e-commerce world of fashion are (RQ1), how the fashion sector can use AI to its fullest
potential in order to increase customer satisfaction and financial success (RQ2), and what
the hot topics and upcoming research directions in the field of AI for the e-commerce
industry of fashion are (RQ3). After searching the academic databases Web of Science and
Scopus, we found and analyzed 219 articles to answer these questions.

Finding AI applications for the fashion e-commerce industry is the aim of RQ1. A clas-
sification taking into account AI techniques was suggested to answer this question: CV,
NLP, and other ML applications. The primary applications of CV center on the retrieval of
apparel and virtual fitting environments. NLP is mostly utilized for consumer sentiment
analysis and recommender system development. Other ML applications, such as profit
maximization and sales forecasting, are targeted towards company management control.
RQ2 aims at answering how AI could improve business profitability. According to this
study, AI is utilized to enhance business management and fulfill consumer experience,
which both contribute to increased advantages. Lastly, RQ3 indicates potential future
research topics in this area. This analysis identified four expanding areas where new dis-
coveries are anticipated in the future. On the one hand, the effects of e-commerce in SC
and users’ omnichannel experiences enable them to easily purchase both online and offline.
On the other hand, social media data mining and fashion product matching appear to be
some of the most significant issues for the near future. Thus, for scholars drawn to this
issue, this research paper offers potential research subjects.

Further research will be oriented to offer a more detailed comparison between different
categories of specific techniques: it is clear that all the techniques have their application
areas, but it is necessary to go deeper into detail regarding when it is best to apply one
or the other considering different criteria. As in all AI disciplines, some techniques are
easier to use/implement, some are fast-converging, others are more accurate, etc. Thus, it
is essential to analyze their advantages, disadvantages, and applicability limits.

In line with these future orientations, it is worth noting that this study has its limi-
tations. The main restriction this research deals with is how rapid AI itself is changing.
These days, all disciplines are changing due to the invasion of open AI. Nevertheless, it
was not possible to dedicate a specific section to it because there is a discrepancy about
evaluating whether or not a specific AI technology is ‘open’. As this a limitation of the
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research, even though there are already references in the literature approaching the topic
(e.g., Ref. [274]), future work will be oriented to study the potential of open AI as a tool
applied to B2C fashion retail. Another limitation of the study is the aforementioned compar-
ison of methods. In this vein, it is necessary to provide statistical analysis that studies how
they evolve over time and why some methods seem better than others for a particular class
of cases, etc. Regarding the development of the applicability of these methods over time, it
is worth noting that most of the references are less than 10 years old (see Figure 2 for details).
Therefore, it may be too soon to analyze the temporal evolution of the applied techniques.
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