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Abstract: An SIRS epidemic model with a modified nonlinear incidence rate is studied, which
describes that the infectivity is strong at first as the emergence of a new disease or the reemergence of
an old disease, but then the psychological effect will weaken the infectivity. Lastly, the infectivity goes
to a saturation state as a result of a crowding effect. The nonlinearity of the functional form of the
incidence of infection is modified, which is more reasonable biologically. We analyze the stability of
the associated equilibria, and the basic reproduction number and the critical value which determine
the dynamics of the model are derived. The bifurcation analysis is presented, including backward
bifurcation, saddle-node bifurcation, Bogdanov–Takens bifurcation of codimension two and Hopf
bifurcation. To study Hopf bifurcation of codimension three of the model when some assumptions
hold, the focus values are calculated. Numerical simulations are shown to verify our results.

Keywords: SIRS model; backward bifurcation; saddle-node bifurcation; Bogdanov–Takens bifurcation;
Hopf bifurcation
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1. Introduction

In epidemiology modeling, there are several factors that substantially affect the dy-
namical behavior of the models. Therein, the incidence rate is very crucial for describing the
spreading of disease; in general, some nonlinear incidence rates play key roles in producing
the rich dynamics, including bistability (backward bifurcation) and periodicity [1–5]. The
general incidence rate kIpS/(1 + αIq) (q = p− 1) was investigated by Liu et al. [6,7]. Het-
hcote and van den Driessche [8] considered the case p ≥ q. Tang et al. [9] and Hu et al. [10]
proposed that the incidence function kIp/(1 + αIq) with respect to I, which measures the
infection force of a disease, includes three cases: (I) if p < q, it is unbounded; (II) if p = q, it
is saturated; (III) if p < q, it is nonmonotone. the first case may be true in the early process
of the disease or the number of the infective individuals I(t) is small, but will become
unrealistic when I(t) is getting larger.

In the second scenario, considering the inhibitory effect from the behavioral change of
the susceptible individuals when the number of infective individuals increases, Ruan and
Wang [4] studied a model with a saturated nonlinear incidence rate kI2S/(1 + αI2), where
kI2 measures the infection force of the disease and 1/(1 + αI2) describes the inhibitory
effect, and they investigated the global dynamics of the model. The incidence function
kI2/(1+ αI2) monotonously and eventually goes to a saturation level k

α as I becomes larger.
However, when a new infectious disease emerges which people know little about and
to which they are caught off guard, the infection force of the disease increases rapidly
until the disease attracts people’s attention, and they will change their behaviors, such as
giving up risky behavior or taking precautionary measures to reduce the transmission, and
then, the infection force will decrease. This is the psychological effect. The outbreak of
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2019 novel coronavirus diseases (COVID-19) in Wuhan, Hubei Province, China, showed
such psychological effects on the general public, including aggressive measures and poli-
cies, such as rapid isolation of suspected cases, confirmed cases, and contacts; restrictions
on mobility; travel restrictions; keeping distance from others; mask-wearing; etc., was
clearly successful in mitigating spread and reducing the local transmission of COVID-19 in
China [11–13]. Similarly, in the epidemic outbreak of severe acute respiratory syndrome
(SARS) in 2003 [14], these measures, including border screening, mask-wearing [15], quar-
antine [16], isolation, etc., proved to be effective in reducing the spread of SARS. Obviously,
the monotone incidence rates may not be used to describe the psychological effect perfectly.
Xiao and Ruan [17] proposed an epidemic model with incidence kIS/(1 + αI2) to model
the effect and carried out a global analysis of the model and showed that either the number
of infective individuals tends to zero as time evolves or the disease persists. The dynamics
of this model was relatively simple.

Xiao and Zhou [18] and Zhou et al. [19] studied an epidemic model with the non-
monotonic incidence rate of saturated mass action kIS/(1 + βI + αI2), and Xiao and Zhou
carried out a global analysis and showed the existence of bistability and periodicity. Zhou et
al. presented the bifurcation analysis of the model, such as Hopf bifurcation and Bogdanov–
Takens bifurcation. Both nonmonotonic and saturated incidence functions kI/(1 + αI2)
and kI/(1 + βI + αI2) approach zero when I tends to infinite, which implies that the psy-
chological or inhibitory effect is so strong that the disease incidence becomes zero, which
may be unreasonable for some diseases, such as influenza. Considering a more reasonable
incidence function which goes up at first at the onset of a disease, then goes down because
of the psychological effect, and goes to a saturation level at length due to the crowding
effect, Lu et al. [20] proposed a generalized nonmonotone and saturated incidence rate
kI2S/(1 + βI + αI2), where parameter β > −2

√
α to make 1 + βI + αI2 > 0 hold for all

I ≥ 0, and when β ≥ 0, the incidence function kI2/(1 + βI + αI2) increases monotonously
to a saturated level k

α as I goes to infinite. When −2
√

α < β < 0, kI2/(1 + βI + αI2) is non-
monntonic, which grows at first and then descends to a saturated level k

α as I → ∞. They
studied the following model with this incidence rate and found that the model showed rich
dynamical behaviors, including saddle-node bifurcation, Bogdanov–Takens bifurcation of
codimension two, and degenerate Hopf bifurcation of codimension two.

dS
dt

= b− dS− kI2

1 + βI + αI2 S + νR,

dI
dt

=
kI2

1 + βI + αI2 S− (d + γ)I,

dR
dt

= γI − (d + ν)R.

(1)

where S represents susceptible compartment, I represents infective compartment, and R
represents recovered compartment. All parameters except β are positive in the model. Here,
b is the natural birth rate, d is the natural death rate, µ is the recovery rate, k is the infection
rate, and α describes the psychological effect. Recovered individuals lose immunity and
move into susceptible compartment S at rate ν.

The basic reproduction number R0 is the single most important parameter in epidemic
modeling, which measures the average number of secondary infections caused by a single
infectious individual in an entirely susceptible population during the mean infectious
period [21]. The incidence rate kI2S/(1 + βI + αI2), with combination of monotonicity,
nonmonotonicity, and saturation properties, seems reasonable to describe the transmission
process of some specific infectious diseases. In fact, the basic reproduction number of
model (1) with the incidence rate is zero, but they proved that the disease still persisted
for some parameters and initial conditions, which seems unreasonable. Moreover, the
parameter β can take a negative value and does not have a realistic biological meaning, and
it may seem be farfetched to endow the incidence rate with the combination of monotonicity,
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nonmonotonicity, and saturation properties. Hence, by the above analysis, we propose a
more reasonable incidence rate:

f (I)S =
k1 I + k2 I2

1 + αI2 S,

where the incidence function f (I) = k1 I+k2 I2

1+αI2 reserves the combination of monotonicity,
nonmonotonicity, and saturation properties, i.e., when k1 = 0, f (I) increases monotonously
to a saturated level k2

α as I goes to infinite; when k1 > 0, f (I) is nonmonntonic, which
increases at first and then decreases to a saturated level k2

α as I tends to infinite (see
Figure 1). Moreover, the basic reproduction number and all parameters have biological
meaning with reasonable explanation. Moreover, this incidence rate enriches the model
with more rich dynamical behaviors. In fact, in 2000, an epidemic model with the incidence
rate (k1 I + k2 I2)S was proposed by P. van den Driessche et al. [2], considering the contact
rate may depend on the fraction of infective individuals or on the severity of infection in
the infected individual, and Li et al., 2007 [22] and Li et al., 2014 [23] presented that the
model showed very rich dynamical behaviors, including backward bifurcation, the Hopf
bifurcation and Bogdanov–Takens bifurcation, and canard phenomenon, respectively.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

I

f(
I)

k
1
=0

k
1
=1

k
1
=2

Figure 1. The incidence function f (I) = k1 I+k2 I2

1+αI2 for k1 = 0, k1 = 1 and k1 = 2.

This paper focuses on the detailed dynamics analysis of the following SIRS (Susceptible-
Infected-Recovered-Susceptible) epidemic model:

dS
dt

= b− dS− k1 I + k2 I2

1 + αI2 S + νR,

dI
dt

=
k1 I + k2 I2

1 + αI2 S− (d + γ)I,

dR
dt

= γI − (d + ν)R.

(2)

where the biological meaning of the parameters are the same as model (1), (k1 I + k2 I2)S
measures linear and nonlinear hazards of infection, and 1

1+αI2 describes the psychological

effect. The basic reproduction number R0 of the model is bk1
d(d+γ)

, and we will perform a
qualitative dynamics analysis for model (2); it is shown that there may be two endemic
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equilibria, which gives rise to the phenomenon of bistability (backward bifurcation) when
parameters are lying in some region. We will investigate the local stability of these equilibria,
classify the types of the equilibria, and discuss different kinds of bifurcation phenomena. A
saddle-node bifurcation will be investigated for different perturbation parameters. Next,
we will prove that the model can undergo Bogdanov–Takens bifurcation of, at most,
codimension two, and the model with some specific parameters values can bifurcate at least
three limit cycles through Hopf bifurcation of codimension three. Numerical simulations
for these bifurcation phenomena will be presented to illustrate our theoretical results.

The organization of this paper is as follows. Existence and types of equilibria are
presented in Section 2 by reducing the model to a two-dimensional system. In Section 3,
we study the backward bifurcation, saddle-node bifurcation, and Bogdanov–Takens bifur-
cation of codimension two; Hopf bifurcation of codimension two; and Hopf bifurcation of
codimension three. This paper ends with a brief conclusion and discussion of the results in
Section 4.

2. Existence and Types of Equilibria

Note that the equation for the total population N is given by dN
dt = b− dN, where

N = S + I + R. Since N → N0 = b
d as t→ ∞, it is clear that:

Ω = {(S, I, R) : S, I, R ≥ 0, S + I + R = N0}

is a positively invariant region for model (2). Hence, our study on the dynamics of model (2)
is focused on the region Ω. Substituting N0 − I − R for S in model (2), we can obtain the
following reduced model by eliminating S from the equations:

dI
dt

=
k1 I + k2 I2

1 + αI2 (N0 − I − R)− (d + γ)I,

dR
dt

= γI − (d + ν)R.
(3)

Rescale model (3) by using x =
√

k2
d+ν I, y =

√
k2

d+ν R, θ = (d + ν)t, and let β =

k1√
k2(d+ν)

, p = d+ν
k2

α, m = d+γ
d+ν , Λ =

√
k2

d+ν N0, q = γ
d+ν . For simplicity, we still denote θ by t

and obtain: 
dx
dt

=
x2 + βx
1 + px2 (Λ− x− y)−mx,

dy
dt

= qx− y.

(4)

It is evident that:
β ≥ 0, Λ, m, p, q > 0, m > q, (5)

and the positively invariant region of model (4) is:

D = {(x, y)|x ≥ 0, y ≥ 0, x + y ≤ Λ}.

By using the next generation matrix [24], we derive the basic reproduction number R0 = βΛ
m .

Model (3) always has a equilibrium E0(0, 0). To find other equilibria of the model, we set:

x2 + βx
1 + px2 (Λ− x− y)−mx = 0, qx− y = 0, (6)

and obtain:
(mp + q + 1)x2 + (βq + β−Λ)x + m− βΛ = 0, (7)
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The discriminant of (7) is:

∆ = (Λ− β− βq)2 − 4(m− βΛ)(mp + q + 1).

From (6) and (7), there are at the utmost two endemic equilibria E1(x1, y1) and E2(x2, y2)
in model (4), and they can merge into a unique endemic equilibrium E∗(x∗, y∗), where:

x1 =
Λ− β(1 + q)−

√
∆

2(1 + q + mp)
, y1 = qx1,

x2 =
Λ− β(1 + q) +

√
∆

2(1 + q + mp)
, y2 = qx2,

x∗ =
Λ− β(1 + q)

2(1 + q + mp)
, y∗ = qx∗.

and:

x1 + x2 =
Λ− β(1 + q)
1 + q + mp

, x1x2 =
m− βΛ

1 + q + mp
.

From ∆ = 0, we derive p = (Λ−β−βq)2−4(1+q)(m−βΛ)
4m(m−βΛ)

. Let:

p∗ =
(Λ− β− βq)2 − 4(1 + q)(m− βΛ)

4m(m− βΛ)
(8)

and p∗ > 0, i.e.,

βΛ < m <
(Λ− β− βq)2

4(1 + q)
+ βΛ. (9)

Therefore, the following theorem is derived.

Lemma 1. Under the condition of (5), for model (4), the equilibrium E0(0, 0) always exists.
Moreover,
(I) Model (4) has no endemic equilibria if and only if one of the following conditions holds:
(I.1) m ≥ βΛ and Λ ≤ β + βq,

(I.2) βΛ < m < (Λ−β−βq)2

4(1+q) + βΛ, Λ > β + βq and p > p∗,

(I.3) m ≥ (Λ−β−βq)2

4(1+q) + βΛ and Λ > β + βq.

(II) There exists a unique endemic equilibrium E∗(x∗, y∗) if and only if βΛ < m < (Λ−β−βq)2

4(1+q) +

βΛ, Λ > β + βq and p = p∗.
(III) There exists a unique endemic equilibrium E2(x2, y2) if and only if one of the following
conditions holds:
(III.1) m = βΛ and Λ > β + βq,
(III.2) m < βΛ.
(IV) There exist two endemic equilibria E1(x1, y1) and E2(x2, y2) if and only if:

βΛ < m < (Λ−β−βq)2

4(1+q) + βΛ, Λ > β + βq and p < p∗, where 0 < x1 < x∗ < x2.

We denote a critical value 1− (Λ−β−βq)2

4m(mp+q+1) by Rc, and 0 < Rc < 1. Moreover, Rc > 0 is

equivalent to p > p0, where p0 = (Λ−β−βq)2−4m(q+1)
4m2 . Note that p > p0, i.e., k1 > k∗1 , where

k∗1 =
k2 b(d + v)

d(γ + d + v)
− 2

√
(d + ν)(d + γ)(γ + d + ν)k2 + α (d + ν)2(d + γ)2

γ + d + ν
.

Then, ∆ = 0 (i.e., p = p∗) is equivalent to R0 = Rc. Hence, Lemma 1 can be written as
the following result,
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Theorem 1. For model (4), there always exists a disease-free equilibrium E0 with the conditions in
(5) hold. Moreover,
(1) If R0 < 1 and
(1.1) Λ ≤ βq + β, there are no endemic equilibria;
(1.2) Λ > βq + β, there exist two endemic equilibria E1 and E2 for R0 > Rc and when p > p0
these two equilibria coalesce into E∗ for R0 = Rc.
(2) If R0 = 1,
(2.1) Λ ≤ βq + β, there are no endemic equilibria;
(2.2) Λ > βq + β, there exists a unique endemic equilibrium E2;
(3) If R0 > 1, there exists a unique endemic equilibrium E2.

Now, let us study the types of these equilibria of model (4),

Theorem 2. For model (4), the equilibrium E0(0, 0) is:
R0 < 1: an attracting node;
R0 > 1: a hyperbolic saddle;
R0 = 1 and
• Λ > β + βq: a saddle-node of codimension 1;
• Λ < β + βq: a saddle-node of codimension 1;
• Λ = β + βq: a repelling semi-hyperbolic node of codimension 2.

Proof. For model (4),−1, and m(R0− 1) are two eigenvalues of Jacobian at E0. If R0 < 1, E0
is an attracting node. If R0 > 1, E0 is a hyperbolic saddle. If R0 = 1, the second eigenvalue
is zero. To determine the type of E0, we linearize model (4) at E0 and diagonalize the linear
part, and on the center manifold, we have:

dX
dt

=(Λ− β q− β)X2 + (Λ β p + 1 + q− β (β q−Λ + β)q)X3

+ (β q−Λ + β)qX4 + O(X5).
(10)

Hence, E0 is a saddle-node of codimension one when Λ 6= β + βq [25].
If R0 = 1 and Λ = β + βq, model (10) becomes:

dX
dt

= (1 + (β q + β)β p + q)X3 + O(X5). (11)

Therefore, E0 is a semi-hyperbolic repelling node.

Theorem 3. For model (4), the disease-free equilibrium E0 is globally asymptotical stable if (I.1),
or (I.2), or (I.3) of Lemma 1 (i.e., (1.1) or (2.1) of Theorem 1) holds.

Proof. Note that x = 0 is an invariant line and D is positively invariant; by index the-
ory [26], we can conclude that there are no nontrivial periodic orbits in R2

+ when model (4)
has no endemic equilibria.

Remark 1. According to Theorem 1 and model (3), note that Λ ≤ βq+ β is equivalent to k1 ≥ k10,
where k10 = k2 b(d+v)

d(γ+d+v) , which implies that when k1
k2

, which measures the proportion of the linear

over nonlinear hazards of infection, is larger than or equal to b(d+v)
d(γ+d+v) , and R0 ≤ 1, i.e., on average,

an infected individual produces less than or equal to one new infected individual over the course of
its infectious period, the infection cannot grow, that is, the disease cannot invade the population.
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3. Bifurcation Analysis
3.1. Backward Bifurcation and Saddle-Node Bifurcation

From Theorem 3, we know that E0 is globally asymptotically stable when model (4)
has no endemic equilibria. Next, we will discuss the bifurcation of model (4) with endemic
equilibria.

Theorem 4. For model (4), we choose R0 as the bifurcation parameter.
(1) When R0 = 1, model (4) undergoes forward bifurcation if Λ < βq + β; model (4) undergoes
backward bifurcation if Λ > βq + β; model (4) undergoes pitchfork bifurcation if Λ = βq + β.
(2) When p > p0, model (4) undergoes saddle-node bifurcation when R0 passes through Rc if
q 6= q∗. When R0 = Rc, E0 is a saddle-node if q 6= q∗, and E∗ is a cusp if q = q∗.

Proof. For the first statement (1), since R0 can be seen as the function of the parameters
β, Λ, and m, without loss of generality, we can choose m as the bifurcation parameter. Let
m = βΛ + ε, and plug m into model (4), where ε = 0 corresponds to R0 = 1. We linearize
model (4) at E0 and diagonalize the linear part. One can obtain the following reduced model
on the center manifold by applying the center manifold theorem with the parameter ε.

dX
dt

= −ε X−
(
(Λ− β)ε

q
+

β q−Λ + β

q

)
X2 + O(X3). (12)

Denoting the right side of model (12) as F(X, ε), we can derive:

F(0, 0) = 0,
∂F
∂X

(0, 0) = 0,
∂F
∂ε

(0, 0) = 0,

∂2F
∂X∂ε

(0, 0) = −1,
∂2F
∂2X

(0, 0) = 2
Λ− βq− β

q
.

Therefore, model (12) undergoes a transcritical bifurcation if Λ 6= βq + β [27].
Since ∂R0

∂ε |ε=0 = − 1
βΛ < 0, when R0 crosses R0 = 1, model (4) undergoes forward and

backward bifurcation if Λ < βq + β and Λ > βq + β, respectively.
If Λ = βq + β , model (12) on the center manifold becomes:

dX
dt

= −εX− βεX2 − 1
q2

[(
β2 pq + β2 p + 1

)
ε2 −

(
2β2 pq + 2β2 p + q + 2

)
ε

+β2 pq + β2 p + q + 1
]

X3 + O(X4).
(13)

For simplicity, we still denote the right side of model (13) as F(X, ε), and derive:

F(0, 0) = 0,
∂F
∂X

(0, 0) = 0,
∂F
∂ε

(0, 0) = 0,
∂2F

∂X∂ε
(0, 0) = −1,

∂2F
∂2X

(0, 0) = 0,
∂3F
∂3X

(0, 0) = −
(q + 1)

(
β2 p + 1

)
q2 < 0.

Therefore, model (13) undergoes pitchfork bifurcation if Λ = βq + β [27].
For ε = 0, model (12) and model (13) become model (10) and model (11), respectively.
The second statement (2) will be discussed in detail in the following part.

Now, we study the dynamics of model (4) near the positive equilibria. The positive
equilibria with coordinates (x, y) satisfy:

(x + β)(Λ− x− y)−m(1 + px2) = 0, y = qx,
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and the Jacobian matrix of model (4) at the equilibrium E(x, y) is:

J(E) =

 (β+2 x)(−qx+Λ−x)
px2+1 − β x+x2

px2+1 −
2mpx2

px2+1 −m − β x+x2

px2+1

q −1

.

Then, the determinant of J(E) is:

det(J(E)) =
(3 mp + 3 q + 3)x2 + (2 β q− 2 Λ + 2 β)x− β Λ + m

px2 + 1
,

and its sign is determined by:

SD = (3 mp + 3 q + 3)x2 + (2 β q− 2 Λ + 2 β)x− β Λ + m. (14)

Similarly, we obtain the trace of J(E):

tr(J(E)) =
(−3 mp− p− 2 q− 3)x2 + (2 Λ− β q− 2 β)x + β Λ−m− 1

px2 + 1
,

and its sign is determined by:

ST = (−3 mp− p− 2 q− 3)x2 + (−β q + 2 Λ− 2 β)x + β Λ−m− 1. (15)

Set:

A1 = Λ− β q− β, A2 = (q + 1)(Λβ− 2m) + Λ2, A3 = β2q + Λβ + β2 − 2m,

C1 = Λ2 + Λβ− 2m, C2 = Λβ + β2 − 2m− 2,

C3 = (Λ− β)(2 Λβm + Λβ− 2m2) + 2Λ, C4 = Λ m− β m + Λ,

C5 = 2 m2 + 2 m− 2 Λ β m−Λ β, q∗ =
C1

C5
, q∗∗ =

C1

2m−Λβ
.

Note that C1 > 0 if m < (Λ−β−βq)2

4(1+q) + βΛ; C2 < 0 if m > βΛ and Λ > β + βq; C4 > 0 if
Λ > β + βq; C5 > 0 if m > βΛ. Then, there is the following theorem.

Theorem 5. For model (4), when βΛ < m < (Λ−β−βq)2

4(1+q) + βΛ, Λ > β + βq, p = p∗ and
conditions in (5) hold, there is a unique positive equilibrium E∗(x∗, y∗). Moreover,
(I) if q 6= q∗, then E∗(x∗, y∗) is a saddle-node, which is attracting (or repelling) if q < q∗ or q > q∗∗
(or q∗ < q < q∗∗);
(II) if q = q∗, then E∗(x∗, y∗) is a cusp of codimension two.

Proof. We plug x = x∗ and p = p∗ into SD and ST , and then obtain SD(x∗) = 0 and:

ST(x∗) =
(
2 m2 + 2 m− 2 Λ β m−Λ β

)
q−Λ2 −Λ β + 2 m

(Λ β− 2 m)q + Λ2 + Λ β− 2 m
.

Since m > βΛ, C5 > 0 and q∗ < q∗∗. Hence, ST(x∗) > 0 if and only if q∗ < q < q∗∗.
Conversely, if q < q∗ or q > q∗∗, ST(x∗) < 0.

Letting X = x − x∗, Y = y − y∗, p = p∗ and expanding the right-hand sides of
model (4) as a Taylor series gives (X, Y are rewritten as x, y, respectively):

dx
dt

= −a11qx + a11y + a12x2 + a13xy,

dy
dt

= qx− y,
(16)
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where:

a11 =
2m(Λ β−m)

(q + 1)(Λ β− 2 m) + Λ2 , a13 = −
mΛ A2

1
A2

2
,

a12 =
mA2

1

(
2
(
(q + 1)2β− (3 q + 1)Λ

)
m +

(
q2 − 1

)
Λ β2 + 2 Λ2β q + Λ3

)
2A2

2 A3
.

Letting X = qx+a11qy
a11q+1 , Y = −qx+y

a11q+1 , we convert model (16) to (X, Y are rewritten as x, y,
respectively): 

dx
dt

=b11x2 + b12xy + b13y2,

dy
dt

=− b20y + b21x2 + b22xy + b23y2,
(17)

where:

b11 =
A3

1m
2qA3 A2b20

, b12 = −
mA2

1b01

A2
2 A3b20

, b13 =
qmA2

1a11b02

2A2
2 A3b20

,

b20 =a11q + 1, b21 = −
A3

1m
2qA3 A2b20

, b22 =
mA2

1b01

A2
2 A3b20

, b23 = −
qmA2

1a11b02

2A2
2 A3b20

,

b01 =(q + 1)(1− a11)Λ β2 +
((

Λ2q + 2 m(q + 1)2
)

a11 + Λ2
)

β

+
(

Λ3 − 2 m(2 q + 1)Λ
)

a11 − 2 Λ m,

b02 =
(

2 Λ2β q + Λ3 +
(

β2q2 − β2 − 6 mq− 2 m
)

Λ + 2 β m(q + 1)2
)

a11

+ 2 Λ2β +
(

2 β2q + 2 β2 − 4 m
)

Λ.

On the center manifold, we have:

dx
dt

= c11x2 + O(x3),

where:

c11 = −
mA3

1
2qC5(q− q∗)A3

.

Note that A3 < 0 when m > βΛ, and then, c11 6= 0. Hence, according to Theorems 7.1–7.3
in Zhang et al. [28], E∗ is a saddle-node of codimension one. Then, we obtain the conclusion
in (I).

For the second conclusion in (II), substituting q = q∗ into (16), we obtain:
dx
dt

=x− 1
d10

y− d11xy + d12x2,

dy
dt

=d10x− y,
(18)

where:

d11 =
ΛC2

4
mC2

1
, d12 =

(
m(β−Λ)(Λβ−m) + Λ(β2 −m− 2)

)
C2

4
mC2C1C5

, d10 =
C1

C5
.
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Next, let X = d10(1− d10)x + d10y, Y = d10x− y. We transform model (18) into (X, Y are
rewritten as x, y, respectively):

dx
dt

= y + a1x2 + o(|(x, y)|2),

dy
dt

= d1x2 + e1xy ++o(|(x, y)|2),
(19)

where:

a1 =
C3

4(Λ β−m)(C1 − C5)

C2C2
1mC5

, d1 = −
C3

4(Λ β−m)

C2mC2
1

, e1 = −
C2

4e0

C2C2
1mC5

,

e0 =(2m + 2)βΛ4 +
((

4m2 − 2m
)

β2 + 8m3 + 12m2 + 4 m
)

Λ− 4βm3

+
(
(2m + 3)β2 − 2m2 − 2m

)
Λ3 +

(
β3 −

(
10m2 + 14m + 2

)
β
)

Λ2.

Based on Remark 1 of section 2.13 in [26], we obtain the following equivalent model
of (19) in a small neighborhood of (0, 0):

dx
dt

= y,

dy
dt

= d1x2 + (e1 + 2a1)xy + o(|(x, y)|3),
(20)

where:

e1 + 2a1 = −
C2

4C3

C2mC2
1

Note that d1 < 0 because of C2 < 0.
By contradiction, we will prove e1 + 2a1 6= 0( i.e., C3 6= 0). Setting C3 = 0, then:

C3 = (2 β− 2 Λ)m2 +
(

2 Λ2β− 2 Λ β2
)

m + Λ2β−Λ β2 + 2 Λ = 0.

We regard C3 as a function of variable m and assume the real solutions of the function
exist, that is, m = m1,2 and it is evident that m1, m2 < βΛ. However m > βΛ leads to a
contradiction. In fact, C3 < 0; hence, e1 + 2a1 < 0. Utilizing the results on page 167 of [26],
E∗(x∗, y∗) is a cusp of codimension two.

Remark 2. When β = 0 (i.e., k1 = 0), model (4) becomes model (1.3) of Tang et al. [9]. From
Theorem 5, we prove that model (4) undergoes Bogdanov–Takens bifurcation of codimension at most
two near E∗, and it revises the corresponding results in [9].

Remark 3. From Theorem 4 and Theorem 5, when k∗1 < k1 < k10 ( i.e., Λ > β + βq) for model
(4), the disease will be eliminated if R0 < Rc (i.e., p > p∗ and k1 > k∗1), and if R0 = Rc (i.e.,
p = p∗ and k1 > k∗1), model (4) will present complex dynamics and these conditions are not enough
to determine the dynamical behaviors, and the disease will persist or die out, which depends on the
values of k1 and k2 (or q).

Finally, we give the following the phase portraits via Matlab software (Figure 2).

Theorem 6. If βΛ < m < (Λ−β−βq)2

4(1+q) + βΛ, Λ > β + βq, p < p∗ and conditions in (5) hold,
there are two endemic equilibria E1(x1, y1) and E2(x2, y2) for model (4). Furthermore, E1 must be
a hyperbolic saddle, and then, E2 will be:
(i) a stable hyperbolic focus (or node) if ST(x2) < 0; or
(ii) a weak focus (or a center) if ST(x2) = 0; or
(iii) an unstable hyperbolic focus (or node) if ST(x2) > 0.
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(a) (b) (c)

Figure 2. The phase diagram for model (4) with a unique endemic equilibrium: (a) an attracting
saddle-node for β = 1

5 , q = 1, m = 1, Λ = 4, p = 71
5 ; (b) a repelling saddle-node for β = 1.7228, q = 1,

m = 94.7654, Λ = 42.3881, p = 0.1629; (c) a cusp of codimension two for β = 0.5, q = 1.0019, m = 32,
Λ = 33, p = 0.4535.

Proof. For E1 and E2, the signs of SD(x1), SD(x2) and ST(x2) are determined by SD and
ST . By some simple calculations, we obtain:

SD(x1) = (3 mp + 3 q + 3)x1
2 + (2 β q− 2 Λ + 2 β)x1 + m− β Λ,

SD(x2) = (3 mp + 3 q + 3)x2
2 + (2 β q− 2 Λ + 2 β)x2 + m− β Λ.

Moreover, since x1 and x2 are two different positive roots of (7), we obtain:

(mp + q + 1)x3
1 + (βq + β−Λ)x2

1 + (m− βΛ)x1 = 0,

3(mp + q + 1)x1
2 + 2(β q−Λ + β)x1 + m− β Λ < 0,

(mp + q + 1)x3
2 + (βq + β−Λ)x2

2 + (m− βΛ)x2 = 0,

3(mp + q + 1)x2
2 + 2(β q−Λ + β)x2 + m− β Λ > 0,

which yield SD(x1) < 0 and SD(x2) > 0. Then, these conclusions hold.

Remark 4. When m = βΛ, Λ > β + βq, or m < βΛ, model (4) has a unique positive equilibrium
E2(x2, y2) and a disease-free equilibrium E0. E0 is a hyperbolic saddle or saddle-node, and the
types and stability of E2 are the same as Theorem 6. Moreover, from Theorem 6, when R0 > 1
(i.e., m < βΛ), that is, each infected individual produces, on average, more than one new infection,
or when R0 = 1 and k1

k2
< b(d+v)

d(γ+d+v) , which imply that when the proportion of the linear over

nonlinear hazards of infection is less than b(d+v)
d(γ+d+v) , on average, each infected individual produces

one new infection, and the disease will persist in the form of multiple periodic coexistent oscillations
bifurcated from the equilibrium E2.

Remark 5. Λ > β + βq and p < p∗ are equivalent to k1 < k10 and R0 > Rc, respectively. Hence,
when k∗1 < k1 < k10, model (4) presents complex dynamics, and the disease will persist in the form
of multiple periodic cycles if R0 > Rc.

3.2. Bogdanov–Takens Bifurcation

In this subsection, we will choose Λ and q as bifurcation parameters, and study
Bogdanov–Takens bifurcation of codimension two for model (4). In fact, we have the
following theorem:

Theorem 7. When βΛ < m < (Λ−β−βq)2

4(1+q) + βΛ, Λ > β + βq, p = p∗, q = q∗ and conditions
in (5) hold, model (4) has a cusp E∗(x∗, y∗) of codimension two (i.e., Bogdanov–Takens singularity).
If we choose Λ and q as bifurcation parameters, Bogdanov–Takens bifurcation of codimension two in
a small neighborhood of the unique positive equilibrium E∗(x∗, y∗) occurs. Hence, there exists some
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parameter values such for which model (4) produces an unstable limit cycle, and model (4) produces
an unstable homoclinic loop for some other parameter values.

Proof. We choose Λ and q as bifurcation parameters and consider:
dx
dt

=
x2 + βx
1 + p∗x2 (Λ + λ1 − x− y)−mx,

dy
dt

= (q∗ + λ2)x− y,

(21)

where (λ1, λ2) is a parameter vector in near (0, 0). We focus on the phase portraits of
model (21) with x and y lying near E∗(x∗, y∗). Let X = x − x∗, Y = y − y∗. Then, we
rewrite model (21) as (X, Y are rewritten as x, y, respectively):

dx
dt

= b1 + b2x− 1
q∗

y + b3x2 + b4xy + P1(x, y, λ1, λ2),

dy
dt

= b5 + b6x− y,
(22)

where P1(x, y, λ1, λ2) is a C∞ function at least of third order with respect to (x, y), and:

b1 =
λ1

q∗
, b2 =

Λ C2
4λ1

mC2
1

+ 1, b3 =
C2

4b31

m2C3
1C2C5

,

b32 = Λ4β m +
(

2 β2m−m2 + m + 2
)

Λ3 + β m
(

β2 − 8 m− 7
)

Λ2

+ m2
(

β2 + 6 m + 6
)

Λ− 2 β m3,

b31 = C4b32 λ1 −m
(

m(β−Λ)(Λβ−m) + Λ(β2 −m− 2)
)

C2
1 ,

b4 = −
C2

4Λ
mC2

1
, b5 = −λ2 C5

C4
, b6 = λ2 + q∗.

Let X = x and Y = b1 + b2x− 1
q∗ y + b3x2 + b4xy + P1(x, y, λ1, λ2) (we rewrite X, Y as x, y,

respectively). Then, we obtain the following model:
dx
dt

= y,

dy
dt

= c1 + c2x + c3y + c4x2 + c5xy + c6y2 + Q1(x, y, λ1, λ2),
(23)

where Q1(x, y, λ1, λ2) is a C∞ function at least of third order with respect to (x, y) and:

c1 =
b1q∗ − b5

q∗
, c2 =

b4b5q∗ + b2q∗ − b6

q∗
, c3 = 0,

c4 = −b1 b2
4q2
∗ + b4 b6 + b3, c5 = b1 b2

4q2
∗ + b4 b2 q∗ + 2 b3, c6 = −b4q∗.

Next, let dt = (1− c6x)dτ; then, model (23) becomes (we still denote τ by t):
dx
dt

= y(1− c6x),

dy
dt

= (1− c6x)
(

c1 + c2x + c3y + c4x2 + c5xy + c6y2 + Q1(x, y, λ1, λ2)
)

.
(24)
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Letting X = x, Y = y(1− c6x), and rewriting X, Y as x, y, respectively, we obtain:
dx
dt

= y,

dy
dt

= d1 + d2x + d3x2 + d4xy + Q2(x, y, λ1, λ2),
(25)

where Q2(x, y, λ1, λ2) is a o(|(x, y)|2) and:

d1 = c1, d2 = c2 − 2c1c6, d3 = c4 − 2c2c6 + c1c2
6, d4 = c5.

Note that when λ1 = λ2 = 0, it is easy to derive that:

d1 = 0, d2 = 0, d3 =
C3

4(Λ β−m)

mC1C2C5
< 0, d4 =

C2
4C3

mC1C2C5
< 0.

Introducing a new time t = d4
d3

τ, we denote τ by t again. Moreover, performing a scaling
by introducing the new variables:

X =
d2

4
d3

x, Y =
d3

4
d2

3
y,

and rewriting X, Y as x, y, respectively, we obtain:
dx
dt

= y,

dy
dt

= β1 + β2x + x2 + xy + O(||(x, y)||3),
(26)

where β1 =
d4

4
d3

3
d1, β2 =

d2
4

d2
3
d2. Since:

∣∣∣∣ ∂(β1, β2)

∂(λ1, λ2)

∣∣∣∣
(λ1,λ2)=0

=
C6

3

q∗m(Λ β−m)5C3
4C2C2

1

6= 0,

for βΛ < m < (Λ−β−βq)2

4(1+q) + βΛ, Λ > β+ βq∗ and q∗ > 0. The transformation is an invertible
smooth change of parameters near the origin. Hence, model (26) undergoes Bogdanov–
Takens bifurcation of codimension two when (λ1, λ2) changes in a small neighborhood of
(0, 0).

Based on the study of [26], we get the bifurcation curves with second-order approxi-
mations (please refer to Supplementary Information at the end of the paper for more details
or the link: http://doi.org/10.13140/RG.2.2.14757.17121 (accessed on 1 May 2023)).
(i) The saddle-node bifurcation curve is:

SN = {(β1, β2)|β1 = 0, β2 6= 0}

=

{
(λ1, λ2)| −

C2
3Λλ1

m(Λβ−m)2C2
1

+
C2

3
(
−2Λβm + Λ2 + 2m2)λ2

mC2
4(Λβ−m)2C1q∗

+
2λ2

1C2Λ2C3

(Λβ−m)3C4
1m2

{
4Λ4βm2 − . . .− 6 Λ m2

}
− 2

λ2 λ1 C2 Λ C3

(Λ β−m)3C4
2C1

3q∗ m2

{
4 Λ6β m3 − . . .− 6Λ3m2

}
+

2C2
3
(
Λ2 − 2Λβm + 2m2)Λ(2Λ2m + Λ2 − 2m2)C2λ2

2

m2C2
1C3

4(Λβ−m)3q2∗
= 0, β2 6= 0

}
.

http://doi.org/10.13140/RG.2.2.14757.17121
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(ii) The Hopf bifurcation curve is:

H = {(β1, β2)|β2 =
√
−β1, β1 < 0}

=

{
(λ1, λ2)| −

C4
3λ1

C4mC1
2(Λβ−m)3C2

+
C4

3λ2

q∗C2
4mC1 (Λ β−m)3C2

+
C3

3λ2
1

C2C4
1(Λβ−m)4m2C4

(
12Λ6β2m2 − . . . + 36 Λ2m2

)
−

C3
3λ1λ2

C2m2C2
4(Λβ−m)4C3

1q∗

(
22 Λ6β2m2 − . . . + 44 Λ2m2

)
+

C4
3λ2

2

m2C4
4(Λβ−m)4C2

1q2∗
(6Λ4m2 − . . . + 4 m4), β1 < 0

}
.

(iii) The homoclinic bifurcation curve is:

HL = {(β1, β2)|β2 =
5
7

√
−β1, β1 < 0}

=

{
(λ1, λ2)| −

25C3
4λ1

49C4mC1
2(Λβ−m)3C2

+
25C3

4λ2

49q∗C4
2mC1(Λβ−m)3C2

+
λ2

1C3
3

49C2C4
1(Λβ−m)4m2C4

(348 Λ6β2m2 − . . . + 900Λ2m2)

−
C3

3λ1λ2

49C2C2
4m2(Λβ−m)4C3

1q∗
( − 992 Λ4 + . . . + 716Λ2m2)

+
C4

3λ2
2

49m2C4
4(Λβ−m)4C2

1q2∗
(150Λ4m2 − . . . + 196 m4 ), β1 < 0

}
.

Next, the following bifurcation draft and phase graphs are shown via Matlab software.
From Figure 3, we show corresponding bifurcation draft and phase graphs for model (4)

with β = 0.5, m = 32 and Λ = 33.
(a) From Figure 3a, it can be seen that the small neighborhood of the origin in the

parameter (λ1, λ2)-plane is divided by bifurcation curves SN, H, and HL into four regions.
(b) When (λ1, λ2) = (0, 0), the unique positive equilibrium is a cusp of codimension 2

(shown in Figure 2c).
(c) No equilibria exist (shown in Figure 3b) if the parameters are valued in region I.
(d) Entering from region I into region II, the parameters are valued on the saddle-node

curve SN, the endemic equilibrium E∗ emerges and it is a saddle-node.
(e) When the parameters cross SN into region II, the saddle-node turns into two

positive equilibria through saddle-node bifurcation; one is an unstable node E2 and the
other is a saddle E2 (shown in Figure 3c).

(f) Then, the node turns into a stable focus and loses stability when the parameters
cross the Hopf bifurcation boundary H and an unstable limit cycle bifurcates from the
subcritical Hopf bifurcation (shown in Figure 3d).

(g) When the parameters cross region III and lie on the curve HL, an unstable homo-
clinic cycle bifurcates from the homoclinic bifurcation (shown in Figure 3e).

(h) When the parameters cross III into region IV, the homoclinic cycle breaks up and
the corresponding manifold eventually tends to the stable focus E2 (shown in Figure 3f).
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(a) (b) (c)

(d) (e) (f)

Figure 3. The bifurcation draft and phase graphs for model (4) with β = 0.5, m = 32, Λ = 33.
(a) Bifurcation draft. (b) No endemic equilibria exist for model (4) with (λ1, λ2) = (0.05, 0.0517),
which are valued from region I. (c) An unstable focus E2 and a saddle E1 for model (4) with (λ1, λ2) =

(0.05, 0.5165), which are valued from region II. (d) An unstable limit cycle encloses a stable focus
E2 for model (4) with (λ1, λ2) = (0.05, 0.516), which are valued from region III. (e) An unstable
homoclinic loop for model (4) with (λ1, λ2) = (0.05, 0.5155), which are valued on HL. (f) A stable
focus E2 and a saddle E1 for model (4) with (λ1, λ2) = (0.05, 0.515), which are valued from region IV.

3.3. Hopf Bifurcation of Codimension Two

From Theorem 6, Hopf bifurcation near E2(x2, y2) may occur. We obtain a reduced
model (4) by the variable substitution:

x̄ =
x
x2

, ȳ =
y
y2

, τ = x2
2t, (27)

then, we transform model (4) into (we rewrite τ as t):
dx̄
dt

=
x̄2 + β

x2
x̄

1 + px2
2 x̄2

(
Λ
x2
− x̄− qȳ)− m

x2
2

x̄,

dȳ
dt

=
1
x2

2
(x̄− ȳ),

(28)

Substituting the following scaling for the parameters:

β̄ =
β

x2
, Λ̄ =

Λ
x2

, m̄ =
m
x2

2
, a =

1
x2

2
, p̄ = px2

2, q̄ = q,

in model (28), and removing the bars, we have:
dx
dt

=
x2 + βx
1 + px2 (Λ− x− qy)−mx,

dy
dt

= a(x− y).

(29)
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There is an equilibrium Ē2(1, 1)( i.e., E2(x2, y2) of model (4)), which makes the following
equation true:

Λ =
m(1 + p)

1 + β
+ q + 1.

Since x1x2 = m−βΛ
mp+q+1 for model (4), then x1

x2
= m̄−β̄Λ̄

m̄p̄+q̄+1 by (27), we remove the bars and

obtain m ≥ βΛ and q > m−mp− βΛ− 1 due to 0 ≤ x1
x2

< 1. Note that if Λ = m(1+p)
1+β +

q + 1, then the conditions in (5) under above parameter scaling become:

β ≥ 0, p, q, m, a > 0,
m− pm(1 + 2β)

(β + 1)2 − 1 < q <
m
a

, m ≥ β(β + 1)(q + 1)
1− βp

. (30)

Then, performing the change of time dt = (1 + px2)(1 + β)dτ and plugging Λ =
m(1+p)

1+β + q + 1 into (29), we have (rewrite τ as t):


dx
dt

= (1 + β)x
(

x(m + mp + (1 + q− x− qy)(1 + β))− (1 + px2)m
)

,

dy
dt

= (1 + px2)(1 + β)a(x− y),
(31)

where m, p, q, β, a meet with (30). Actually, model (31) is topologically equivalent to
model (29) in R2 = {(x, y) : x ≥ 0, y ≥ 0}; moreover, 1 + px2 > 0 holds for all x ≥ 0. Next,
we analyze the Hopf bifurcation near Ē2(1, 1) in model (31), which is equivalent to the
Hopf bifurcation near E2(x2, y2) in model (4).

Theorem 8. Under the conditions in (30), there is an equilibrium Ē2(1, 1) for model (31). Furthermore,
(I) when a < a∗, Ē2(1, 1) is an unstable hyperbolic node or focus;
(II) when a > a∗, Ē2(1, 1) is a locally asymptotically stable hyperbolic node or focus;
(III) when a = a∗, Ē2(1, 1) is a fine focus or center,
where

a∗ =
m− (1 + β)2 − pm(1 + 2β)

(β + 1)(p + 1)
.

Proof. The Jacobian matrix of model (31) at Ē2(1, 1) is:

J(Ē2(1, 1)) =

[
m− (1 + β)2 − pm(1 + 2β) −(1 + β)2q

a(1 + p)(1 + β) −a(1 + p)(1 + β)

]
. (32)

We obtain the determinant of J(Ē2(1, 1)), which is:

det(J(Ē2)) = a(p + 1)(1 + β)[(q + 1)(β + 1)2 + m(2βp + p− 1)].

Moreover, the trace is:

tr(J(Ē2)) = −(β + 1)(p + 1)a + m− (1 + β)2 − pm(1 + 2β).

Under the conditions in (30), we obtain that det(J(Ē2)) > 0 and tr(J(Ē2))= 0(> 0 or < 0)
if a = a∗(a < a∗ or a > a∗); hence, the conclusions hold.

Note that Theorem 8 is true for a∗ > 0, i.e.,

(β + 1)2 + m(2βp + p− 1) < 0, or m > (1 + β)2, p <
m− (1 + β)2

m(1 + 2β)
.

Next, the case (III) of Theorem 8 is discussed, where Hopf bifurcation near Ē2(1, 1) of
model (31) may occur when the following conditions are satisfied:
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a = a∗, m > (1 + β)2, p <
m− (1 + β)2

m(1 + 2β)
,

m− pm(1 + 2β)

(β + 1)2 − 1 < q <
m
a∗

, m ≥ β(β + 1)(q + 1)
1− βp

.
(33)

Firstly, the following transversality condition holds:

d
da

(tr(J(Ē2)))|a=a∗ = −(β + 1)(p + 1) < 0.

Next, we evaluate the first Lyapunov coefficient l1.
Let X = x− 1, Y = y− 1, and a = a∗. Then, model (31) becomes:

dX
dt

=KX− q(1 + β)2Y− q(1 + β)(2 + β)XY

+ (K− (1 + β)(1 + mp))X2 − (1 + β)
(

qX2Y− (1 + mp)X3
)

,

dY
dt

=KX− KY− 2pK
p + 1

XY +
2pK
p + 1

X2 − pK
p + 1

X2Y +
pK

p + 1
X3.

(34)

where K = −2 β mp − β2 − mp − 2 β + m − 1. Let ω =
√

K(1 + β)2q− K2 and X =
2Φ− 2ω

K Ψ, Y = 2Φ; then, we obtain the following model:
dΦ
dt

=e11Ψ + e12ΦΨ + e13Ψ2 + e14Φ2Ψ + e15ΦΨ2 + e16Ψ3,

dΨ
dt

=e21Φ + e22Φ2 + e23ΦΨ + e24Ψ2 + e25Φ2Ψ + e26ΦΨ2 + e27Φ3 + e28Ψ3.
(35)

where:

e11 =−ω, e12 = − 4pω

p + 1
, e13 =

4pω2

K(p + 1)
, e14 = − 4pω

p + 1
, e15 =

8pω2

K(p + 1)
,

e16 =− 4pω3

K2(p + 1)
, e21 = ω, e22 =

2K
ω

((1 + β)(βq + mp + 2q + 1)− K),

e23 =

(
4K

(p + 1)
− 2(1 + β)(βq + 2mp + 2q + 2)

)
,

e24 =

(
4p

p + 1
− 2 +

2
K
(β + 1)(mp + 1)

)
ω,

e25 =− 4
(

pK
p + 1

+ (β + 1)(3mp + 2q + 3)
)

,

e26 =

(
4
K
(β + 1)(3mp + q + 3) +

8p
p + 1

)
ω,

e27 =
4K
ω

(β + 1)(mp + q + 1), e28 = −
(

4pω2

K(p + 1)
+

4ω2

K2 (β + 1)(mp + 1)
)

.

According to Theorem 3.3 of [25] or formula (3.4.11) on Page 152 of [29], we obtain the first
Lyapunov coefficient l1 by Maple:

l1 = −
q(β + 1)2(q(c1 m + c0) + d2 m2 + d1 m + c0

)
2ω3(p + 1)2 (36)
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where:

c1 =βp3 − 3(β + 2)
(

2β2 + 2β + 1
)

p2 +
(

2β3 + 6β2 + 9β + 2
)

p + β,

c0 =(β + 1)3
(

βp2 − 3βp− 3p + 1
)

,

d2 =βp4 −
(

16 β2 + 15β + 6
)

p3 + (15β + 4)p2 − (β + 6)p,

d1 =
(

3β3 + 3β2 + 2β
)

p3 −
(

12β3 + 36β2 + 27β + 9
)

p2

+
(

β3 + 9β2 + 18β + 4
)

p− β− 3.

Let q = q0 = − d2m2+d1m+c0
c1m+c0

> 0, we obtain l1|q=q0 = 0. Therefore, based on the above
caculations, we obtain the following result easily.

Theorem 9. When (β, m, p) ∈ {(β, m, p)|(d2m2 + d1 + c0)(c1m + c0) < 0}, and the conditions
in (33) hold, the following statements hold.

(I) If q > q0 (i.e., l1 < 0), then model (31) generates supercritical Hopf bifurcation and a stable
limit cycle bifurcates from Ē2(1, 1).

(II) If q < q0 (i.e., l1 > 0), then model (31) generates subcritical Hopf bifurcation and an
unstable limit cycle bifurcates from Ē2(1, 1).

(III) If q = q0 (i.e., l1 = 0), then model (31) may generate degenerate Hopf bifurcation and
multiple limit cycles may bifurcate from Ē2(1, 1).

When c1, c0 6= 0 and m = − c0
c1

, and the conditions in (33) hold, we have:
(I) If c0 > 0 (i.e., l1 < 0), then model (31) generates supercritical Hopf bifurcation and a stable

limit cycle bifurcates from Ē2(1, 1);
(II) If c0 < 0 (i.e., l1 > 0), then model (31) generates subcritical Hopf bifurcation and an

unstable limit cycle bifurcates from Ē2(1, 1).

Proof. Through simple calculations, we obtain the following results.
Case 1, when c1 = 0 for β > 0 and p > 0, it is evident that c0 6= 0, then l1 = 0 if and

only if q = q0.
Case 2, when c1 6= 0 and c0 = 0, then l1 = 0 if and only if q = q0.
Case 3, when c1, c0 6= 0 and c1m + c0 = 0, we obtain m = − c0

c1
, then:

d2m2 + d1m + c0 =
β (p + 1)3(2 β + p + 3)c0

(
β2 p + 1

)2

c1
2 6= 0.

Therefore, l1 6= 0 and Sign(l1) = Sign(−c0).
Case 4, when c1 6= 0, c0 6= 0 and c1m + c0 6= 0, then l1 = 0 if and only if q = q0.

To numerically illustrate the results of the bifurcation analysis, with the help of Matlab
software, we simulate an subcritical Hopf bifurcation with parameter values: β = 0.4,
m = 9, q = 6, p = 0.4, a = 0.2857, one unstable limit cycle, bifurcated from the equilibrium
E2(1, 1) of model (29) with parameter α perturbed to 0.2857 + 0.03, which is shown in
Figure 4a. When the parameters become β = 0.8, m = 9, q = 4, p = 0.1, a = 1.7273, a
stable limit cycle will arise from Ē2(1, 1) of model (29) with small perturbation −0.03 on α
occurring (see Figure 4b). The coexistence of two limit cycles with the parameter values
β = 0.4, m = 3, q = 2.4269 + 0.1, p = 0.1, a = 0.3247− 0.0002 is shown in Figure 4c. The
limit cycle with large amplitude is unstable, and the one with small amplitude is stable;
both surround the stable endemic equilibrium Ē2(1, 1).
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(a) (b) (c)

Figure 4. (a) An unstable limit cycle for model (31) with β = 0.4, m = 9, q = 6, p = 0.4,
a = 0.2857 + 0.03. (b) A stable limit cycle for model (31) with β = 0.8, m = 9, q = 4, p = 0.1,
a = 1.7273− 0.03. (c) Two limit cycles for model (31) with β = 0.4, m = 3, q = 2.4269 + 0.1, p = 0.1,
a = 0.3247− 0.0002.

Remark 6. From Figure 4a, there are three equilibria, a disease-free equilibrium, which is a stable
node, and two endemic equilibria, where one is a saddle and the other is a stable focus. An unstable
limit cycle encloses the focus. Therefore, the long-term disease dynamics may depend on the initial
values of the populations, similar to Figure 4b,c.

3.4. Hopf Bifurcation of Codimension Three

From Theorem 9, Hopf bifurcation of codimension three may occur for model (31)
with q = q0. In this section, we will study the phenomenon. To obtain the normal form of
model (31), we make another transformation of X = 2Φ + 2ω

K Ψ, Y = 2Φ, and τ = ωt; then,
system (34) becomes:

dΦ
dt

=Ψ + h11ΦΨ + h12Ψ2 + h13Φ2Ψ + h14ΦΨ2 + h15Ψ3,

dΨ
dt

=−Φ + h21Φ2 + h22ΦΨ + h23Ψ2 + h24Φ2Ψ + h25ΦΨ2 + h26Φ3 + h27Ψ3,
(37)

where:
h11 =

4p
p + 1

, h12 =
4pω

K(p + 1)
, h13 =

4p
p + 1

, h14 =
8pω

K(p + 1)
,

h15 =
4pω2

K2(p + 1)
, h21 =

2K
ω2 (K− (1 + β)(βq + mp + 2q + 1)),

h22 =
2
ω

(
2K

(p + 1)
− (1 + β)(βq + 2mp + 2q + 2)

)
,

h23 =2− 4p
p + 1

− 2
K
(β + 1)(mp + 1),

h24 =− 4
ω

(
pK

p + 1
+ (β + 1)(3mp + 2q + 3)

)
,

h25 =− 4
K
(β + 1)(3mp + q + 3)− 8p

p + 1
,

h26 =− 4K
ω2 (β + 1)(mp + q + 1), h27 = − 4pω

K(p + 1)
− 4ω

K2 (β + 1)(mp + 1).
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Next, applying the Maple program [28], we obtain the following focus values:

f1 =
1

4P2
3P1

3

(
P1

4P2
2P3

2 + P1
2P2

4P3
2 + 5P1

4P2
2P3 + 7P1

2P2
4P3

+ P1
2P2

2P3P5β + 2P2
6P3 + P2

4P3P5β + 2P1
4P3P4 + 8P1

2P2
4

+ 3P1
2P2

2P3P4 + 2P1
2P2

2P3P5 + 2P1
2P2

2P5β + 8P2
6 + P2

4P3P4

+ 2P2
4P3P5 + 6P2

4P5β + P2
2P5

2β2 + 6P1
4P4 + 14P1

2P2
2P4

+ 8P1
2P2

2P5 + P1
2P4P5β + 8P2

4P4 + 12P2
4P5 + 3P2

2P4P5β

+4P2
2P5

2β + 2P1
2P4

2 + 2P1
2P4P5 + 2P2

2P4
2 + 6P2

2P4P5 + 4P2
2P5

2
)

,

f2 =− 1
96P7

2 P7
1

(
10P1

10P2
4P3

4 + 55P1
8P2

6P3
4 + 44P1

6P2
8P3

4 + . . .
)

,

f3 =− 1
9216P11

2 P11
1

(
1850P1

16P2
6P3

6 + 3197P1
14P2

8P3
6 + . . .

)
,

where P1 = ω√
K

, P2 =
√

K, P3 = − 4p
p+1 , P4 = −2(1 + β)(mp + 1), P5 = −2q(1 + β),

fi, i = 1, 2, 3, are lengthy polynomials in β, p, m, and q.
It is extremely difficult or impossible to solve f1 = f2 = f3 = 0 for four parameters. We

consider a specific case p = 1
2(2β+1) and m = n1(1 + β)2 by introducing a new parameter

n1 > 0, which implies that p which describes the psychological effect is inversely propor-
tional to β, which measures the infection force of the disease, and m, which represents the
infection remove rate is proportional to β. Biologically, it means that the infection force of
the disease is positively related to the psychological or inhibitory effect and the infection re-
move rate (including recovery rate and disease-related death rate). Under the assumptions,
model (29) with parameters β and n1 will exhibit Hopf bifurcation of codimension three.
Let:

z1 =−
(

64β6 + 432β5 + 1084β4 + 1353β3 + 906β2 + 313β + 44
)

n3
1

+
(

256β7 + 1984β6 + 5712β5 + 8060β4 + 6044β3 + 2348β2 + 396β

+12)n1
2 +

(
384β4 + 1008β3 + 1000β2 + 440β + 72

)
n1

− 8(β + 1)
(

4β2 − β− 2
)
(1 + 2β)2,

z2 =
(

32β5 + 104β4 + 120β3 + 51β2 − β− 4
)

n1 − 2
(

4β2 + 7β + 2
)
(1 + 2β)3,

Q3 =
(

576β7 + 3272β6 + 7122β5 + 7500β4 + 3736β3 + 484β2 − 250β− 72
)

n2
1

+
(

256β8 + 576β7 − 1152β6 − 5628β5 − 9095β4 − 8059β3 − 4178β2

−1190β− 144)n1 − 512β8 − 3456β7 − 11072β6 − 19968β5 − 21188β4

− 13370β3 − 4884β2 − 940β− 72.

In fact, we have the following theorem.

Theorem 10. If q = q0, z1 > 0, z2 ≥ 0, n1 > 2, and Q3 = 0, model (29) (i.e., model (4))
undergoes a Hopf bifurcation of codimension three around the equilibrium Ē2(1, 1) (i.e., E2(x2, y2)
in model (4)), three limit cycles bifurcate from Ē2(1, 1), and the outermost limit cycle is stable.

Proof. From the assumptions p = 1
2(2β+1) and m = n1(1 + β)2, we get:

a∗ =
(2β + 1)(n1 − 2)(1 + β)

3 + 4β
,
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where n1 > 2 and q > n1
2 − 1; then:

P1 =
(1 + β)

2

√
4q− 2n1 + 4, P2 =

(1 + β)

2

√
2n1 − 4, P3 = − 4

3 + 4β
,

P4 = −(1 + β)

(
n1(1 + β)2

2β + 1
+ 2
)

, P5 = −2q(1 + β).

Then, the first focus value f1 becomes:

f1 =
2q(Q0 − 2(2 β + 1)Q1q)

(2q + 2− n1)3/2(n1 − 2)3/2(1 + β)2(2β + 1)2(3 + 4β)2 ,

when f1 = 0, we obtain q = q0 = Q0
2(2 β+1)Q1

, where:

Q0 =
(

64β4 + 304β3 + 412β2 + 225β + 44
)
(β + 1)2n2

1

− 2(2β + 1)
(

16β5 + 48β4 − 17β3 − 125β2 − 104β− 26
)

n1

− 4(β + 1)
(

4β2 − β− 2
)
(2β + 1)2,

Q1 =
(

32β5 + 168β4 + 260β3 + 152β2 + 23β− 4
)

n1

+ 16β4 + 20β3 − 6β2 − 14β− 4,

the conditions of Hopf bifurcation in (33) become:

q0 > 0,
z1

2(1 + 2β)Q1(n1 − 2)
> 0,

n1(4β + 3)
2(1 + 2β)Q1

(
β2 + 4β + 2

)
Q2 > 0,

n1(β + 1)
(3β + 2)Q1

(β2 + 4β + 2)z2 ≥ 0,

that is:
Q0 > 0, Q1 > 0, z1 > 0, z2 ≥ 0, n1 > 2, (38)

where:
Q2 =16 β3 + 16 β2n1 + 44 β2 + 23βn1 + 34β + 8n1 + 8.

When f1 = 0, the second focus value f2 becomes:

f2 = −
4Q2

0 n1
3(β2 + 4 β + 2

)3Q3 Q2
2

3(2q0 + 2− n1)
7
2 (n1 − 2)

5
2 (1 + β)3(2 β + 1)5Q1

5
.

Hence, f2 = 0 if and only if Q3 = 0.
When f1 = 0 (i.e., q = q0 = Q0

2(2 β+1)Q1
), we obtain the third focus value f3:

f3 =
1
9

f33 Q0
2

(n1 − 2)
9
2 (β2 + 4β + 2)

3
2 (2β + 1)

7
2 (1 + β)5(3 + 4β)

13
2 Q1

5
2 Q2

7
2 n1

3
2

.

where f33 is a redundant polynomial in variables β and n1, which is given in the end of the
paper (please refer to the link http://dx.doi.org/10.13140/RG.2.2.14757.17121 for more
details) (accessed on 1 May 2023).

Evidently, the two polynomial equations f2 = f3 = 0 are equivalent to Q3 = f33 = 0.
Under the conditions in (38), Q3 = f33 = 0 has no solutions for β and n1 by simple
calculation via Maple, and f33 is above Q3 on the β-n1 plane (see Figure 5). Hence, when
f2 = 0 (i.e., Q3 = 0), it is easy to derive that the third focus value f3 < 0 under the
conditions in (38).

http://dx.doi.org/10.13140/RG.2.2.14757.17121
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In conclusion, when the conditions in (38) hold, Q3 = 0 should be the critical part
of the black line which is under the red line on the right (see Figure 5), which makes
f1 = f2 = 0 and f3 < 0 true. Moreover, a simple calculation via Maple shows that on the
black critical line:

det
[

∂( f1, f2)

∂(β, n1)

]
= Q4 6= 0,

where Q4 is given in the end of the paper (please refer to the link http://dx.doi.org/10.131
40/RG.2.2.14757.17121 for more details) (accessed on 1 May 2023), which implies that if the
values of parameters β and n1 are on the black critical line, model (29) will exhibit Hopf
bifurcation of codimension three and the outermost limit cycle is stable, since f3 < 0.
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Figure 5. (a) Graphs of the regions on the β-n1 plane. Under the conditions in (38), the black line
under the red line on the right is the value range of parameters β and n1, where Hopf bifurcation of
codimension three will occur. (b) The value range is zoomed near n1 = 2.

4. Conclusions and Discussions

In this paper, we focus on the bifurcation analysis of an SIRS epidemic model with a
nonmonotone and saturated incidence rate. The incidence rate plays a key role in describing
the spreading of infectious diseases and in producing the rich dynamics, including bistabil-
ity (backward bifurcation) and periodicity. Based on research work conducted by pioneers,
in 2019, a generalized nonmonotone and saturated incidence function kI2/(1+ βI + αI2) in
model (1) was proposed by Lu et al. [20]; they considered that the incidence function, which
described the infection force, should not be just monotonic, nonmonotonic, or saturated, but
the combination of monotonicity, nonmonotonicity, and saturation properties. Considering
the psychological and crowding effect, the incidence function seemed reasonable to de-
scribe the infection force of some specific infectious diseases. However, we have found that
the basic reproduction number of model (1) with the incidence rate kI2S/(1 + βI + αI2) is
zero, but the disease can still be persistent. Recently, Wang et al. [30] proved that model (1)
can display bistable behaviors (backward bifurcation) with the threshold R0 = bk

βd(d+γ)
,

which is not the basic reproduction number of the model, and how to calculate the basic
reproduction number of this model is still an open question. Hence, the incidence rate is
difficult to understand. Moreover, the biological meaning of parameter β is undefined, and
the condition β > −2

√
α is mandatory.

Hence, we propose a more reasonable incidence rate k1 I+k2 I2

1+αI2 S with the combination
of monotonicity, nonmonotonicity, and saturation properties. When k1 = 0, the incidence

function f (I) = k1 I+k2 I2

1+αI2 becomes the saturated incidence function in [4], which increases

monotonously and then goes to k2
α as I → ∞ (see Figure 1). When k1 > 0, f (I) increases

firstly and then decreases to k2
α as I → ∞ (see Figure 1), which describes the fact that the

infection force of some infectious diseases grows rapidly to the maximum as a new disease
emerges or an old disease reemerges, and then trends to a value. We have carried out a qual-

http://dx.doi.org/10.13140/RG.2.2.14757.17121
http://dx.doi.org/10.13140/RG.2.2.14757.17121
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itative analysis in this paper. The basic reproduction R0 of model (2) is bk1
d(d+γ)

; we present
that model (2) can undergo backward bifurcation with R0 as the perturbation parameter
if Λ > βq + β; backward bifurcation was proposed by Castillo-Chavez and Song [31] to
illustrate that even if the basic reproduction number R0 < 1, disease outbreaks are still
possible. The backward bifurcation has further epidemiological implications by providing
a threshold Rc; when Λ > βq + β, model (2) shows bistable behavior (endemic equilibrium
E2 and disease-free equilibrium are stable) if Rc < R0 < 1, and the model has an unique
endemic equilibrium E2 and the disease-free equilibrium becomes unstable if R0 > 1.
Moreover, a saddle-node bifurcation at the threshold Rc has been studied. In our paper,
there are the basic reproduction number R0, threshold Rc, and critical values k∗1 and k10 of
k1, which measure the linear hazard of infection to determine the dynamic of model (4).
Briefly, when R0 ≤ 1 and k1

k2
, which measures the proportion of the linear over nonlinear

hazards of infection, is larger than or equal to b(d+v)
d(γ+d+v) , the disease can be eliminated for all

initial populations. When R0 > 1 or R0 = 1 and k1
k2

< b(d+v)
d(γ+d+v) , the disease will persist in

the form of multiple periodic coexistent oscillations bifurcated from the equilibrium E2, or
coexistent steady states for some initial populations. When k1

k2
< b(d+v)

d(γ+d+v) , model (4) will
present complex dynamics, including backward, saddle-node, and Hopf bifurcation, etc. In
fact, when k∗1 < k1 < k10, the disease will disappear R0 < Rc, but the disease will persist
if R0 > Rc, and for R0 = Rc, these conditions are not enough to determine the dynamical
behaviors, which implies the disease will persist or die out, which depends on the values
of independent parameters k1 and k2 (or q), and it requires further assessment.

Moreover, we have proved that the model undergoes Bogdanov–Takens bifurcation
of, at most, codimension two, which revises the results in [9] for k1 = 0. Our studies on
Hopf bifurcation of codimension two and three enrich the dynamics of SIRS epidemic
models. In fact, it is difficult to take a complete analysis of Hopf bifurcation of codimension
three. Assuming that the infection force of the disease measured by β is positively related
to the psychological effect and the infection remove rate (including recovery rate and
disease-related death rate), we obtain a complete qualitative analysis on Hopf bifurcation
of codimension three for model (2). Next, we consider applying the model to practical
problems, using the model for parameter estimation, and combining the actual data for
numerical simulation and prediction analysis, so as to provide referable suggestions for the
actual work department.
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