
Citation: Stanovov, V.; Semenkin, E.

Surrogate-Assisted Automatic

Parameter Adaptation Design for

Differential Evolution. Mathematics

2023, 11, 2937. https://doi.org/

10.3390/math11132937

Academic Editor: Antonio

Bolufé-Röhler

Received: 17 June 2023

Revised: 28 June 2023

Accepted: 29 June 2023

Published: 30 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Surrogate-Assisted Automatic Parameter Adaptation Design for
Differential Evolution
Vladimir Stanovov * and Eugene Semenkin

Institute of Informatics and Telecommunication, Reshetnev Siberian State University of Science and Technology,
660037 Krasnoyarsk, Russia; eugenesemenkin@yandex.ru
* Correspondence: vladimirstanovov@yandex.ru

Abstract: In this study, parameter adaptation methods for differential evolution are automatically
designed using a surrogate approach. In particular, Taylor series are applied to model the searched
dependence between the algorithm’s parameters and values, describing the current algorithm state.
To find the best-performing adaptation technique, efficient global optimization, a surrogate-assisted
optimization technique, is applied. Three parameters are considered: scaling factor, crossover rate
and population decrease rate. The learning phase is performed on a set of benchmark problems from
the CEC 2017 competition, and the resulting parameter adaptation heuristics are additionally tested
on CEC 2022 and SOCO benchmark suites. The results show that the proposed approach is capable
of finding efficient adaptation techniques given relatively small computational resources.

Keywords: numerical optimization; differential evolution; parameter adaptation; surrogate assisted

MSC: 68W50; 68T20; 65K10; 90C59

1. Introduction

In the area of evolutionary computation (EC), parameter adaptation and control is
among the most-discussed topics due to the large number of values to be tuned and the
high sensitivity of these values. For example, even a relatively simple genetic algorithm
(GA) requires setting of population size, mutation rate and parameters controlling selective
pressure. For most cases, there exist quite reliable recommendations about setting specific
parameter values; however, better efficiency is mostly achieved through parameter adapta-
tion techniques. One of the goals of parameter adaptation is to replace existing parameters
with new ones, which determine adaptation but have a lower sensitivity and less effect on
the final result.

Among EC methods for numerical optimization, differential evolution (DE) is one of
the most popular nowadays [1,2]. The reason for the popularity of DE is that the classical
algorithm has only three main parameters: population size, crossover rate and scaling
factor. However, they should be carefully tuned to achieve better results. Many adapta-
tion techniques have been proposed, including jDE-based [3] approaches and JADE [4]
and SHADE-based [5] approaches, as well as many others. However, despite their high
efficiency and various real-world applications, there still seems to be room for further
efficiency improvement and simplification. One of the ways to develop new adaptation
methods could be the usage of a hyper-heuristic (HH) approach, i.e., automatic develop-
ment of heuristics.

In this study, heuristics are designed for scaling factor, crossover rate adaptation and
population size control. For scaling factor and crossover rate, the current success rate
value, i.e., the ratio of the number of improved solutions in every generation, is applied.
This choice is inspired by a recent study [6] in which genetic programming was used as a
hyper-heuristic approach. In the current study, instead of genetic programming, the usage
of Taylor series is proposed. In particular, the series are used to find the shape of the

Mathematics 2023, 11, 2937. https://doi.org/10.3390/math11132937 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11132937
https://doi.org/10.3390/math11132937
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1695-5798
https://orcid.org/0000-0002-3776-5707
https://doi.org/10.3390/math11132937
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11132937?type=check_update&version=1

Mathematics 2023, 11, 2937 2 of 19

curve, describing the dependence between success rate and scaling factor or success rate
and crossover rate. For population size, the dependence is searched between current
computational resources and the population size reduction rate. The recently proposed
L-NTADE [7] algorithm is used as a baseline approach in this study. To find the best
coefficient in a Taylor series, the Efficient Global Optimization (EGO) algorithm is applied,
which is based on a surrogate-assisted approach and uses Gaussian process to build a
model of the target function. The experiments performed in the Congress on Evolutionary
Computation (CEC) competition on numerical optimization 2017 [8], CEC 2022 [9] and
SOCO [10], show that applying EGO allows novel parameter adaptation techniques for DE
to be found, which may perform better than existing methods. The main features of this
study can be outlined as follows:

1. The success rate value is a valuable source of information for determining the location
parameter for sampling scaling factor values;

2. The Efficient Global Optimization algorithm is capable of determining the coefficients
in a Taylor series with a relatively small number of evaluations;

3. The dependence between crossover rate and success rate is minor;
4. The designed population size control strategy is similar to linear population size

reduction (LPSR), which proves the efficiency of classical LPSR;
5. The designed heuristics for scaling factor adaptation are capable of outperforming

success history adaptation when used in a different algorithm or dimension or tested
on a different benchmark suite, thereby showing generalization capabilities.

The rest of this paper is organized as follows. In Section 2, background studies are
described. In Section 3 related works are considered. In Section 4, the proposed approach is
presented. Section 5 contains the experimental setup and results, followed by the discussion
in Section 6 and conclusions in Section 7.

2. Background
2.1. Differential Evolution

Differential evolution is a population-based numerical optimization method proposed
in [11]. DE starts by initializing a set of N individuals xi = (xi,1, xi,2, . . . , xi,D), i = 1, . . . , N,
where D is the dimension of the search space. In most cases, random initialization with
uniform distribution is applied:

xi,j = xlb,j + rand× (xub,j − xlb,j). (1)

where j = 1, . . . , D. After evaluating all the solutions using the target function (f (x)),
the main loop containing mutation, crossover and selection is started.

The difference-based mutation is the main feature of DE. There are several known
mutation strategies; however, most modern approaches use current-to-pbest/1:

vi,j = xi,j + F× (xpbest,j − xi,j + xr1,j − xr2,j), (2)

where vi is the donor vector, xi is the target vector, F is the scaling factor parameter, pbest
is the index one of the top p% of individuals, and r1 and r2 are randomly chosen indexes
so that i 6= pbest 6= r1 6= r2. DE is known to be highly sensitive to the F parameter [12],
and most adaptation techniques are developed to tune it.

The donor vector (vi) is further used in mutation, where it is combined with the target
vector (xi) to generate a trial vector (ui) as follows:

ui,j =

{
vi,j, if rand(0, 1) < Cr or j = jrand
xi,j, otherwise

. (3)

where Cr is the crossover rate value (∈ [0, 1]), and jrand is a randomly chosen index from
[1, D] that is required to make sure that the trial vector is different from the target vector.

Mathematics 2023, 11, 2937 3 of 19

After crossover, the generated solution should be checked to ensure that it falls within
the search space boundaries ([xlb,j, xub,j], j = 1, . . . , D). One of the widely used bound
constraint-handling methods is the midpoint target method, which works as follows:

ui,j =

{ xlb,j+xi,j
2 , if vi,j < xlb,j

xub,j+xi,j
2 , if vi,j > xub,j

. (4)

If a coordinate of the trial vector violates a boundary, then the target vector coordinate
is used to move towards the boundary.

The last step is called selection, although it is different from selection in genetic
algorithms and plays a role of the replacement mechanism. If the trial vector’s target
function value (f (ui)) is better than that of xi, then the replacement occurs:

xi =

{
ui, if f (ui) ≤ f (xi)

xi, if f (ui) > f (xi)
. (5)

Such selection scheme is simple and efficient, as it allows for exploration of different
areas of the search space. However, there have been known attempts to improve it [13].

2.2. Parameter Adaptation in Differential Evolution

One of the main advantages of DE, i.e., a small number of parameters, comes with a
disadvantage: high sensitivity, especially to the scaling factor (F). Designing an efficient
parameter adaptation scheme for DE could be challenging [14,15], and in most cases, one
of the well-known methods is applied. The most widely used method is success–history
adaptation (SHA), as proposed in the SHADE algorithm [5], which is based on JADE [16].

In SHA, the F and Cr values are sampled before every mutation and crossover using
Cauchy and normal distribution. The location parameters for sampling are set to MF,h and
MCr,h, and the scale parameter is set to 0.1. Here MF,h and MCr,h are the values from the
memory cells, containing a pair for F and Cr, respectively. The number of sells is H, and h
is a random integer ∈ [1, D].

The values of F and Cr which resulting in successful offspring are stored in SF and SCr.
The improvement value (∆ f = | f (uj)− f (xj)|) is also stored in S∆ f . At the end of every
generation, one of the memory cells with index k is updated as follows:{

Mt+1
F,k = 0.5(Mt

F,k + meanwL,F)

Mt+1
Cr,k = 0.5(Mt

Cr,k + meanwL,Cr)
, (6)

where meanwL is a weighted Lehmer mean, calculated as:

meanwL =
∑
|S|
j=1 wjS2

j

∑
|S|
j=1 wjSj

, (7)

where wj =
S∆ f j

∑
|S|
k=1 S∆ f k

, S is either SCr or SF. The index (k) of a memory cell to be updated is

iterated every generation and reset to 1 if k = H.
The third main parameter of DE is the population size (N). In the L-SHADE algo-

rithm [17], a relatively simple control strategy has been proposed for N, whereby it is
initially set to a large value (Nmax) and decreased linearly down to four individuals:

Ng+1 = round
(

Nmin − Nmax

NFEmax
NFE

)
+ Nmax, (8)

where Nmin = 4, NFE and NFEmax are the current and total available numbers of target
function evaluations, and g is the generation number.

Mathematics 2023, 11, 2937 4 of 19

The importance of the L-SHADE algorithm is proven by its popularity and the fact
that its modifications have been the prize-winning algorithms in many CEC competi-
tions in recent years. Although some other parameter adaptation approaches, such as
jDE-based [3], including j100 [18] and j2020 [19], have shown competitive results in some
benchmarks, most studies still rely on SHA. Some important modifications of L-SHADE
include L-SHADE-RSP [20], which used rank-based selective pressure; DB-LSHADE with
distance-based parameter adaptation [21]; and jSO [22], in which heuristic rules were used
depending on the current computational resource. One of the recently proposed methods,
L-NTADE [7], also used SHA but proposed two populations and modified update strategies.
As this method is used as a baseline in this study, it will be considered in more detail.

2.3. L-NTADE Algorithm

The L-NTADE [7] algorithm is based on the ideas presented in the Unbounded DE
(UDE) in [23], where there is no population size and all previously generated individuals
participate in the search process. In L-NTADE. there are two populations: one containing
the newest solutions (xnew

i , i = 1, . . . , N) and the other containing the top solutions (xtop
i).

Both populations have the same size (N), and LPSR is applied to them.
The mutation strategy is a modified current-to-pbest, with individuals taken from both

populations, and is called r-new-to-ptop/n/t:

vi,j = xnew
r1,j + F× (xtop

pbest,j − xnew
i,j) + F× (xnew

r2,j − xtop
r3,j), (9)

Note that the base vector used to generate a new solution is taken from the newest
population (xnew

r1,j) with random index r1. Index r2 is generated using rank-based selective

pressure, whereby ranks are assigned as ranki = e f rac−kp·iN , and kp controls the pressure
level. Index pbest is chosen from one of the p% best solutions from the top population,
and r3 is generated randomly with uniform distribution. After mutation, binomial crossover
is applied, as well as bound-constraint handling using the midpoint target method.

The selection step in L-NTADE is changed, and imitates the behavior of the unbounded
population in UDE; it works as follows:

xnc =

{
ui, if f (ui) ≤ f (xnew

r1)

xnc, if f (ui) > f (xnew
r1)

. (10)

where nc is iterated from 1 to N after every successful replacement. In other words, if the
trial vector (ui) is better than the base vector (xnew

r1), then an individual with index nc is
replaced. Such a strategy may replace a better solution with index nc with a worse solution,
leading to continuous updating of the newest population.

In addition to replacing an individual in the newest population, the successful solu-
tions are stored to xtemp alongside their fitness values. At the end of the generation, the
xtop and xtemp populations are joined and sorted by fitness, and the best N individuals are
saved to xtop. With this update mechanism, the top population always contains the best N
individuals from the whole search process.

2.4. Surrogate Modeling and Efficient Global Optimization

The process of solving many real-world problems requires building a mathematical
model of the system, which is considered. Gaussian processes, also known as Kriging
processes, are a class of models that heavily rely on statistics and Bayesian methods [24].
One of the applications of such models is to optimization problems, in particular, numerical
optimization. One of the well-known modern Bayesian optimization methods (originally
described in [25]) is the efficient global optimization (EGO), as proposed in [26].

In EGO, the Kriging model is built with a mean function (µ) and a variance function
(σ2) based on sampling points (x1, x2, . . . , xn) and corresponding outputs (y1, y2, . . . yn).
This model acts as a surrogate of the original function to determine the next point where

Mathematics 2023, 11, 2937 5 of 19

the target function will be evaluated. There are three main criteria used to determine the
best possible position of the next point:

1. Surrogate-based optimization (SBO), using mean values (µ);
2. Lower confidence bound (LCB), using the 3σ confidence interval, i.e., µ− 3σ;
3. Expected improvement (EI), using information about the best known point, as well as

µ and σ.

EI is usually used in EGO and is calculated as follows:

E[I(x)] = E[max(fmin −Y, 0)] (11)

where Y is a random variable with normal distribution and parameters (µ and σ), fmin is
the best known function value and E determines the expectation. The next point is then
calculated as follows:

xn+1 = argmax
x

(E[I(x)]) (12)

This step requires solving another optimization problem derived from the original one,
and the landscape of E[I(x)] changes after every evaluation. Building a Kriging model and
determining µ and σ parameters requires a significant amount of computations, especially
if the number of points (n) is large or the search space is multidimensional. Therefore,
applying EGO makes sense only in expensive cases, i.e., when evaluating the target function
(f (x)) requires much more time than building a surrogate model and finding the optimum
of the expected improvement function.

3. Related Work

Despite the significant achievements in developing novel parameter adaptation tech-
niques for DE, there are ways to introduce new approaches by utilizing automated search
methods. In general, the parameter adaptation techniques [27] can be divided into two
categories [28], namely offline [29,30] and offline [31] adaptation. The difference between
these two is that in the offline case, there is a training stage during which knowledge about
more efficient schemes is extracted, which is then implemented in a form of a parameter
adaptation scheme, which can be used for various types problems or maybe even different
algorithms. In the online case, the parameters are tuned during the search, but unlike typi-
cal adaptation schemes, which follow predefined strategies, online parameter adaptation
tends to extract and utilize knowledge about the problem and the algorithm performance
during a single run.

As an example of online parameter adaptation for DE, the method described in [31]
can be considered. In this study, the gradients in the F- and Cr-parameter search space are
estimated by copying the population several times and running with different parameters
in order to determine the most efficient trajectories. In [6], genetic programming (GP)
was applied to design several parameter adaptation techniques for F and Cr separately,
as well as combined strategies. The GP-designed equations, which depended on the current
resource, success rate and values from success history adaptation, and different search
ranges were considered for the scaling factor (F), including negative values. In [32], a
similar approach was utilized; instead of genetic programming, the neuroevolution of
augmented topologies (NEAT) algorithm was used. Such approaches can be classified as
automated design of algorithms (ADA) or genetic improvement (GI) [33].

One main limitation of such hyper-heuristic methods is that they may have limited
generalization abilities. That is, if the offline approach is trained on a specific class of
problems or specific dimensions or under other limited conditions, then when applied to a
new class of problems, such parameter adaptation methods may show limited performance.
However, as shown in [6], the heuristics designed using one benchmark may be applicable
to others and still show competitive results. Another limitation of using GP or NEAT as
offline learners is that these methods require significant computational effort; hence, other
techniques can and should be considered.

Mathematics 2023, 11, 2937 6 of 19

4. Proposed Approach

In the hyper-heuristic approach [34], an algorithm, such as the genetic programming
(GP) algorithm, is applied to perform a search for heuristics [35]. The use of GP or a
similar approach allows for the automatic design of algorithms (ADA) to be performed or,
in other cases, genetic improvement (GI) [33] of existing software in a computation-based
framework. The development of this class of algorithms leads to possibilities of automated
knowledge extraction and discovery similar to data mining (DM) but for algorithms.
In this study, the so-called offline scenario is considered, in which there is a learning phase
(searching for hyperparameters), followed by testing and application phases.

In a recent study [6] , the GP for symbolic regression was applied to design new
parameter adaptation schemes for F and Cr in differential evolution. One of the findings
was that the success rate could be an informative feature to be used for scaling factor
adaptation, as some of the symbolic solutions heavily relied on this value. The success rate
(SR) can be calculated as follows:

SR =
NS
N

, (13)

where NS is the number of successful solutions, i.e., solutions that were saved during
selection (equal to |S|). The solution found by GP used the square root of SR to determine
scaling factor sampling.

Although the equation found by genetic programming was quite efficient, there was
still a possibility of further improvement in terms of efficiency when using SR. In order to
search for other ways of utilizing the information contained in the success rate, the main
idea of the current study was developed. In particular, it was proposed to apply the Taylor
series, a well-known universal function approximation tool from calculus. In particular,
the 10th-order approximation was applied. The 10th-order was chosen to guarantee the
flexibility of the produced curves. In the case of approximating F, the following equation
is used:

MFr =
10

∑
i=1

ci(SR− c0)
i (14)

where MFr is the raw value that determines scaling factor sampling, and ci, i = 0, 1, . . . 10
are the coefficients to be determined. However, this equation may produce very large
values, while the scaling factor (F) should be within the range of [0, 1]. For this purpose,
the raw value should be normalized:

MF =
(MFr −MFr,min)

(MFr,max −MFr,min)
, (15)

where MFr,min and MFr,max are the minimum and maximum values, respectively, with SR ∈
[0, 1], and the MF value is further used as follows:

F = randc(MF, 0.1), (16)

where randc(m, s) is the Cauchy-distributed random value with location parameter m and
scale parameter s. As in the SHADE algorithm, if the sampled F is negative or zero, it is
sampled again, and if F > 1, then it is set to F = 1.

The same group of equations was applied to determine the crossover rate, but for
sampling, the normal distribution was applied, and Cr values were clipped to the [0, 1]
interval.

MCrr =
10

∑
i=1

ci(SR− c0)
i (17)

MCr =
(MCrr −MCrr,min)

(MCrr,max −MCrr,min)
, (18)

Cr = randn(MCr, 0.1). (19)

Mathematics 2023, 11, 2937 7 of 19

As for the third parameter, population size (N), it was determined based on the
resource ratio (RR):

RR =
NFE

NFEmax
(20)

The same normalization was applied:

MNr =
10

∑
i=1

ci(RR− c0)
i, (21)

MN =
(MNr −MNr,min)

(MNr,max −MNr,min)
. (22)

To determine the population size, the following equation was adapted from LPSR:

Ng+1 = round((Nmin − Nmax)MN) + Nmax, (23)

Note that increasing the population size is not allowed in this case.
In order to determine the efficiency of the new parameter adaptation scheme, the Mann–

Whitney statistical test was applied. In particular, the L-NTADE algorithm, equipped with
the Taylor-series-defined curve for F, Cr or N, was compared to the baseline L-NTADE
with standard success–history adaptation. The training phase was performed on the
30 test functions of the CEC 2017 benchmark in the 30D case, with 51 independent runs
on each function. That is, for every evaluation of the efficiency of ci coefficients, there
were 30 statistical tests performed, one for every test function. Mann–Whitney statistical
tests were performed with a significance level of p = 0.01, normal approximation and tie
breaking. Applying normal approximation is possible because the number of independent
runs is large enough (51 runs). Approximating the Mann–Whitney statistics with normal
distribution also allowed for calculation of standard score (Z) values for every statistical
test. If the standard score (Z) value was below −2.58, the coefficients (ci) for the Taylor
series performed significantly worse on a given function than the success–history adapta-
tion. However, if the standard score was larger than 2.58, it performed significantly better.
To obtain a smooth target function for coefficient optimization, the total score (ZT) was
calculated as a sum over all functions:

ZT =
30

∑
j=1

Zj, (24)

where Zj is the standard score on the j-th function. ZT values are the target function values
for the EGO algorithm applied to search for the Taylor series coefficients (ci), i = 0, 1, . . . 10.
One of the disadvantages of such an approach is that ZT is a random (noisy) value, while
the EGO algorithm expects a noiseless target function. A detailed description of the
experiments is provided in the next section.

5. Experimental Setup and Results
5.1. Benchmark Functions and Parameters

To evaluate the possibilities of the proposed approach in searching for parameter adap-
tation schemes, several experiments were performed, which involved training phases and
testing phases. For the training phase, the CEC 2017 Single Objective Bound Constrained
Numerical Optimization benchmark functions [8] in the 30D case were used. The rea-
son for using 30D functions instead of 10D is that low-dimensional functions are easier
to optimize, and the generalization abilities of the training phase are lower in this case.
The computational resources required to learn Taylor series coefficients on 30D functions
was set to 3× 105 function evaluations, as required by the benchmark.

Six learning experiments were performed, in particular for F, Cr and N, and with two
results-ranking methods. In the first ranking method, only the final achieved function value

Mathematics 2023, 11, 2937 8 of 19

was considered. In the second case, the ranking described in the CEC 2022 benchmark [9]
was used, which also considered convergence speed. In particular, if two or more runs on a
test functions were successful, i.e., the goal function value was found, then these runs were
compared according to the resources spent on finding the global optimum. Other runs in
which the global optimum was not found were ranked as usual. These two ranking types
were used in the Mann–Whitney statistical tests. A more detailed description of such a
procedure is provided in [36].

When using the CEC 2017 benchmark during the testing phase, dimensions of 10, 30, 50
and 100 were considered. The resource was set to 10,000D evaluations, and 51 independent
runs were performed for each of the 30 test functions. The CEC 2022 benchmark contained
12 test functions, with dimensions of 10 and 20, the number of function evaluations set to
2× 105 and 1× 106 and 30 independent runs.

The following parameters were set for the L-NTADE algorithm: initial population
size, Nmax = 20D; minimum population size, Nmin = 4; mutation strategy parameter,
pb = 0.3; number of memory cells when using SHA, H = 5; initial values for memory
cells, MF,r = 0.3, MCr,r = 1.0, r = 1, 2, . . . H; scaling factor adaptation bias, pm = 4;
selective pressure parameter for r2 index, kp = 3. These settings represent a good choice,
as demonstrated in [7]. For the EGO algorithm, the search range for ci values was set to
[−10, 10], i = 0, 1, . . . 10, and 1000 target function evaluations were allowed, with an initial
set of 25 points generated by a Latin hypercube. The EI criterion was used to determine
the next point, and the SLSQP algorithm was applied to search for the optimum in the
EI landscape.

The L-NTADE algorithm was implemented in C++ and run on an OpenMPI-powered
cluster of 8 AMD Ryzen 3700 PRO devices, with each core each using Linux 20.04. The EGO
implementation from the Surrogate Modeling Toolbox (SMT) [37,38] was used in Python
3.8 to determine the Taylor series parameters and automatically run C++ code, as well as
Mann–Whitney tests. Results post-processing was also performed using Python 3.8.

5.2. Numerical Results

In the first set of experiments, the classical ranking scheme was considered, i.e., the
number of function evaluations did not affect the ranking for calculation of ZT values.
Three learning-phase experiments were performed with this setting, namely for F, Cr
and N parameters. Figure 1 shows the curves found by the EGO by optimizing Taylor
series coefficients.

Figure 1. Curves for parameter adaptation designed by EGO for Taylor series and the best function
values used in ranking.

The curve found for the scaling factor parameter (F) shown in Figure 1 has a specific
shape, with a fast growth from 0 to around 0.7 when the success rate SR changes from 0
to 0.2, after which the curve is less steep. Note that for the most of the time during the
search, the success rate stays rather low (lower than 0.5), which means that MF changes
between 0 and 0.8. The curve found for the crossover rate (Cr) is different, starting from 0.9
and increasing to 1.0 around SR = 0.5. This means that most of the time, large Cr values

Mathematics 2023, 11, 2937 9 of 19

are used, with little dependence on the success rate. For the population size, the curve for
MN values is different from a classical linear curve and has an inflection point around 0.5.
In particular, during the early phase of the search, when RR is small and the population is
large, its decrease becomes more rapid than linear, while during later phases of the search,
the population remains larger for a longer period of time, eventually decreasing more
rapidly to promote exploitation at the very end of the search.

Table 1 contains a performance comparison of the designed heuristics applied to
L-NTADE separately and altogether. Here, the best function value was used for ranking in
Mann–Whitney tests.

Table 1. Mann–Whitney tests of L-NTADE against versions with designed heuristics, CEC 2017
benchmark, number of wins/ties/losses and total standard score.

Algorithm 10D 30D 50D 100D

L-NTADEMF vs. 9/16/5 15/13/2 11/14/5 12/10/8
L-NTADE (32.37) (72.67) (36.05) (25.54)

L-NTADEMCr vs. 0/29/1 0/30/0 2/25/3 0/26/4
L-NTADE (−5.39) (6.44) (−15.71) (−28.30)

L-NTADEMN vs. 0/30/0 0/30/0 2/28/0 2/26/2
L-NTADE (−14.23) (8.14) (3.53) (1.73)

L-NTADEMF,MCr,MN vs. 7/15/8 10/18/2 7/15/8 8/7/15
L-NTADE (12.38) (42.70) (−5.91) (−15.53)

As shown in Table 1, applying scaling factor adaptation based on success rate with
coefficients found by EGO produces much better results in all dimensions. It is worth not-
ing that the largest effect is on 30D functions, as this is where the training was performed;
however, in other dimensions, there are also significant improvements on many functions.
Applying designed heuristics for Cr does not produce good results, except for a small
improvement in the 30D case. In other dimensions, the efficiency is decreased. The pop-
ulation size control strategy has similar performance to the standard LPSR, with slight
differences in the 50D and 100 cases. When all three are combined, the overall efficiency
drops compared to using only one strategy for scaling factor adaptation.

Table 2 contains a comparison on the CEC 2022 benchmark set. Here, the ranking in the
Mann–Whitney test also considers the computational resources spent to find the optimum.

Table 2. Mann–Whitney tests of L-NTADE against versions with designed heuristics, CEC 2022
benchmark, number of wins/ties/losses and total standard score.

Algorithm 10D 20D

L-NTADE vs. L-NTADEMF 5/4/3 (24.29) 3/5/4 (−12.66)
L-NTADE vs. L-NTADEMCr 3/9/0 (16.02) 3/9/0 (14.97)
L-NTADE vs. L-NTADEMN 6/6/0 (32.05) 3/9/0 (13.99)

L-NTADE vs. L-NTADEMF,MCr,MN 5/4/3 (22.87) 2/6/4 (-11.28)

The results in Table 2 show that the heuristic for scaling factor adaptation performs
better than SHA in the 10D case but worse in the 20D case. However, applying designed
curves for crossover rate and population size results increased efficiency in both dimensions.
When all three are combined, the results are similar to those achieved with MF only. It
should be noted that most of the improvements observed when using MCr and MN were
in terms of the number of function evaluations required to find a solution. In other words,
the algorithm converged faster. This demonstrates that setting a large Cr value for L-
NTADE when solving CEC 2022 benchmark functions could be more efficient than using
success–history adaptation and that the linear population size reduction may be not the
best option. The last statement is also supported by the fact that the NL-SHADE-RSP [39]

Mathematics 2023, 11, 2937 10 of 19

and NL-SHADE-LBC [40] algorithms, which were one of the top methods in the CEC 2021
and CEC 2022 benchmarks, also used non-linear population size reduction.

Figure 2 demonstrates the curves designed by efficient global optimization when the
computational resources were taken into consideration during ranking.

Figure 2. Curves for parameter adaptation designed by EGO for Taylor series, the best found function
values and spent resources used in ranking.

The curves shown in Figure 2 are quite similar to those shown in Figure 1, al-
though some differences can be observed. First of all, the curve for F is lower, although the
steepness is similarly close to zero. At the same time, the curvature around 0.4 is more
expressed, with MF decreasing, with a minimum point around 0.5. Applying such a curve
would result in smaller F values being generated compared to the previous case if the
success rate is higher. The curve for the crossover rate (Cr) is quite simple and sets MCr to
1, independent of the SR value, which rarely reached values above 0.5 during the active
phase of the search. For the population size control parameter (MN), the designed curve is
similar to that of non-linear population size reduction, i.e., it reduces the population size
more rapidly so that more computations are performed with a smaller population size.

Table 3 contains a comparison of the designed heuristics for parameter adaptation on
the CEC 2017 benchmark.

Table 3. Mann–Whitney tests of L-NTADE against versions with designed heuristics, CEC 2017
benchmark, number of wins/ties/losses, total standard score and learning considering the conver-
gence speed.

Algorithm 10D 30D 50D 100D

L-NTADEMF vs. 8/16/6 14/15/1 13/14/3 12/15/3
L-NTADE (25.43) (71.80) (52.68) (67.00)

L-NTADEMCr vs. 0/28/2 2/28/0 2/25/3 2/19/9
L-NTADE (−7.57) (−5.41) (−15.76) (−26.57)

L-NTADEMN vs. 0/29/1 1/28/1 0/29/1 1/27/2
L-NTADE (−13.89) (5.95) (−11.06) (−12.43)

L-NTADEMF,MCr,MN vs. 10/15/5 9/18/3 8/16/6 11/9/10
L-NTADE (19.05) (49.66) (16.65) (11.79)

The first row in Table 3 shows that the heuristic designed by EGO performs much
better than the standard success–history adaptation. Moreover, compared to the results
presented in Table 1, it achieves better generalization, as it performs much better in the
50D and 100D cases. The heuristic for the crossover rate adaptation does not produce any
good results, and is always worse than SHA. This means that the success rate (SR) is not
important for Cr. The control method for population size reduction works similarly in
the 30D case but loses performance in all other dimensions. Finally, combining all three
methods still increases performance but not as significantly because the scaling factor

Mathematics 2023, 11, 2937 11 of 19

parameter (F) adaptation is held back by two other inefficient methods. Note that here
the standard ranking scheme was performed, although the spent computational resources
were taken into consideration during training. This may explain the worse results obtained
when searching for MCr and MN curves.

Table 4 contains a comparison on the CEC 2022 benchmark.

Table 4. Mann–Whitney tests of L-NTADE against versions with designed heuristics, CEC 2022 bench-
mark, number of wins/ties/losses, total standard score and learning considering convergence speed.

Algorithm 10D 20D

L-NTADE vs. L-NTADEMF 6/3/3 (25.21) 4/5/3 (10.62)
L-NTADE vs. L-NTADEMCr 5/7/0 (27.65) 3/8/1 (8.20)
L-NTADE vs. L-NTADEMN 6/6/0 (31.07) 3/9/0 (9.21)

L-NTADE vs. L-NTADEMF,MCr,MN 6/3/3 (27.43) 4/4/4 (9.00)

In case of the CEC 2022 benchmark, where the amount of computational resources
spent on finding the optimum was taken into consideration, the designed heuristics for Cr
and N performed much better. The curve designed for the scaling factor still performed
better in both dimensions. However, combining all three together did not result in any
significant benefits.

Figures 3 and 4 demonstrate the process of parameter adaptation as observed on some
of the 30D functions of the CEC 2017 benchmark. The three shown curves are the success
rate (SR) value for F sampling MF, corresponding to the value of all memory cells when
the SHA was applied. In all cases, the heuristics for Cr and N were disabled.

0 50,000 100,000 150,000 200,000 250,000 300,000
NFE

0.0

0.5

1.0
F F6

0 50,000 100,000 150,000 200,000 250,000 300,000
NFE

0.0

0.5

1.0
F F9

0 50,000 100,000 150,000 200,000 250,000 300,000
NFE

0.0

0.5

1.0
F F15

0 50,000 100,000 150,000 200,000 250,000 300,000
NFE

0.0

0.5

1.0
F F19

0 50,000 100,000 150,000 200,000 250,000 300,000
NFE

0.0

0.5

1.0
F F22

0 50,000 100,000 150,000 200,000 250,000 300,000
NFE

0.0

0.5

1.0
F F30

MF value
Success Rate SR
SHA average memory MF

Figure 3. Scaling factor adaptation process, coefficients found with standard ranking, SHA adaptation
for comparison, CEC 2017 and selected functions.

Mathematics 2023, 11, 2937 12 of 19

0 50,000 100,000 150,000 200,000 250,000 300,000
NFE

0.0

0.5

1.0
F F6

0 50,000 100,000 150,000 200,000 250,000 300,000
NFE

0.0

0.5

1.0
F F9

0 50,000 100,000 150,000 200,000 250,000 300,000
NFE

0.0

0.5

1.0
F F15

0 50,000 100,000 150,000 200,000 250,000 300,000
NFE

0.0

0.5

1.0
F F19

0 50,000 100,000 150,000 200,000 250,000 300,000
NFE

0.0

0.5

1.0
F F22

0 50,000 100,000 150,000 200,000 250,000 300,000
NFE

0.0

0.5

1.0
F F30

MF value
Success Rate SR
SHA average memory MF

Figure 4. Scaling factor adaptation process, coefficients found with ranking by spent resources, SHA
adaptation for comparison, CEC 2017 and selected functions.

As shown in Figures 3 and 4, for the first heuristic designed by EGO when the standard
ranking was used in Mann–Whitney tests, the MF values are quite high and, in many cases,
higher than those generated by SHA. In the second case, when the computational resources
were considered during the training phase, the designed heuristic resulted in very similar
F values as SHA, for example, on functions 6, 9, 22 and 30. In other cases, however, there
were significant differences. Observing the dependence between success rate and MF, one
may notice that when SR drops low enough, the MF values start oscillating, as they appear
to be on the steep part of the curve. This results in a more broad search, i.e., more diverse
F values are generated. If the success rate is relatively high, i.e., the search is successful,
the MF values are more stable.

The coefficients found for all the curves in Figures 1 and 2 are provided in Table 5.

Table 5. Coefficients found by EGO for Taylor series.

Ranking Best Value Best Value and Spent Resources

Parameter F Cr N F Cr N

c0 1.063 −0.073 0.453 1.057 −0.766 10.000
c1 9.727 10.000 3.791 10.000 10.000 −10.000
c2 3.228 −8.230 −3.924 −10.000 −10.000 10.000
c3 10.000 2.472 10.000 −10.000 10.000 10.000
c4 5.805 5.290 1.721 10.000 5.988 −10.000
c5 −10.000 −10.000 10.000 −10.000 4.252 −10.000
c6 8.923 −10.000 −10.000 −3.236 3.455 −4.892
c7 3.450 10.000 −10.000 5.773 4.214 10.000
c8 −3.375 10.000 10.000 −2.913 −4.950 9.921
c9 5.084 −10.000 10.000 −2.647 −0.346 9.504
c10 −8.966 −8.535 5.942 −9.479 −3.835 −9.717

To compare the proposed approach with alternative methods, in Tables 6 and 7, the
L-NTADE with scaling factor adaptation method found in the second scenario (with spent
computational resources considered, Figure 2) is used. This version was chosen as it per-
formed better than any other version. For comparison on CEC 2017 benchmark, the results
of some of the top methods from CEC 2017 and CEC 2018 competitions were chosen.

Mathematics 2023, 11, 2937 13 of 19

Table 6. Mann–Whitney tests of L-NTADEMF against other approaches, CEC 2017, number of
wins/ties/losses and total standard score.

Algorithm 10D 30D 50D 100D

L-NTADEMF vs. 7/18/5 17/6/7 14/3/13 14/1/15
LSHADE-SPACMA [41] (9.88) (67.92) (18.56) (−4.52)

L-NTADEMF vs. 5/20/5 19/10/1 22/5/3 24/1/5
jSO [22] (−7.43) (131.06) (149.74) (145.89)

L-NTADEMF vs. 2/17/11 16/9/5 18/7/5 20/4/6
EBOwithCMAR [42] (−49.47) (73.42) (101.44) (115.96)

L-NTADEMF vs. 4/20/6 18/11/1 20/7/3 20/4/6
L-SHADE-RSP [20] (−12.29) (116.89) (126.03) (120.30)

L-NTADEMF vs. 13/6/11 24/3/3 28/2/0 29/0/1
NL-SHADE-RSP [39] (9.29) (173.75) (246.33) (233.83)

L-NTADEMF vs. 4/20/6 24/5/1 28/2/0 27/2/1
NL-SHADE-LBC [40] (−12.52) (180.53) (228.70) (215.99)

L-NTADEMF vs. 8/16/6 14/15/1 13/14/3 12/15/3
L-NTADE [7] (25.43) (71.80) (52.68) (67.00)

Comparing L-NTADEMF to other methods, one may conclude that it performs much
better, especially in high-dimensional cases, compared to L-SHADE-RSP, jSO and EBOwith-
CMAR, although it loses to LSHADE-SPACMA in the 100D case. In the 10D case, it works
worse than EBOwithCMAR and L-SHADE-RSP, but the performance improvement in other
dimensions is much more significant.

For the CEC 2022 benchmark, the top-three best methods were chosen for comparison,
as well as some other algorithms.

Table 7. Mann–Whitney tests of L-NTADEMF against the top-three competition and other approaches,
CEC 2022, number of wins/ties/losses and total standard score.

Algorithm 10D 20D

APGSK-IMODE [43] 8/2/2 (35.92) 8/2/2 (43.60)
MLS-LSHADE [44] 7/2/3 (28.25) 5/2/5 (−1.21)

MadDE [45] 8/2/2 (40.34) 7/2/3 (28.96)
EA4eigN100 [46] 5/0/7 (−5.93) 5/2/5 (0.42)

NL-SHADE-RSP-MID [47] 5/3/4 (8.55) 6/2/4 (13.75)
L-SHADE-RSP [20] 6/3/3 (20.02) 5/4/3 (9.04)

NL-SHADE-RSP [39] 7/2/3 (28.85) 7/2/3 (26.33)
NL-SHADE-LBC [40] 7/3/2 (30.05) 4/5/3 (8.48)

L-NTADE [7] 6/3/3 (25.21) 4/5/3 (10.62)

As shown in Table 7, the L-NTADEMF has higher efficiency than most methods, ex-
cept EA4eigN100, which is better in the 10D case and achieves almost the same performance
in the 20D case. Note that L-NTADEMF has the same parameter settings for both bench-
marks, so it was not tuned for CEC 2022, which requires considerably more computational
resources. Applying the designed heuristic for scaling factor sampling still produces better
results compared to most of the algorithms.

In order to evaluate the generalization abilities of the designed parameter adaptation
techniques, several additional experiments were performed. In particular, as in [6], a similar
offline approach using genetic programming was considered. The results of this study
were used for comparison. The NL-SHADE-RSP algorithm equipped with five different
automatically designed heuristics was compared with the same NL-SHADE-RSP algorithm
with success-rate-based adaptation of scaling factor, where Taylor series coefficients are
taken from the second experiment, i.e., with spent resources considered (Figure 2). Table 8

Mathematics 2023, 11, 2937 14 of 19

shows a comparison of NL-SHARE-RSPMF with the results from [6] on the CEC 2017
benchmark, where different GP-designed heuristics are marked with parameters that are
tuned (F, Cr or both), as well as the allowed range ([0, 1] or [−1.2, 1.2]).

Table 8. Mann–Whitney tests of the best designed heuristics from [6] against NL-SHADE-RSPMF,
CEC 2017 and number of wins/ties/losses.

Dimension F[0, 1] Cr[0, 1] F[−1.2, 1.2]

10 7/20/3 3/23/4 6/21/3
30 21/7/2 22/6/2 21/7/2
50 26/4/0 27/3/0 25/5/0

100 28/1/1 25/4/1 26/3/1

Total 82/32/6 77/36/7 78/36/6

Dimension F[0, 1], Cr[0, 1] F[−1.2, 1.2], Cr[0, 1]

10 4/22/4 4/22/4
30 20/8/2 20/8/2
50 27/2/1 25/5/0

100 26/3/1 27/2/1

Total 77/35/8 76/37/7

As shown in Table 8, the NL-SHADE-RSP algorithm with the heuristic designed in this
study using Taylor series and efficient global optimization wins against all the heuristics
proposed by genetic programming, especially in high-dimensional cases. Also note that the
curve parameters of the Taylor series expansion were designed for the L-NTADE algorithm,
which has a significantly different structure. However, the same parameters enabled
the same highly competitive results in NL-SHADE-RSP. This means that the designed
parameter adaptation technique has generalization capabilities.

To further test the proposed method, the NL-SHADE-RSPMF algorithm was tested
on the SOCO benchmark set. Unlike the CEC benchmarks, the SOCO test suite [10] has
problems with 50, 100, 200, 500 and 1000 dimension variables. The 1000D case was not
considered because it was not considered in [6], with no results for some of the methods for
this setting. Fewer computational resources were spent on SOCO (only 5000D evaluations),
and only 19 test functions were considered. Table 9 compares the NL-SHADE-RSPMF
against NL-SHADE-RSP with the best GP-designed heuristic, i.e., F[−1.2, 1.2], Cr[0, 1] as
well as other approaches.

Table 9. Comparison of NL-SHADE-RSPMF with other approaches on the SOCO benchmark and the
number of wins/ties/losses.

Algorithm 50D 100D

DE [11] 9/6/4 9/6/4
CHC [48] 19/0/0 19/0/0

G-CMA-ES [49] 15/2/2 14/1/4
SOUPDE [50] 7/7/5 8/6/5

DE-D∧40 + M∧m [51] 10/4/5 11/3/5
GODE [52] 9/6/4 8/6/5
GaDE [53] 5/9/5 2/9/8

jDElscop [54] 4/10/5 4/9/6
SaDE-MMTS [55] 3/10/6 1/10/8

MOS [56] 4/11/4 2/10/7
MA-SSW-Chains [57] 15/1/3 15/0/4

Mathematics 2023, 11, 2937 15 of 19

Table 9. Cont.

Algorithm 50D 100D

RPSO-vm [58] 12/3/4 11/4/4
Tuned IPSOLS [59] 11/4/4 7/4/8

EvoPROpt [60] 17/0/2 17/0/2
EM323 [61] 11/4/4 10/4/5
VXQR1 [62] 10/6/3 9/4/6

NL-SHADE-RSPF[−1.2,1.2],Cr[0,1] [6] 4/12/3 6/11/2

Total 165/95/63 153/87/83

Algorithm 200D 500D

DE [11] 4/6/9 3/4/12
CHC [48] 19/0/0 19/0/0

G-CMA-ES [49] 13/2/4 14/1/4
SOUPDE [50] 6/4/9 4/3/12

DE-D∧40 + M∧m [51] 8/2/9 5/2/12
GODE [52] 4/6/9 3/4/12
GaDE [53] 3/6/10 2/4/13

jDElscop [54] 2/7/10 1/5/13
SaDE-MMTS [55] 0/8/11 1/6/12

MOS [56] 1/8/10 1/6/12
MA-SSW-Chains [57] 14/0/5 10/0/9

RPSO-vm [58] 9/4/6 9/1/9
Tuned IPSOLS [59] 7/4/8 4/3/12

EvoPROpt [60] 15/0/4 11/1/7
EM323 [61] 8/4/7 8/2/9
VXQR1 [62] 9/3/7 9/2/8

NL-SHADE-RSPF[−1.2,1.2],Cr[0,1] [6] 6/8/5 8/5/6

Total 128/72/123 112/49/162

Table 9 shows that the NL-SHADE-RSP algorithm with the parameter adaptation
technique designed by EGO with computational resource consideration outperforms most
of the algorithms in the 50D and 100D cases but loses to some of the algorithms in 200D
and 500D cases. Considering that the parameters were designed for the 30D case and a
different algorithm L-NTADE on a different benchmark set, this can be seen as a highly
competitive result. As for the comparison to the GP-designed heuristic, the proposed
algorithm shows better efficiency in all cases, i.e., it performs better on most test functions
in all dimensions.

6. Discussion

The experimental results presented in the previous section demonstrate that the pro-
posed approach, i.e., using Taylor series and efficient global optimization, can be success-
fully applied to design new heuristics for evolutionary algorithms. Such a hyper-heuristic
approach appears to be quite universal, as it can be applied to almost any algorithm,
where some dependence between a couple (or more) parameters should be derived, and it
is not clear what it should be. Moreover, it can be used to discover whether there is
any dependence that could be utilized at all. For example, we showed that there is no
sense in attempting to determine the crossover rate based on the success rate, while the
scaling factor depends on it significantly. The disadvantage of such an approach is its
computational burden. Each of the six experiments performed within this study required
around 24 h to complete 1000 evaluations, and a cluster for parallel evaluations was is use.
Nevertheless, this framework can be applied to discover new ways to tune and improve
evolutionary algorithms.

The most efficient heuristic found in this study, MF from the second setting with
computational resource consideration during the learning phase, exhibits similar trends to
those observed when genetic programming was applied for parameter adaptation method

Mathematics 2023, 11, 2937 16 of 19

design in [6]. The GP showed that a square root for success rate can be used, and using
Taylor series revealed a similar dependence: a steep increase from 0 and a more flat increase
after 0.4. It is important to understand why this simple strategy works and, in many
cases, works better than classical success–history adaptation. We hypothesize that it works
efficiently due to its combination with the current-to-pbest/1 strategy. If the success rate is
relatively high (close to 0.4), then larger F values should be set, which would introduce
new solutions closer to one of the p% best solutions, promoting exploitation. If, however,
the search is inefficient, then the F value should be decreased, as moving towards one
of the p% best solutions does not lead to better results. In this case, smaller F values
should be sampled, with larger oscillations of MF value, resulting in a more diverse and
broad search, i.e., exploration. In this manner, applying a simple curve and describing the
dependence between the success rate and scaling factor leads to logical behavior of the
algorithm, improving overall performance. The SHA, on the other hand, attempts to catch
possible improvements, which may sometimes be difficult, as these improvements may be
rare, resulting in excessively high memory cell values, as observed in the graphs.

Possible directions for further studies combining DE and EGO with Taylor series
approximation include:

1. Experimentally searching for an efficient information source for Cr adaptation;
2. Applying multidimensional Taylor series to design parameter adaptation based on

more than one feature;
3. Searching for an efficient control strategy for the pb% parameter;
4. Applying the described approach to other DE algorithms;
5. Experimenting with search methods other than EGO.

The described approach can be applied to other areas of evolutionary computation.

7. Conclusions

In this study, we proposed a surrogate-assisted approach to design novel parameter
adaptation heuristics for differential evolution by describing the dependence between
different values using Taylor series. The described approach applied to a recently proposed
L-NTADE algorithm achieved significant performance improvements in several cases,
especially with scaling factor adaptation. Efficient global optimization enabled parameter
tuning for the Taylor-series-defined curve with a relatively small number of evaluations.
The resulting modified algorithm demonstrated its high efficiency compared to alternative
approaches on two benchmarks, proving is workability. The most important part is that
the described approach is universal and can be utilized to improve other algorithms in a
hyper-heuristic framework.

Author Contributions: Conceptualization, V.S. and E.S.; methodology, V.S. and E.S.; software, V.S.;
validation, V.S. and E.S.; formal analysis, V.S.; investigation, V.S.; resources, E.S. and V.S.; data curation,
E.S.; writing—original draft preparation, V.S.; writing—review and editing, V.S.; visualization, V.S.;
supervision, E.S.; project administration, E.S.; funding acquisition, E.S. and V.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education of the Russian
Federation within limits of state contract № FEFE-2023-0004.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2023, 11, 2937 17 of 19

Abbreviations
The following abbreviations are used in this manuscript:

GA Genetic algorithm
GP Genetic programming
EC Evolutionary computation
DE Differential evolution
NEAT Neuroevolution of augmented topologies
EGO Efficient global optimization
CEC Congress on Evolutionary Computation
SHADE Success–history adaptive differential evolution
LPSR Linear population size reduction
LBC Linear bias change
RSP Rank-based Selective pressure
UDE Unbounded differential evolution
L-NTADE Linear population size reduction Newest and Top Adaptive Differential Evolution

References
1. Das, S.; Suganthan, P. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2011, 15, 4–31. [CrossRef]
2. Das, S.; Mullick, S.; Suganthan, P. Recent advances in differential evolution—An updated survey. Swarm Evol. Comput. 2016,

27, 1–30. [CrossRef]
3. Brest, J.; Greiner, S.; Boškovic, B.; Mernik, M.; Žumer, V. Self-adapting control parameters in differential evolution: A comparative

study on numerical benchmark problems. IEEE Trans. Evol. Comput. 2006, 10, 646–657. [CrossRef]
4. Zhang, J.; Sanderson, A.C. JADE: Self-adaptive differential evolution with fast and reliable convergence performance. In

Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 2251–2258.
5. Tanabe, R.; Fukunaga, A. Success-history based parameter adaptation for differential evolution. In Proceedings of the IEEE

Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 71–78. [CrossRef]
6. Stanovov, V.; Akhmedova, S.; Semenkin, E. The automatic design of parameter adaptation techniques for differential evolution

with genetic programming. Knowl. Based Syst. 2022, 239, 108070. [CrossRef]
7. Stanovov, V.; Akhmedova, S.; Semenkin, E. Dual-Population Adaptive Differential Evolution Algorithm L-NTADE. Mathematics

2022, 10, 4666 . [CrossRef]
8. Awad, N.; Ali, M.; Liang, J.; Qu, B.; Suganthan, P. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and

Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization; Technical Report; Nanyang Technological
University: Singapore, 2016.

9. Kumar, A.; Price, K.; Mohamed, A.K.; Hadi, A.A.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC
2022 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization; Technical Report; Nanyang
Technological University: Singapore, 2021.

10. Herrera, F.; Lozano, M.; Molina, D. Test Suite for the Special Issue of Soft Computing on Scalability of Evolutionary Algorithms and Other
Metaheuristics for Large Scale Continuous Optimization Problems; Technical Report; University of Granada: Granada, Spain, 2010.

11. Storn, R.; Price, K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Glob.
Optim. 1997, 11, 341–359. [CrossRef]

12. Price, K.; Storn, R.; Lampinen, J. Differential Evolution: A Practical Approach to Global Optimization; Springer: Berlin/Heidelberg,
Germany, 2005.

13. Kumar, A.; Biswas, P.P.; Suganthan, P.N. Differential evolution with orthogonal array-based initialization and a novel selection
strategy. Swarm Evol. Comput. 2022, 68, 101010. [CrossRef]

14. Al-Dabbagh, R.D.; Neri, F.; Idris, N.; Baba, M.S.B. Algorithmic design issues in adaptive differential evolution schemes: Review
and taxonomy. Swarm Evol. Comput. 2018, 43, 284–311. [CrossRef]

15. Stanovov, V.; Akhmedova, S.; Semenkin, E. Biased Parameter Adaptation in Differential Evolution. Inf. Sci. 2021, 566, 215–238.
[CrossRef]

16. Zhang, J.; Sanderson, A.C. JADE: Adaptive Differential Evolution With Optional External Archive. IEEE Trans. Evol. Comput.
2009, 13, 945–958. [CrossRef]

17. Tanabe, R.; Fukunaga, A. Improving the search performance of SHADE using linear population size reduction. In Proceedings of
the IEEE Congress on Evolutionary Computation, CEC, Beijing, China, 6–11 July 2014; pp. 1658–1665. [CrossRef]

18. Brest, J.; Maucec, M.; Bovsković, B. The 100-Digit Challenge: Algorithm jDE100. In Proceedings of the 2019 IEEE Congress on
Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 19–26.

19. Brest, J.; Maucec, M.; Bosković, B. Differential Evolution Algorithm for Single Objective Bound-Constrained Optimization:
Algorithm j2020. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020;
pp. 1–8.

http://doi.org/10.1109/TEVC.2010.2059031
http://dx.doi.org/10.1016/j.swevo.2016.01.004
http://dx.doi.org/10.1109/TEVC.2006.872133
http://dx.doi.org/10.1109/CEC.2013.6557555
http://dx.doi.org/10.1016/j.knosys.2021.108070
http://dx.doi.org/10.3390/math10244666
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1016/j.swevo.2021.101010
http://dx.doi.org/10.1016/j.swevo.2018.03.008
http://dx.doi.org/10.1016/j.ins.2021.03.016
http://dx.doi.org/10.1109/TEVC.2009.2014613
http://dx.doi.org/10.1109/CEC.2014.6900380

Mathematics 2023, 11, 2937 18 of 19

20. Stanovov, V.; Akhmedova, S.; Semenkin, E. LSHADE Algorithm with Rank-Based Selective Pressure Strategy for Solving CEC
2017 Benchmark Problems. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil,
8–13 July 2018; pp. 1–8.

21. Viktorin, A.; Senkerik, R.; Pluhacek, M.; Kadavy, T.; Zamuda, A. Distance based parameter adaptation for Success-History based
Differential Evolution. Swarm Evol. Comput. 2019, 50, 100462 . [CrossRef]

22. Brest, J.; Maučec, M.; Boškovic, B. Single objective real-parameter optimization algorithm jSO. In Proceedings of the IEEE
Congress on Evolutionary Computation, Donostia, Spain, 5–8 June 2017, pp. 1311–1318. [CrossRef]

23. Kitamura, T.; Fukunaga, A. Differential Evolution with an Unbounded Population. In Proceedings of the 2022 IEEE Congress on
Evolutionary Computation (CEC), Padua, Italy, 18–23 July 2022.

24. Ginsbourger, D.; Riche, R.L.; Carraro, L. Kriging is well-suited to parallelize optimization. In Computational Intelligence in Expensive
Optimization Problems; Springer: Berlin/Heidelberg, Germany, 2010; pp. 131–162.

25. Mockus, J. On Bayesian Methods for Seeking the Extremum. In Proceedings of the Optimization Techniques, Novosibirsk, Russia,
1–7 July 1974.

26. Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient Global Optimization of Expensive Black-Box Functions. J. Glob. Optim. 1998,
13, 455–492. [CrossRef]

27. Eiben, A.; Smit, S. Evolutionary Algorithm Parameters and Methods to Tune Them. In Proceedings of the Autonomous Search;
Springer: Berlin/Heidelberg, Germany, 2012.

28. Hoos, H.H. Automated Algorithm Configuration and Parameter Tuning. In Proceedings of the Autonomous Search; Springer:
Berlin/Heidelberg, Germany, 2012.

29. Birattari, M.; Yuan, Z.; Balaprakash, P.; Stützle, T. F-Race and Iterated F-Race: An Overview. In Proceedings of the Experimental
Methods for the Analysis of Optimization Algorithms; Springer: Berlin/Heidelberg, Germany, 2010.

30. Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Sequential Model-Based Optimization for General Algorithm Configuration. In
Proceedings of the LION, Rome, Italy, 17–21 January 2011.

31. Tatsis, V.A.; Parsopoulos, K.E. Dynamic parameter adaptation in metaheuristics using gradient approximation and line search.
Appl. Soft Comput. 2019, 74, 368–384. [CrossRef]

32. Stanovov, V.; Akhmedova, S.; Semenkin, E. Neuroevolution for Parameter Adaptation in Differential Evolution. Algorithms 2022,
15, 122. [CrossRef]

33. Haraldsson, S.O.; Woodward, J. Automated design of algorithms and genetic improvement: Contrast and commonalities. In
Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, Vancouver,
BC, Canada, 12–16 July 2014.

34. Burke, E.; Hyde, M.; Kendall, G.; Ochoa, G.; Özcan, E.; Woodward, J. A Classification of Hyper-Heuristic Approaches: Revisited.
In Handbook of Metaheuristics; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 453–477. [CrossRef]

35. Burke, E.; Hyde, M.R.; Kendall, G.; Ochoa, G.; Özcan, E.; Woodward, J. Exploring Hyper-Heuristic Methodologies with Genetic
Programming; Springer: Berlin/Heidelberg, Germany, 2009; pp. 177–201.

36. Price, K.V.; Kumar, A.; Suganthan, P.N. Trial-based dominance for comparing both the speed and accuracy of stochastic optimizers
with standard non-parametric tests. Swarm Evol. Comput. 2023, 78, 101287. [CrossRef]

37. Bouhlel, M.A.; Hwang, J.T.; Bartoli, N.; Lafage, R.; Morlier, J.; Martins, J.R.R.A. A Python surrogate modeling framework with
derivatives. Adv. Eng. Softw. 2019, 135 , 102662. [CrossRef]

38. Saves, P.; Lafage, R.; Bartoli, N.; Diouane, Y.; Bussemaker, J.H.; Lefebvre, T.; Hwang, J.T.; Morlier, J.; Martins, J.R.R.A. SMT 2.0: A
Surrogate Modeling Toolbox with a focus on Hierarchical and Mixed Variables Gaussian Processes. arXiv 2023, arXiv:2305.13998.

39. Stanovov, V.; Akhmedova, S.; Semenkin, E. NL-SHADE-RSP Algorithm with Adaptive Archive and Selective Pressure for CEC
2021 Numerical Optimization. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Krakow, Poland,
28 June–1 July 2021; pp. 809–816. [CrossRef]

40. Stanovov, V.; Akhmedova, S.; Semenkin, E. NL-SHADE-LBC algorithm with linear parameter adaptation bias change for CEC
2022 Numerical Optimization. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy,
18–23 July 2022.

41. Mohamed, A.; Hadi, A.A.; Fattouh, A.; Jambi, K. LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving
CEC 2017 benchmark problems. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain,
5–8 June 2017; pp. 145–152.

42. Kumar, A.; Misra, R.K.; Singh, D. Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix
Adapted Retreat Phase. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5–8
June 2017; pp. 1835–1842.

43. Mohamed, A.W.; Hadi, A.A.; Agrawal, P.; Sallam, K.M.; Mohamed, A.K. Gaining-Sharing Knowledge Based Algorithm with
Adaptive Parameters Hybrid with IMODE Algorithm for Solving CEC 2021 Benchmark Problems. In Proceedings of the 2021
IEEE Congress on Evolutionary Computation (CEC), Krakow, Poland, 28 June–1 July 2021; pp. 841–848.

44. Cuong, L.V.; Bao, N.N.; Binh, H.T.T. Technical Report: A Multi-Start Local Search Algorithm with L-SHADE for Single Objective Bound
Constrained Optimization; Technical Report; SoICT, Hanoi University of Science and Technology: Hanoi, Vietnam, 2021.

http://dx.doi.org/10.1016/j.swevo.2018.10.013
http://dx.doi.org/10.1109/CEC.2017.7969456
http://dx.doi.org/10.1023/A:1008306431147
http://dx.doi.org/10.1016/j.asoc.2018.09.034
http://dx.doi.org/10.3390/a15040122
http://dx.doi.org/10.1007/978-3-319-91086-4_14
http://dx.doi.org/10.1016/j.swevo.2023.101287
http://dx.doi.org/10.1016/j.advengsoft.2019.03.005
http://dx.doi.org/10.1109/CEC45853.2021.9504959

Mathematics 2023, 11, 2937 19 of 19

45. Biswas, S.; Saha, D.; De, S.; Cobb, A.D.; Das, S.; Jalaian, B. Improving Differential Evolution through Bayesian Hyperparameter
Optimization. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC), Krakow, Poland, 28 June–1 July
2021; pp. 832–840.

46. Bujok, P.; Kolenovsky, P. Eigen Crossover in Cooperative Model of Evolutionary Algorithms Applied to CEC 2022 Single Objective
Numerical Optimisation. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, 18–23
July 2022.

47. Biedrzycki, R.; Arabas, J.; Warchulski, E. A Version of NL-SHADE-RSP Algorithm with Midpoint for CEC 2022 Single Objective
Bound Constrained Problems. In Proceedings of the 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy,
18–23 July 2022.

48. Eshelman, L.J.; Schaffer, J.D. Real-Coded Genetic Algorithms and Interval-Schemata. In Proceedings of the FOGA; Elsevier:
Amsterdam, The Netherlands, 1992.

49. Auger, A.; Hansen, N. A restart CMA evolution strategy with increasing population size. In Proceedings of the 2005 IEEE
Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; Volume 2, pp. 1769–1776 .

50. Weber, M.; Neri, F.; Tirronen, V. Shuffle or update parallel differential evolution for large-scale optimization. Soft Comput. 2011,
15, 2089–2107. [CrossRef]

51. García-Martínez, C.; Rodríguez, F.J.; Lozano, M. Role differentiation and malleable mating for differential evolution: An analysis
on large-scale optimisation. Soft Comput. 2011, 15, 2109–2126. [CrossRef]

52. Wang, H.; Wu, Z.; Rahnamayan, S. Enhanced opposition-based differential evolution for solving high-dimensional continuous
optimization problems. Soft Comput. 2011, 15, 2127–2140. [CrossRef]

53. Yang, Z.; Tang, K.; Yao, X. Scalability of generalized adaptive differential evolution for large-scale continuous optimization. Soft
Comput. 2011, 15, 2141–2155. [CrossRef]

54. Brest, J.; Maucec, M.S. Self-adaptive differential evolution algorithm using population size reduction and three strategies. Soft
Comput. 2011, 15, 2157–2174. [CrossRef]

55. Zhao, S.Z.; Suganthan, P.N.; Das, S. Self-adaptive differential evolution with multi-trajectory search for large-scale optimization.
Soft Comput. 2011, 15, 2175–2185. [CrossRef]

56. LaTorre, A.; Muelas, S.; Sánchez, J.M.P. A MOS-based dynamic memetic differential evolution algorithm for continuous
optimization: a scalability test. Soft Comput. 2011, 15, 2187–2199. [CrossRef]

57. Molina, D.; Lozano, M.; Sánchez, A.M.; Herrera, F. Memetic algorithms based on local search chains for large scale continuous
optimisation problems: MA-SSW-Chains. Soft Comput. 2011, 15, 2201–2220. [CrossRef]

58. García-Nieto, J.; Alba, E. Restart particle swarm optimization with velocity modulation: A scalability test. Soft Comput. 2011,
15, 2221–2232. [CrossRef]

59. de Oca, M.A.M.; Aydin, D.; Stützle, T. An incremental particle swarm for large-scale continuous optimization problems: An
example of tuning-in-the-loop (re)design of optimization algorithms. Soft Comput. 2011, 15, 2233–2255. [CrossRef]

60. Duarte, A.; Martí, R.; Gortázar, F. Path relinking for large-scale global optimization. Soft Comput. 2011, 15, 2257–2273. [CrossRef]
61. Gardeux, V.; Chelouah, R.; Siarry, P.; Glover, F.W. EM323: A line search based algorithm for solving high-dimensional continuous

non-linear optimization problems. Soft Comput. 2011, 15, 2275–2285. [CrossRef]
62. Neumaier, A.; Fendl, H.; Schilly, H.; Leitner, T. VXQR: Derivative-free unconstrained optimization based on QR factorizations.

Soft Comput. 2011, 15, 2287–2298. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00500-010-0640-9
http://dx.doi.org/10.1007/s00500-010-0641-8
http://dx.doi.org/10.1007/s00500-010-0642-7
http://dx.doi.org/10.1007/s00500-010-0643-6
http://dx.doi.org/10.1007/s00500-010-0644-5
http://dx.doi.org/10.1007/s00500-010-0645-4
http://dx.doi.org/10.1007/s00500-010-0646-3
http://dx.doi.org/10.1007/s00500-010-0647-2
http://dx.doi.org/10.1007/s00500-010-0648-1
http://dx.doi.org/10.1007/s00500-010-0649-0
http://dx.doi.org/10.1007/s00500-010-0650-7
http://dx.doi.org/10.1007/s00500-010-0651-6
http://dx.doi.org/10.1007/s00500-010-0652-5

	Introduction
	Background
	Differential Evolution
	Parameter Adaptation in Differential Evolution
	L-NTADE Algorithm
	Surrogate Modeling and Efficient Global Optimization

	Related Work
	Proposed Approach
	Experimental Setup and Results
	Benchmark Functions and Parameters
	Numerical Results

	Discussion
	Conclusions
	References

