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Abstract: In this paper, we study a kind of Stackelberg game where the controlled systems are
described by backward stochastic differential delayed equations (BSDDEs). By introducing a new
kind of adjoint equation, we establish the sufficient verification theorem for the optimal strategies of
the leader and the follower in a general case. Then, we focus on the linear–quadratic (LQ) backward
Stackelberg game with delay. The backward Stackelberg equilibrium is presented by the generalized
fully coupled anticipated forward–backward stochastic differential delayed Equation (AFBSDDE),
which is composed of anticipated stochastic differential equations (ASDEs) and BSDDEs. Moreover,
we obtain the unique solvability of the AFBSDDE using the continuation method. As an application
of the theoretical results, the pension fund problem with delay effect is considered.

Keywords: Stackelberg game; state delay; forward–backward stochastic differential equation; linear–
quadratic problem
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1. Induction

Stackelberg games, also called leader–follower games, were introduced in [1] in or-
der to investigate the optimal strategies in competitive systems in which there exist two
asymmetric players. A Stackelberg game is a non-zero-sum game that assumes that one of
the players (the follower) waits until the other player (the leader) announces their strategy,
i.e., the follower chooses a strategy to optimize their own cost functional with respect to a
given leader’s policy. Meanwhile, with the knowledge of the follower’s response, the leader
will make a decision to optimize their own cost functional.

In recent years, considerable attention has been given to Stackelberg games. Under the
deterministic framework, Simaan and Cruz [2] studied the Nash equilibrium and Tolwin-
ski [3] obtained the closed-loop solution to a multistage LQ Stackelberg game. For the
stochastic Stackelberg games, Øksendal et al. [4] established the maximum principle for a
general stochastic Stackelberg differential game and applied it to news vendor problems.
Bensoussan et al. [5] derived the maximum principle for the global solutions. They intro-
duced several information structures, and obtained the optimal strategies of the follower
and the leader under the adapted open-loop and adapted closed-loop memoryless informa-
tion structures. Ref. [6] also studied the Stackelberg games under tow stochastic settings
taken from [5], however, the diffusion term in their system allowed them to depend on the
control variable. Shi et al. [7,8] studied the Stackelberg games with asymmetric information.
Yong [9] illustrated the existence and uniqueness of the LQ Stackelberg game by the unique
solvability of a stochastic Riccati equation. Wang and Zhang [10] considered a mean-field
LQ Stackelberg differential game with one leader and two followers. Li et al. [11] proposed
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a kind of LQ Stackelberg game with multilevel hierarchy. They presented the Stackel-
berg equilibrium by forward–backward stochastic differential equations (FBSDEs) in a
closed form.

On the other hand, controlled systems with delay have also received significant
attention due to the path-dependence of the state and the time lag between the input and
output (see [12–16]). Compared with the system driven by the Wiener process or the non-
Gaussian process such as Rosenblatt process, the references [17–21] discussed Stackelberg
games with different delays which are based on the system driven by a standard Brownian
motion. In [17], the open-loop Stackelberg strategies were obtained for a deterministic
LQ game with state delay. In [18,20], the authors were concerned with the games with
delay appearing in the leader’s control. The open-loop strategies were explicitly given
by some symmetric Riccati equations. In [19], the authors considered a linear–quadratic
mean-field game between a leader and a group of followers, which may arise from an
advertising model and an interbank lending and borrowing model with delay. Finally,
in [21], the authors considered a general model in which the system involves both state
delay and control delay. Under some assumptions, the state feedback representation of the
Stackelberg strategy was derived.

The aforementioned papers are all based on the forward system. In addition to forward
systems, controlled backward systems can also be encountered in optimal control problems
and have a wide range of applications in finance and related fields. In particular, we will
have a controlled BSDDE when considering delayed recursive utility or the pricing of
derivative security for which the underlying goods are described by stochastic differential
delayed equations (SDDEs). One can refer to [22–26]. Zheng and Shi [27] introduced a
Stackelberg game described by a backward stochastic differential Equation (BSDE) and
applied the theoretical results to solve a pension fund problem.

In this paper, we shall study the backward Stackelberg game with state delay. To the
best of our knowledge, it is the first attempt to address this problem. The problem with
delay remains challenging since the state feedback representation cannot be easily obtained
in general cases. In order to obtain the optimal feedback of a LQ optimal control problem
of BSDDEs, Meng and Shi [26] introduced a new class of delayed Riccati equations, which
are very complicated to compute. In the Stackelberg game, the controlled system of the
leader is more complex, which is described by coupled BSDDE and ASDE. Therefore,
this paper focuses more on the solvability of the problem, rather than the feedback form
of the control. The sufficient conditions of the backward equilibrium are given by the
corresponding generalized Hamilton system composed of ASDE and BSDDE. For the
LQ backward Stackelberg game with delay, we obtain that the solvability of the game is
equivalent to that of a related AFBSDDE. Furthermore, we discuss the unique solvability of
the AFBSDDE.

The rest of this paper is organized as follows. Section 2 is devoted to presenting the
sufficient conditions of the follower and the leader in the general backward Stackelberg
game with delay. In Section 3, the LQ backward Stackelberg game with delay is investigated.
A new kind of AFBSDDE is used to characterize the unique equilibrium of the game.
In Section 4, as an application, a pension fund problem in markets with delayed effects
is discussed. Some conclusions and unsolved issues for future research are displayed in
Section 5.

To conclude this section, we introduce some notations which will be used throughout
this paper. Let Rk be the k-dimensional Euclidean space with inner product 〈·, ·〉 and
norm | · |. Let Rk×d be the Hilbert space consisting of all k × d matrices with the inner
product 〈A, B〉 := tr{AB>}, for any A, B ∈ Rk×d, where > appears in the superscript
and denotes the transposition of a matrix. In particular, Sn denotes the set of all n× n
symmetric matrices.

Let (Ω,F ,F, P) be a complete probability space equipped with natural filtration
F = {Ft}t≥0 generated by a d-dimensional standard Brownian motion W(·). Assume that
Ft = σ{W(s), 0 ≤ s ≤ t} ∨N , where N denotes the totality of P-null sets. T > 0 is a finite
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time duration, and 0 ≤ δ < T is a time delay. We define Ft ≡ F0 for all t ∈ [−δ, 0) and
F = FT+δ. We introduce some spaces which will be used throughout this paper as follows:

Lp(FT ,Rk) =
{

ξ : ξ is Rk valued-FT-measurable random variable such that E|ξ|p < +∞
}

,

Lp
F(a, b;Rk) =

{
ξ(t) : ξ(t) is Rk-valued F-adapted process such that E

∫ b

a
|ξ(t)|pdt < +∞

}
,

S p
F(a, b;Rk) =

{
ξ(t) : ξ(t) is Rk-valued F-adapted process such that E sup

a≤t≤b
|ξ(t)|p < +∞

}
,

L∞
F (a, b;Rk) =

{
ξ(t) : ξ(t) is Rk-valued F-adapted bounded process

}
,

where p > 1 is a real number.

2. Backward Stackelberg Game with Delay

Let us consider a backward Stackelberg game with a time delay involving two players.
For the sake of simplicity, we only consider the following BSDDE driven by a standard
Brownian motion W(·):{

−dy(t) = g(t, y(t), y(t− δ), z(t), z(t− δ), u(t), w(t))dt− z(t)dW(t), t ∈ [0, T],

y(T) = γ, y(t) = η(t), z(t) = ζ(t), t ∈ [−δ, 0),
(1)

where (y(·), z(·)) ∈ Rn×Rn×d is the state process pair with terminal condition γ and initial
path (η(·), ζ(·)). We assume that g : Ω× [0, T]×Rn ×Rn ×Rn×d ×Rn×d ×Rm1 ×Rm2 →
Rn is a given function and η(·), ζ(·) are continuous functions on [−δ, 0]. u(·) and w(·)
constitutes the control decisions of player 1 (the follower) and player 2 (the leader) with
values in U1 and U2. Additionally, U1 and U2 are non-empty convex sub-sets of Rm1 and
Rm2 , respectively.

The admissible strategy sets for the follower and the leader are denoted by

U1 :={u(·) ∈ L2
F(0, T;Rm1)|u(·) ∈ U1, a.e. a.s.},

U2 :={w(·) ∈ L2
F(0, T;Rm2)|w(·) ∈ U2, a.e. a.s.}.

We suppose that the coefficients satisfy the following assumptions (H1) :

(H1.1) η(·), ζ(·) ∈ L2
F(−δ, 0;Rn), γ ∈ L2(FT ;Rn);

(H1.2) For any y, yδ ∈ Rn, z, zδ ∈ Rn×d and u ∈ Rm1 , w ∈ Rm2 , the mapping g(·, y, yδ, z, zδ, u,
w) is F-adapted;

(H1.3) g(·, 0, 0, 0, 0, 0, 0) ∈ L2
F(0, T;Rn);

(H1.4) g is twice continuously differentiable with respect to (y, yδ, z, zδ, u, w) and the deriva-
tives up to two orders of g are uniformly bounded.

The cost functionals of the follower and the leader to minimize, respectively, are
described as follows:

J1(γ; u(·), w(·)) =E[
∫ T

0
l1(t, y(t), z(t), u(t), w(t))dt + G1(y(0))],

J2(γ; u(·), w(·)) =E[
∫ T

0
l2(t, y(t), z(t), u(t), w(t))dt + G2(y(0))].

(2)

where li : Ω× [0, T]×Rn ×Rn×d ×Rm1 ×Rm2 → R and Gi : Ω×Rn → R(i = 1, 2) are
also given continuous functions.

Now, we give the assumptions (H2) of the cost functionals for i = 1, 2.

(H2.1) For any y ∈ Rn, z ∈ Rn×d, u ∈ Rm1 , w ∈ Rm2 , the mapping li(·, y, z, u, w) is F-
adapted and Gi(y) is F0-measurable;

(H2.2) li(·, 0, 0, 0, 0) ∈ L1
F(0, T;R) and Gi(0) ∈ L1(F0;R);
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(H2.3) li is twice continuously differentiable with respect to (y, z, u, w) and Gi is twice
continuously differentiable with respect to y. The derivatives up to two orders of li
and Gi are uniformly bounded;

(H2.4) liy, liz, liu, liw are bounded by C(1 + |y| + |z| + |u| + |w|) and Giy is bounded by
C(1 + |y|).
From Chen and Huang [24], it follows that the BSDDE (1) admits a unique pair of

solutions (y(·), z(·)) ∈ L2
F(−δ, T;Rn)× S2

F(−δ, T;Rn×d) for a sufficiently small time delay
δ and any (u(·), w(·)) ∈ U1 ×U2. The functional Ji(i = 1, 2) in (2) is also well defined.

The main feature of the Stackelberg game is that the follower makes their decision
according to the leader’s strategy. In our backward framework, for any w(·) ∈ U2 of the
leader and given terminal condition γ ∈ L2(FT ;Rn), the follower would like to choose
u∗(·) ∈ U1 such that J1(γ; u∗(·), w(·)) is the minimum of J1(γ; u(·), w(·)) over u(·) ∈ U1.
The rational choice of the leader is determined by knowing the follower’s optimal control
u∗(·). The leader would like to choose w∗(·) ∈ U2 to minimize J2(γ; u∗(·), w(·)) over
w(·) ∈ U2. Then, we propose the definition of the backward Stackelberg equilibrium
similarly to [27].

Definition 1. The pair (u∗(·), w∗(·)) ∈ U1 × U2 is called the Stackelberg equilibrium of the
backward Stackelberg game with delay, if it satisfies the following conditions. First, for a given
γ ∈ L2(FT ,Rn) and any w(·) ∈ U2, there exists a map Γ : U2 × L2(FT ,Rn)→ U1 such that

J1(γ; Γ(w(·), γ), w(·)) = inf
u(·)∈U1

J1(γ; u(·), w(·)).

Secondly , there exists w∗(·) ∈ U2, such that

J2(γ; Γ(w∗(·), γ), w∗(·)) = inf
w(·)∈U2

J2(γ; Γ(w(·), γ), w(·)),

and the optimal strategy of the follower is u∗(·) = Γ(w∗(·), γ).

2.1. Optimization for the Follower

For a given γ ∈ L2(FT ,Rn) and w(·) ∈ U2, the follower faces an optimal control
problem as follows:
Problem (BSG) f

inf
u∈U1

J1(γ; u(·), w(·)),

s.t.

{
−dy(t) = g(t, y(t), y(t− δ), z(t), z(t− δ), u(t), w(t))dt− z(t)dW(t), t ∈ [0, T],

y(T) = γ, y(t) = η(t), z(t) = ζ(t), t ∈ [−δ, 0).

Due to the adjoint relationship between BSDDE and ASDE, we introduce the following
adjoint ASDE:

dx(t) ={g>y (t, y(t), y(t− δ), z(t), z(t− δ), u∗(t), w(t))x(t)

+EFt [g>yδ
(t, y(t), y(t− δ), z(t), z(t− δ), u∗(t), w(t))|t+δx(t + δ)]

− l1y(t, y(t), z(t), u∗(t), w(t))}dt

+ {g>z (t, y(t), y(t− δ), z(t), z(t− δ), u∗(t), w(t))x(t)

+EFt [g>zδ
(t, y(t), y(t− δ), z(t), z(t− δ), u∗(t), w(t))|t+δx(t + δ)]

− l1z(t, y(t), z(t), u∗(t), w(t))}dW(t), t ∈ [0, T],

x(0) =− G1y(y(0)), x(t) = 0, t ∈ (T, T + δ].

(3)

Here, gyδ
and gzδ

denote the partial derivatives of g with respect to y(t − δ) and
z(t− δ), respectively. gyδ

(t, y(t), y(t− δ), z(t), z(t− δ), u∗(t), w(t))|t+δ denotes the value of
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gyδ
when time t takes value t + δ, i.e., gyδ

(t, y(t), y(t− δ), z(t), z(t− δ), u∗(t), w(t))|t+δ =
gyδ

(t + δ, y(t + δ), y(t), z(t + δ), z(t), u∗(t + δ), w(t + δ)).

Remark 1. The assumptions (H1)–(H2) imply that BSDDE (1) admits a unique solution for
(u(·), w(·)) ∈ U1 × U2, the cost functional (2) is well defined, and ASDE (3) admits a unique
solution for (u∗(·), w(·)) ∈ U1 ×U2 and the sufficiently small time delay δ by Theorem 2.2 in [24].

We define the Hamiltonian function H1 : [0, T]×Rn ×Rn ×Rn×d ×Rn×d ×Rm1 ×
Rm2 ×Rn → R by

H1(t, y, yδ, z, zδ, u, w, x) = l1(t, y, z, u, w)− 〈g(t, y, yδ, z, zδ, u, w), x〉. (4)

Then, the adjoint Equation (3) can be rewritten as the following Hamiltonian type:
dx(t) ={−H1y(t)−EFt [H1yδ

(t)|t+δ]}dt

+ {−H1z(t)−EFt [H1zδ
(t)|t+δ]}dW(t), t ∈ [0, T],

x(0) =− G1y(y(0)), x(t) = 0, t ∈ (T, T + δ],

(5)

where H1k(t) = H1k(t, y(t), y(t− δ), z(t), z(t− δ), u∗(t), w(t), x(t)), k = y, yδ, z, zδ, u.
Now, we can give the sufficient conditions to ensure the optimality of the follower’s

optimal control problem using Theorem 3.2 in [24].

Theorem 1. Let (H1)–(H2) hold and x(·) be the solution of adjoint Equation (3) associated with
(u∗(·), w(·)) ∈ U1 ×U2. Suppose that H1(t, ·, ·, ·, ·, ·, w(t), x(t)) is convex in (y, yδ, z, zδ, u) for
any t ∈ [0, T] and G1(·) is convex in y. If

〈H1u(t), u− u∗(t)〉 > 0, ∀u ∈ U1, a.e., a.s. (6)

holds, then u∗(·) is an optimal strategy of the follower’s Problem (BSG) f .

Remark 2. What we need to clarify is that (y(·), z(·)) and x(·) in Equation (3) and inequality (6)
should be the corresponding solutions with respect to (u∗(·), w(·)).

2.2. Optimization for the Leader

Since the follower has adopted strategy u∗(t), then we can obtain the following control
problem of the leader.
Problem (BSG)l :

inf
w∈U2

J2(γ; u∗(·), w(·)),

s.t.



−dy(t) = g(t, y(t), y(t− δ), z(t), z(t− δ), u∗(t), w(t))dt− z(t)dW(t), t ∈ [0, T],

dx(t) = {−H1y(t)−EFt [H1yδ
(t)|t+δ]}dt

+ {−H1z(t)−EFt [H1zδ
(t)|t+δ]}dW(t), t ∈ [0, T],

y(T) = γ, y(t) = η(t), z(t) = ζ(t), t ∈ [−δ, 0),

x(0) = − G1y(y(0)), x(t) = 0, t ∈ (T, T + δ].

(7)

Remark 3. We should stress that, in Equation (7), the backward equation is a BSDDE and the
forward equation is an ASDE. This is different from the results in the existing research literature,
which are focused on forward–backward controlled systems with forward SDDE and anticipated
backward stochastic differential Equation (ABSDE) (see [28–31]).

We define the Hamiltonian function of the leader by

H2(t, y, yδ, z, zδ, x, xδ, u∗, w, ξ, p, q)

= l2(t, y, z, u∗, w) + 〈p, b(t, Σ, x, xδ, u∗, w)〉+ 〈q, σ(t, Σ, x, xδ, u∗, w)〉 − 〈ξ, g(t, Σ, u∗, w)〉.
(8)
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Here,

b(t, Σ(t), x(t),EFt [x(t + δ)], u∗(t), w(t))

= g>y (t, y(t), y(t− δ), z(t), z(t− δ), u∗(t), w(t))x(t)

+EFt [g>yδ
(t, y(t), y(t− δ), z(t), z(t− δ), u∗(t), w(t))|t+δx(t + δ)]

− l1y(t, y(t), z(t), u∗(t), w(t)),

σ(t, Σ(t), x(t),EFt [x(t + δ)], u∗(t), w(t))

= g>z (t, y(t), y(t− δ), z(t), z(t− δ), u∗(t), w(t))x(t)

+EFt [g>zδ
(t, y(t), y(t− δ), z(t), z(t− δ), u∗(t), w(t))|t+δx(t + δ)]

− l1z(t, y(t), z(t), u∗(t), w(t)),

with Σ(t) = (y(t), y(t− δ), z(t), z(t− δ)).
In order to give the sufficient conditions for the optimality of the leader’s strategy, we

need the following additional assumptions.
(H3) G1(y) = 1

2 Ky>y, for K ∈ Rn×n.
(H4) H2(t, ·, ·, ·, ·, ·, ·, u∗(t), ·, ξ(t), p(t), q(t)) is convex in (y, yδ, z, zδ, x, xδ, w) and G2(·) is
convex in y for any t ∈ [0, T].

Theorem 2. Let (H1)–(H4) hold. Assume that the follower adopted their optimal strategy u∗(t) ∈
U1, and w∗(·) is an admissible control of the leader. (y∗(·), z∗(·), x∗(·)) is the corresponding
solution with respect to (u∗(·), w∗(·)) with y∗(T) = γ. We also assume that (p(t), q(t), ξ(t)) is
the unique solution of the following adjoint equation:

−dp(t) = {H2x(t) + H2xδ
(t)|t−δ}dt− q(t)dW(t), t ∈ [0, T],

dξ(t) = {−H2y(t)−EFt [H2yδ
(t)|t+δ]}dt

+ {−H2z(t)−EFt [H2zδ
(t)|t+δ]}dW(t), t ∈ [0, T],

p(T) = 0, p(t) = 0, q(t) = 0, t ∈ [−δ, 0),

ξ(0) = G>1yy(y
∗(0))p(0)− G2y(y∗(0)), ξ(t) = 0, t ∈ (T, T + δ],

(9)

where

H2k(t) = H2k(t, Σ∗(t), x∗(t),EFt [x∗(t + δ)], u∗(t), w∗(t), p(t), q(t), ξ(t)),

with k = y, yδ, z, zδ, x, xδ, w. Then, w∗(·) is an optimal strategy of the leader if it satisfies

〈H2w(t), w− w∗(t)〉 > 0, ∀w ∈ U2, a.e., a.s.. (10)

Proof. Let w(·) be an arbitrary admissible control of the leader and Σ(t) be the correspond-
ing trajectory.

We consider

J2(γ, ; u∗(·), w∗(t))− J2(γ; u∗(·), w(·)) = I + I I,

where

I = E
∫ T

0
[l2(t, y∗(t), z∗(t), u∗(t), w∗(t))− l2(t, y(t), z(t), u∗(t), w(t))]dt,

I I = E[G2(y∗(0)− G2(y(0))].
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By the convexity of H2 and G2, we have

I = E
∫ T

0
[H2(t, Σ∗(t), x∗(t),EFt [x∗(t + δ)], u∗(t), w∗(t), ξ(t), p(t), q(t))

− H2(t, Σ(t), x(t),EFt [x(t + δ)], u∗(t), w(t), ξ(t), p(t), q(t))]dt

−E
∫ T

0

{
〈p(t), b(t, Σ∗(t), x∗(t),EFt [x∗(t + δ)], u∗(t), w∗(t))

− b(t, Σ(t), x(t),EFt [x(t + δ)], u∗(t), w(t))〉
+ tr{qT(t)

(
σ(t, Σ∗(t), x∗(t),EFt [x∗(t + δ)], u∗(t), w∗(t))

− σ(t, Σ(t), x(t),EFt [x(t + δ)]u∗(t), w(t))
)
}

− 〈ξ(t), g(t, Σ∗(t), u∗(t), w∗(t))− g(t, Σ(t), u∗(t), w(t))〉
}

dt

6 E
∫ T

0

{
〈y∗(t)− y(t), H2y(t)〉+ 〈y∗(t− δ)− y(t− δ), H2yδ

(t)〉

+ 〈z∗(t)− z(t), H2z(t)〉+ 〈z∗(t− δ)− z(t− δ), H2zδ
(t)〉

+ 〈w∗(t)− w(t), H2w(t)〉+ 〈x∗(t)− x(t), H2x(t)〉

+ 〈EFt [x∗(t + δ)− x(t + δ)], H2xδ
(t)〉

}
dt

−E
∫ T

0

{
〈p(t), b(t, Σ∗(t), x∗(t),EFt [x∗(t + δ)], u∗(t), w∗(t))

− b(t, Σ(t), x(t),EFt [x(t + δ)], u∗(t), w(t))〉
+ tr{q>(t)

(
σ(t, Σ∗(t), x∗(t),EFt [x∗(t + δ)], u∗(t), w∗(t))

− σ(t, Σ(t), x(t),EFt [x(t + δ)], u∗(t), w(t))
)
}

− 〈ξ(t), g(t, Σ∗(t), u∗(t), w∗(t))− g(t, Σ(t), u∗(t), w(t))〉
}

dt,

I I 6 E[G>2y(y
∗(0))(y∗(0)− y(0))]

= E[
(
− ξ>(0) + p>(0)G1yy(y∗(0))

)
(y∗(0)− y(0))].

Applying Itô’s formula to 〈ξ(t), y∗(t)− y(t)〉+ 〈p(t), x∗(t)− x(t)〉, we derive that

E[−ξ(0)>(y∗(0)− y(0)) + p>(0)G1y(y∗(0))− G1y(y(0))]

= −E
∫ T

0

{
〈ξ(t), g(t, Σ∗(t), u∗(t), w∗(t))− g(t, Σ(t), u∗(t), w(t))〉

+ 〈y∗(t)− y(t), H2y(t) +EFt [H2yδ
(t)|t+δ]〉

+ 〈z∗(t)− z(t), H2z(t) +EFt [H2zδ
(t)|t+δ]〉

}
dt

−E
∫ T

0

{
〈x∗(t)− x(t), H2x(t) + H2xδ

(t)|t−δ〉

− 〈p(t), b(t, Σ∗(t), x∗(t),EFt [x∗(t + δ)], u∗(t), w∗(t))

− b(t, Σ(t), x(t),EFt [x(t + δ)], u∗(t), w(t))〉
− tr{q>(t)

(
σ(t, Σ∗(t), x∗(t),EFt [x∗(t + δ)], u∗(t), w∗(t))

− σ(t, Σ(t), x(t),EFt [x(t + δ)], u∗(t), w(t))
)
}
}

dt.
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Therefore, we can obtain the following result using the optimal condition (10).

J2(γ, ; u∗(·), w∗(t))− J2(γ; u∗(·), w(·))

6 E
∫ T

0

{
〈y∗(t− δ)− y(t− δ), H2yδ

(t)〉 − 〈y∗(t)− y(t),EFt [H2yδ
(t)|t+δ]〉

}
dt

+E
∫ T

0

{
〈z∗(t− δ)− z(t− δ), H2zδ

(t)〉 − 〈z∗(t)− z(t),EFt [H2zδ
(t)|t+δ]〉

}
dt

+E
∫ T

0

{
〈EFt [x∗(t + δ)− x(t + δ)], H2xδ

(t)〉 − 〈x∗(t)− x(t), H2xδ
(t)|t−δ〉

}
dt

(11)

Now, we need to analyze the right-hand side of inequality (11). In fact,

E
∫ T

0

{
〈y∗(t− δ)− y(t− δ), H2yδ

(t)〉 − 〈y∗(t)− y(t),EFt [H2yδ
(t)|t+δ]〉

}
dt

= E
∫ T−δ

−δ
〈y∗(t)− y(t),EFt [H2yδ

(t)|t+δ]〉dt−E
∫ T

0
〈y∗(t)− y(t),EFt [H2yδ

(t)|t+δ]〉 dt

= E
∫ 0

−δ
〈y∗(t)− y(t),EFt [H2yδ

(t)|t+δ]〉dt−E
∫ T

T−δ
〈y∗(t)− y(t),EFt [H2yδ

(t)|t+δ]〉dt

= 0,

since y∗(t) = y(t) for any t ∈ [−δ, 0] and H2yδ
(t) = 0 for any t ∈ [T, T + δ]. Similarly, we

have

E
∫ T

0

{
〈z∗(t− δ)− z(t− δ), H2zδ

(t)〉 − 〈z∗(t)− z(t),EFt [H2zδ
(t)|t+δ]〉

}
dt = 0,

E
∫ T

0

{
〈EFt [x∗(t + δ)− x(t + δ)], H2xδ

(t)〉 − 〈x∗(t)− x(t), H2xδ
(t)|t−δ〉

}
dt = 0,

Then, we deduce J2(γ, ; u∗(·), w∗(t))− J2(γ; u∗(·), w(·)) 6 0 and complete the proof.

Remark 4. The adjoint Equation (9) is a new kind of FBSDE. Due to the complex form of the
Hamiltonian function H2, the conditions (H1)–(H2) may not guarantee the solvability of this
equation. In addition, in Theorem 2, we look for the leader’s optimal strategy under the assumption
that u∗(·) is known. However, the follower’s optimal strategy u∗(t) depends on the current value of
the leader’s strategy w(·). So, we can set

u∗(t) = u∗(t, y(t), z(t), y(t− δ), z(t− δ), w(t), x(t),EFt [x(t + δ)])

:= u∗(t, Σ(t), w(t), x(t),EFt [x(t + δ)]),

for its dependence on the leader’s strategy w(·), the state (y(·), z(·)) and the adjoint variable x(t).
Then, the state equation of the leader can be rewritten as

−dy(t) = g(t, Σ(t), u∗(t, Σ(t), w(t), x(t),EFt [x(t + δ)]), w(t))dt− z(t)dW(t), t ∈ [0, T],

dx(t) = {g>y (t, Σ(t), u∗(t, Σ(t), w(t), x(t),EFt [x(t + δ)]), w(t))x(t)

+EFt [g>yδ
(t, Σ(t), u∗(t, Σ(t), w(t), x(t),EFt [x(t + δ)]), w(t))|t+δx(t + δ)]

− l1y(t, y(t), z(t), u∗(t, Σ(t), w(t), x(t),EFt [x(t + δ)]), w(t))}dt

+ {g>z (t, Σ(t), u∗(t, Σ(t), w(t), x(t),EFt [x(t + δ)]), w(t))x(t)

+EFt [g>zδ
(t, Σ(t)), u∗(t, Σ(t), w(t), x(t),EFt [x(t + δ)]), w(t))|t+δx(t + δ)]

− l1z(t, y(t), z(t), u∗(t, Σ(t)), w(t), x(t),EFt [x(t + δ)]), w(t))}dW(t), t ∈ [0, T],

y(T) = γ, y(t) = η(t), z(t) = ζ(t), t ∈ [−δ, 0),

x(0) = − G1y(y(0)), x(t) = 0, t ∈ (T, T + δ].
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If we want to obtain the sufficient conditions of the optimal strategy in this case, we need the
function u∗(t, Σ(t), w(t), x(t),EFt [x(t + δ)]) to satisfy some conditions. In Bensoussan et al. [5],
they assumed that u∗ is uniquely defined and is uniformly Lipschitz-continuous with respect to the
state variable, the leader’s control variable and the adjoint variable.

In our framework, the backward Stackelberg equilibrium relies on a fully coupled AFBSDDE
consisting of the above equation and adjoint Equation (9). Since it is difficult to obtain the solvability
of AFBSDDE in the general case, we will discuss the LQ backward Stackelberg game in the next
section.

3. Linear–Quadratic Backward Stackelberg Game

In this section, we apply the theory studied in Section 2 to deal with an LQ backward
Stackelberg game. We assume that the Brownian motion is one-dimensional for simplicity.
The controlled system is given by

−dy(t) = [A(t)y(t) + B(t)y(t− δ) + C(t)u(t) + D(t)w(t)

+ E(t)z(t) + F(t)z(t− δ)]dt− z(t)dW(t), t ∈ [0, T],

y(T) = γ, y(t) = η(t), z(t) = ζ(t), t ∈ [−δ, 0),

(12)

where A(·), B(·), C(·), E(·), D(·), and F(·) are deterministic continuous matrix-valued
functions with suitable dimensions.

The corresponding cost functionals of the follower and the leader in system (12) are

J1(γ; u(·), w(·)) = 1
2
E{
∫ T

0
[〈M1(t)y(t), y(t)〉+ 〈R1(t)z(t), z(t)〉

+ 〈N1(t)u(t), u(t)〉]dt + 〈G1y(0), y(0)〉},

J2(γ; u(·), w(·)) = 1
2
E{
∫ T

0
[〈M2(t)y(t), y(t)〉+ 〈R2(t)z(t), z(t)〉

+ 〈N2(t)w(t), w(t)〉]dt + 〈G2y(0), y(0)〉}.

(13)

Then, we give the assumption (H5) which is a special case of (H1)–(H4).
(H5) A(·), B(·), E(·), F(·) ∈ L∞

F (0, T;Rn×n), C(·) ∈ L∞
F (0, T;Rn×m1), D(·) ∈ L∞

F (0, T;
Rn×m2). For i = 1, 2, we suppose Mi(·), Ri(·) ∈ L∞

F (0, T;Sn), Ni(·) ∈ L∞
F (0, T; Smi ),

Gi ∈ Sn, and Mi(·) > 0, Ri(·) > 0, Ni(·)� 0, Gi > 0.
We still consider the follower’s optimal control problem first.

Problem (LQBSG) f : For γ ∈ L2(FT ;Rn) and any given leader’s control w(·) ∈ U2, we
find u∗(·) ∈ U1 such that J1(γ; u∗(·), w(·)) = inf

u(·)∈U1

J1(γ; u(·), w(·)).

Applying Theorem 1 to Problem (LQBSG) f , we have the following result:

Theorem 3. Suppose that (H5) holds. For γ ∈ L2(FT ;Rn) and any given leader’s control
w(·) ∈ U2, the follower’s optimal control problem (LQBSG) f can be uniquely solvable if and only
if there exists a unique four-tuple (y(t), z(t), u∗(t), x(t)) satisfying

−dy(t) = [A(t)y(t) + B(t)y(t− δ) + C(t)u∗(t) + D(t)w(t)

+ E(t)z(t) + F(t)z(t− δ)]dt− z(t)dW(t), t ∈ [0, T],

dx(t) = {A>(t)x(t) +EFt [B>(t + δ)x(t + δ)]−M1(t)y(t)}dt

+ {E>(t)x(t) +EFt [F>(t + δ)x(t + δ)]− R1(t)z(t)}dW(t), t ∈ [0, T],

y(T) = γ, y(t) = η(t), z(t) = ζ(t), t ∈ [−δ, 0),

x(0) = − G1y(0), x(t) = 0, t ∈ (T, T + δ],

(14)

such that
u∗(t) = N−1

1 (t)C>(t)x(t). (15)
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The second equation in (14) is a linear ASDE and it admits a unique solution under
assumption (H5) for a sufficiently small δ. Since the leader can choose their optimal strategy
with the knowledge of the follower’s reaction, then the state equation of the leader’s optimal
control is

−dy(t) = [A(t)y(t) + B(t)y(t− δ) + C(t)N−1
1 (t)C>(t)x(t)

+ D(t)w(t) + E(t)z(t) + F(t)z(t− δ)]dt− z(t)dW(t), t ∈ [0, T],

dx(t) = {A>(t)x(t) +EFt [B>(t + δ)x(t + δ)]−M1(t)y(t)}dt

+ {E>(t)x(t)− R1(t)z(t) +EFt [F>(t + δ)x(t + δ)]}dW(t), t ∈ [0, T],

y(T) = γ, y(t) = η(t), z(t) = ζ(t), t ∈ [−δ, 0),

x(0) = − G1y(0), x(t) = 0, t ∈ (T, T + δ].

(16)

Problem (LQBSG)l : Find the optimal strategy w∗(·) ∈ U2 such that J2(γ; u∗(·), w∗(·)) =
inf

w(·)∈U2
J2(γ; u∗(·), w(·)).

The adjoint equation of the leader is the following FBSDE:

−dp(t) = {A(t)p(t) + B(t)p(t− δ)− C(t)N−1
1 (t)C>(t)ξ(t)

+ E(t)q(t) + F(t)q(t− δ)}dt− q(t)dW(t), t ∈ [0, T],

dξ(t) = {A>(t)ξ(t) +EFt [B>(t + δ)ξ(t + δ)] + M>1 (t)p(t)

−M2(t)y(t)}dt + {E>(t)ξ(t) +EFt [F>(t + δ)ξ(t + δ)]

+ R>1 (t)q(t)− R2(t)z(t)}dW(t), t ∈ [0, T],

p(T) = 0, p(t) = 0, q(t) = 0, t ∈ [−δ, 0),

ξ(0) = G>1 p(0)− G2y(0), ξ(t) = 0, t ∈ (T, T + δ].

(17)

Theorem 4. Under assumption (H5), the leader’s optimal control problem (LQBSG)l can be
uniquely solvable if and only if there exists a unique (y∗(t), z∗(t), x∗(t), p∗(t), q∗(t), ξ∗(t), w∗(t))
satisfying Equation (16) and Equation (17) such that

w∗(t) = N−1
2 (t)D>(t)ξ∗(t). (18)

We declare that, if FBSDE (16) and (17) admit a unique solution, then w∗(t) in the form
of (18) is the unique optimal control of the leader by Theorem 2. Meanwhile, we can also
prove that w∗(t) in (18) is optimal using the classical completion of the squares method.
Thus, we omit the detailed proof of Theorem 4.

Theorems 3 and 4 show us an equivalence between the solvability of the LQ backward
Stackelberg game and that of the coupled AFBSDDE. In order to achieve the existence of
the optimal control (u∗, w∗), we study the solvability of the following AFBSDDE.



Mathematics 2023, 11, 2898 11 of 18



−dy(t) = [A(t)y(t) + B(t)y(t− δ) + I(t)C>(t)x(t) + Ī(t)D>(t)ξ(t) + E(t)z(t)

+ F(t)z(t− δ)]dt− z(t)dW(t), t ∈ [0, T],

dx(t) = {A>(t)x(t) +EFt [B>(t + δ)x(t + δ)]−M1(t)y(t)}dt

+ {E>(t)x(t) +EFt [F>(t + δ)x(t + δ)]− R1(t)z(t)}dW(t), t ∈ [0, T],

−dp(t) = {A(t)p(t) + B(t)p(t− δ)− I(t)C>(t)ξ(t) + E(t)q(t)

+ F(t)q(t− δ)}dt− q(t)dW(t), t ∈ [0, T],

dξ(t) = {A>(t)ξ(t) +EFt [B>(t + δ)ξ(t + δ)] + M>1 (t)p(t)−M2(t)y(t)}dt

+ {E>(t)ξ(t) +EFt [F>(t + δ)ξ(t + δ)] + R>1 (t)q(t)− R2(t)z(t)}dWt, t ∈ [0, T],

y(T) = γ, y(t) = η(t), z(t) = ζ(t), t ∈ [−δ, 0),

x(0) = − G1y(0), x(t) = 0, t ∈ (T, T + δ],

p(T) = 0, p(t) = 0, q(t) = 0, t ∈ [−δ, 0),

ξ(0) = G>1 p(0)− G2y(0), ξ(t) = 0, t ∈ (T, T + δ],

(19)

where It = C(t)N−1
1 (t), Īt = D(t)N−1

2 (t).
Set

λ(t) = (y(t), z(t), x(t)), θ(t) = (p(t), q(t), ξ(t)),

and define

L2(−δ, T + δ) =S2
F(−δ, T;Rn)× L2

F(−δ, T;Rn×d)× S2
F(0, T + δ;Rn)

× S2
F(−δ, T;Rn)× L2

F(−δ, T;Rn×d)× S2
F(0, T + δ;Rn)

with the norm

‖ (λ(·), θ(·)) ‖2= E sup
t∈[−δ,T]

|y(t)|2 +E
∫ T

−δ
|z(t)|2dt +E sup

t∈[0,T+δ]

|x(t)|2

+E sup
t∈[−δ,T]

|p(t)|2 +E
∫ T

−δ
|q(t)|2dt +E sup

t∈[0,T+δ]

|ξ(t)|2.

Remark 5. As mentioned before, Equation (19) is a new kind of double FBSDE composed of ASDEs
and BSDDEs. This kind of FBSDE has not been studied in the previous literature. Using the method
of continuation introduced in [32], we can obtain the unique solvability of AFBSDDE (19). We
should note that the delay time δ must be sufficiently small for ASDEs and BSDDEs. We will give
the detailed procedure below.

Theorem 5. For sufficiently small δ, AFBSDDE (19) admits a unique solution

(λ(·), θ(·)) = (y(·), z(·), x(·), p(·), q(·), ξ(·)) ∈ L2(−δ, T + δ).

In order to prove Theorem 5, we consider a family of AFBSDDEs with parameter
ρ ∈ [0, 1] as follows.
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−dyρ(t) = {ρ(A(t)yρ(t) + B(t)yρ(t− δ) + I(t)C>(t)xρ(t) + Ī(t)D>(t)ξρ(t)

+ E(t)zρ(t) + F(t)zρ(t− δ)) + ϑ1(t) + (1− ρ)(D(t)D>(t)

+ C(t)C>(t))ξρ(t)}dt− zρ(t)dW(t), t ∈ [0, T],

dxρ(t) = {ρ
(

A>(t)xρ(t) +EFt [B>(t + δ)xρ(t + δ)]−M1(t)yρ(t)
)
+ κ1(t)}dt

+ {ρ
(
E>(t)xρ(t) +EFt [F>(t + δ)xρ(t + δ)]

− R1(t)zρ(t)
)
+ v1(t)}dW(t), t ∈ [0, T],

−dpρ(t) = {ρ
(

A(t)pρ(t) + B(t)pρ(t− δ)− I(t)C>(t)ξρ(t) + E(t)qρ(t)

+ F(t)qρ(t− δ)
)
+ ϑ2(t) + (1− ρ)C(t)C>(t)xρ(t)}dt

− qρ(t)dW(t), t ∈ [0, T],

dξρ(t) = {ρ
(

A>(t)ξρ(t) +EFt [B>(t + δ)ξρ(t + δ)] + M>1 (t)pρ(t)−M2(t)yρ(t)
)

+ κ2(t)}dt + {ρ
(
E>(t)ξρ(t) +EFt [F>(t + δ)ξρ(t + δ)] + R>1 (t)q

ρ(t)

− R2(t)zρ(t)
)
+ v2(t)}dW(t), t ∈ [0, T],

yρ(T) = γ, yρ(t) = η(t), zρ(t) = ζ(t), t ∈ [−δ, 0),

xρ(0) = − ρG1yρ(0) + φ1, xρ(t) = 0, t ∈ (T, T + δ],

ξρ(0) = ρ
(
G>1 pρ(0)− G2yρ(0)

)
+ φ2, ξρ(t) = 0, t ∈ (T, T + δ],

pρ(T) = ψ, pρ(t) = 0, qρ(t) = 0, t ∈ [−δ, 0),

(20)

where ϑi(·), κi(·), vi(·) ∈ L2
F(0, T;Rn), ψ ∈ L2(FT ;Rn), φi ∈ L2(F0;Rn) (i = 1, 2).

When ρ = 0 , FBSDE (20) is decoupled. Equation (20) has a unique solution by the
properties of SDE and BSDE. When ρ = 1 , if Equation (20) has a unique solution, then the
AFBSDDE (19) also has a unique solution. The following lemma gives a prior estimate for
the existence of an interval of Equation (20) with respect to parameter ρ ∈ [0, 1].

Lemma 1. We assume that (H5) holds. There exists a constant τ0 > 0 such that, if AFBSDDE
(20) admits a unique solution (λ

ρ0
t , θ

ρ0
t ) for some ρ0 ∈ [0, 1), then AFBSDDE (20) admits a unique

solution (λ
ρ0+τ
t , θ

ρ0+τ
t ) for sufficiently small δ and ρ0 + τ 6 1 with τ ∈ [0, τ0].

Proof. We will use the notation

Λ = (Y, Z, X), Θ = (P, Q, Ξ).

Since AFBSDDE (20) admits a unique solution when ρ = ρ0 ∈ [0, 1) for each ϑi(·), κi(·),
vi(·) ∈ L2

F(0, T;Rn), ψ ∈ L2(FT ;Rn), φi ∈ L2(F0;Rn) (i = 1, 2), there thus exists a unique
(Λ, Θ) ∈ L2(−δ, T + δ) satisfying the following AFBSDDE for each (λ, θ) ∈ L2(−δ, T + δ).
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−dY(t) = {ρ0
(

A(t)Y(t) + B(t)Y(t− δ) + I(t)C>(t)X(t) + Ī(t)D>(t)Ξ(t)

+ E(t)Z(t) + F(t)Z(t− δ)
)
+ τ

(
A(t)y(t) + B(t)y(t− δ)

+ I(t)C>(t)x(t) + Ī(t)D>(t)ξ(t) + E(t)z(t) + F(t)z(t− δ)
)

+ (1− ρ0)
(

D(t)D>(t) + C(t)C>(t)
)
Ξ(t) + τ

(
D(t)D>(t)

+ C(t)C>(t)
)
ξ(t) + ϑ1(t)}dt− Z(t)dW(t), t ∈ [0, T],

dX(t) = {ρ0
(

A>(t)X(t) +EFt [B>(t + δ)X(t + δ)]−M1(t)Y(t)
)

+ κ1(t) + τ
(

A>(t)x(t) +EFt [B>(t + δ)x(t + δ)]

−M1(t)y(t)
)
}dt + {ρ0

(
E>(t)X(t) +EFt [F>(t + δ)X(t + δ)]

− R1(t)Z(t)
)
+ v1(t) + τ

(
E>(t)x(t)

+EFt [F>(t + δ)x(t + δ)]− R1(t)z(t)
)
}dW(t), t ∈ [0, T],

−dP(t) = {ρ0
(

A(t)P(t) + B(t)P(t− δ)− I(t)C>(t)Ξ(t) + E(t)Q(t)

+ F(t)Q(t− δ)
)
+ ϑ2(t) + τ

(
A(t)p(t) + B(t)p(t− δ)

− I(t)C>(t)ξ(t) + E(t)q(t) + F(t)q(t− δ)
)

+ (1− ρ0)C(t)C>(t)X(t) + τC(t)C>(t)x(t)}dt−Q(t)dW(t), t ∈ [0, T],

dΞ(t) = {ρ0
(

A>(t)Ξ(t) +EFt [B>(t + δ)Ξ(t + δ)] + M>1 (t)P(t)

−M2(t)Y(t)
)
+ κ2(t) + τ

(
A>(t)ξ(t) +EFt [B>(t + δ)ξ(t + δ)]

+ M>1 (t)p(t)−M2(t)y(t)
)
}dt

+ {ρ0
(
E>(t)Ξ(t) +EFt [F>(t + δ)Ξ(t + δ)] + R>1 (t)Q(t)

− R2(t)Z(t)
)
+ v2(t) + τ

(
E>(t)ξ(t) +EFt [F>(t + δ)ξ(t + δ)]

+ R>1 (t)q(t)− R2(t)z(t)
)
}dW(t), t ∈ [0, T],

Y(T) = γ, Y(t) = η(t), Z(t) = ζ(t), t ∈ [−δ, 0),

X(0) = − ρ(0)G1Y(0)− τG1y(0) + φ1, X(t) = 0, t ∈ (T, T + δ],

P(T) = ψ, P(t) = 0, Q(t) = 0, t ∈ [−δ, 0),

Ξ(0) = ρ0(G>1 P(0)− G2Y(0)) + τ(G>1 p(0)− G2y(0)) + φ2,

Ξ(t) = 0, t ∈ (T, T + δ],

(21)

where 0 6 ρ0 + τ 6 1.
We define the following mapping:

(Λ, Θ) = Iρ0+τ(λ, θ) : L2(−δ, T + δ)→ L2(−δ, T + δ).

We proceed to prove that the mapping Iρ0+τ is a contraction.
Suppose (λ̄, θ̄) ∈ L2(−δ, T + δ), (Λ̄, Θ̄) = Iρ0+τ(λ̄, θ̄), and set

(λ̂, θ̂) = (λ− λ̄, θ − θ̄) = (y− ȳ, z− z̄, x− x̄, p− p̄, q− q̄, ξ − ξ̄),

(Λ̂, Θ̂) = (Λ− Λ̄, Θ− Θ̄) = (Y− Ȳ, Z− Z̄, X− X̄, P− P̄, Q− Q̄, Ξ− Ξ̄).

Applying Itô’s formula to 〈X̂(t), P̂(t)〉+ 〈Ξ̂(t), Ŷ(t)〉, we obtain

ρ0E〈G2Ŷ(0), Ŷ(0)〉+ τE〈G1ŷ(0), P̂(0)〉+ τE〈G2ŷ(0), Ŷ(0)〉 − τE〈G>1 p̂(0), Ŷ(0)〉

= E
∫ T

0
{−(1− ρ0)〈C>(t)X̂(t), C>(t)X̂(t)〉

− (1− ρ0)〈D>(t)Ξ̂(t), D>(t)Ξ̂(t)〉
− (1− ρ0)〈C>(t)Ξ̂(t), C>(t)Ξ̂(t)〉 − ρ0〈M2(t)Ŷ(t), Ŷ(t)〉
− ρ0〈 Ī(t)D>(t)Ξ̂(t), Ξ̂(t)〉 − ρ0〈R2(t)Ẑ(t), Ẑ(t)〉+ τ〈A>(t)x̂(t)
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+EFt [B>(t + δ)x̂(t + δ)]−M1(t)ŷ(t), P̂(t)〉 − τ〈A(t) p̂(t) + B(t) p̂(t− δ)

− I(t)C>(t)ξ̂(t) + E(t)q̂(t) + F(t)q̂(t− δ), X̂(t)〉 − τ〈C(t)C>(t)x̂(t), X̂(t)〉
+ τ〈E>(t)x̂(t) +EFt [F>(t + δ)x̂(t + δ)]− R1(t)ẑ(t), Q̂(t)〉
+ τ〈A>(t)ξ̂(t) +EFt [B>(t + δ)ξ̂(t + δ)] + M>1 (t) p̂(t)−M2(t)ŷ(t), Ŷ(t)〉
− τ〈A(t)ŷ(t) + B(t)ŷ(t− δ) + I(t)C>(t)x̂(t) + Ī(t)D>(t)ξ̂(t) + E(t)ẑ(t)

+ F(t)ẑ(t− δ), Ξ̂(t)〉+ τ〈E>(t)ξ̂(t) +EFt [F>(t + δ)ξ̂(t + δ)] + R>1 (t)q̂(t)

− R2(t)ẑ(t), Ẑ(t)〉 − τ〈(D(t)D>(t) + C(t)C>(t))ξ̂(t), Ξ̂(t)〉}dt.

Since ρ0 > 0, 1− ρ0 > 0 and M2(·), Ī(·)D>(·), R2(·) are non-negative, we have

E
∫ T

0
[〈C>(t)X̂(t), C>(t)X̂(t)〉+ 〈D>(t)Ξ̂(t), D>(t)Ξ̂(t)〉

+ 〈C>(t)Ξ̂(t), C>(t)Ξ̂(t)〉]dt

6 εC1 ‖ (Λ̂, Θ̂) ‖2 +
τ2C1

ε
‖ (λ̂, θ̂) ‖2, ∀ε > 0.

(22)

Applying Itô’s formula to |Ŷ(t)|2 , for sufficiently small δ > 0, we have the following
estimate by Gronwall’s inequality:

E sup
t∈[−δ,T]

|Ŷ(t)|2 +E
∫ T

−δ
|Ẑ(t)|2dt

6 τC1 ‖ (λ̂, θ̂) ‖2 +C1E
∫ T+δ

0
[|C>(t)X̂(t)|2 + |D>(t)Ξ̂(t)|2 + |C>(t)Ξ̂(t)|2]dt.

(23)

Similarly, applying Itô’s formula to |X̂(t)|2, |P̂(t)|2 and |Ξ̂(t)|2, we can obtain

E sup
t∈[0,T+δ]

|X̂(t)|2 6 τC1 ‖ (λ̂, θ̂) ‖2 +C1E
∫ T

−δ
[|Ŷ(t)|2 + |Ẑ(t)|2]dt, (24)

E sup
t∈[−δ,T]

|P̂(t)|2 +E
∫ T

−δ
|Q̂(t)|2dt

6 τC1 ‖ (λ̂, θ̂) ‖2 +C1E
∫ T+δ

0
[|C>(t)X̂(t)|2 + |C>(t)Ξ̂(t)|2]dt,

(25)

E sup
t∈[0,T+δ]

|Ξ̂(t)|2 6 τC1 ‖ (λ̂, θ̂) ‖2 +C1E
∫ T

−δ
[|Ŷ(t)|2 + |Ẑ(t)|2 + |P̂(t)|2 + |Q̂(t)|2]dt, (26)

for sufficiently small δ > 0. Here, C1 is a positive constant. Combing the above estimates
(22)–(26), we conclude that

‖ (Λ̂, Θ̂) ‖2≤ Cτ ‖ (λ̂, θ̂) ‖2,

where C is a positive constant independent of ρ0 and τ. Taking τ = 1
2C , it follows that

‖ (Λ̂, Θ̂) ‖2≤ 1
2
‖ (λ̂, θ̂) ‖2 .

Then, the contract mapping Iρ0+τ has a unique fixed point (λρ0+τ(t), θρ0+τ(t)), which
is the unique solution of AFBSDDE (20) for ρ = ρ0 + τ. The proof is completed.

Lemma 1 shows that, if (20) can be uniquely solved for ρ = 0, then there exists a
unique solution of Equation (20) for ρ = 1.
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Proof of Theorem 5. When ρ = 0, AFBSDDE (20) is decoupled and can be uniquely solved.
From Lemma 1, there exists a positive constant τ0 such that for each τ ∈ [0, τ0], AFBSDDE
(20) admits a unique solution for ρ = 0 + τ and sufficiently small δ. By an inductive
argument, we can increase the parameter ρ step by step from ρ = 0 to ρ = 1. Therefore,
AFBSDDE (20) has a unique solution for ρ = 1. Especially when we let ϑi(·), κi(·), vi(·), φi,
and ψ be zero (i = 1, 2) in AFBSDDE (20), we conclude that AFBSDDE (19) admits a unique
solution and completes the proof.

The following result is a direct sequence of Theorems 3–5.

Theorem 6. Under assumption (H5), for any given γ ∈ L2(FT ,Rn) and sufficiently small time
delay δ,

(u∗(t), w∗(t)) = (N−1
1 (t)C>(t)x(t), N−1

2 (t)D>(t)ξ(t))

provides a unique backward Stackelberg equilibrium for the problems (LQBSG) f − (LQBSG)l ,
where (y(t), z(t), x(t), p(t), q(t), ξ(t)) is the unique solution of the AFBSDDE (19).

4. Application to Pension Fund Problem

There are many areas where BSDDEs may arise, such as portfolio management, antici-
pating contract and variable annuities, and unit-linked products problems, as mentioned
in [23]. An investor’s wealth process may depend on its own past value or the past values
of the underlying investment portfolio. We can introduce different delay effects into the
financial market, which will make the model more practical.

This section is devoted to the study of a pension fund problem arising from financial
markets. Suppose that there are two players that continuously make contributions to
a pension fund (see [27]). One of the players is usually the supervisor, government,
or company (called the leader), who pays a premium proportion w(·) as their contribution.
The other is the individual investor (called the follower) with a premium proportion u(·)
as their contribution. Suppose the pension fund could be invested in both a bond and a
stock in the market. The price of the bond (risk-free asset) satisfies

dB(t) = r(t)B(t)dt,

where r(·) is the interest rate of the bond. In a securities market with delayed responses,
the price of the stock can be described by an SDDE{

dS(t) = µ(t)S(t− δ)dt + σS(t)dW(t), t ∈ [0, T],

S(t) = ν(t), t ∈ [−δ, 0],

where µ(·) is the appreciation rate of a return and σ is the volatility coefficient of the
stock. We assume that r(·), µ(·), and ν(·) are deterministic R-valued bounded functions,
and σ > 0 is a constant.

Let π(·) be the amount invested in the stock. Then, the dynamic of the pension fund
is modeled by{

dy(t) = [r(t)y(t)− r(t)π(t) + µ(t)π(t− δ) + u(t) + w(t)]dt + σπ(t)dW(t), t ∈ [0, T],

y(T) = γ, π(t) = 0, t ∈ [−δ, 0),
(27)

where γ is the terminal wealth goal. If we set z(t) = σπ(t), the BSDDE (27) can be written
as 

−dy(t) = [−r(t)y(t) + σ−1r(t)z(t)− σ−1µ(t)z(t− δ)− u(t)− w(t)]dt

− z(t)dW(t), t ∈ [0, T],

y(T) = γ, z(t) = 0, t ∈ [−δ, 0).

(28)

We assume that the time delay δ > 0 is sufficiently small to guarantee that BSDDE (28)
admits a unique solution.
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Let

U1 :={u(·) ∈ L2
F(0, T;R)|u(·) ≥ 0, a.e. a.s.},

U2 :={w(·) ∈ L2
F(0, T;R)|w(·) ≥ 0, a.e. a.s.}.

The associated cost functionals of the follower and leader have the form
J1(γ; u(·), w(·)) = 1

2
E[
∫ T

0
L1e−βtu2(t)dt + G1y2(0)],

J2(γ; u(·), w(·)) = 1
2
E[
∫ T

0
L2e−βtw2(t)dt + G2y2(0)].

(29)

where Li and Gi (i = 1, 2) are positive constants, and β > 0 is a discount factor. Under the
precondition that the terminal goal γ is attained, it is natural to want to minimize the cost
functionals (29).

By Theorem 6, we can give an explicit characterization of the equilibrium strategy for
the pension fund problem.

Proposition 1. The pension fund problem (28) with (29) admits a unique equilibrium strategy
(u∗(·), w∗(·)) as follows:

u∗(t) = −L−1
1 eβtx(t), w∗(t) = −L−1

2 eβtξ(t), (30)

where x(·) and ξ(·) satisfy

−dy(t) = [−r(t)y(t) + L−1
1 eβtx(t) + L−1

2 eβtξ(t) + σ−1r(t)z(t)

− σ−1µ(t)z(t− δ)]dt− z(t)dW(t), t ∈ [0, T],

dx(t) = − r(t)x(t)dt + {σ−1r(t)x(t)− σ−1EFt [µ(t + δ)x(t + δ)]}dW(t), t ∈ [0, T],

−dp(t) = [−r(t)p(t)− L−1
1 eβtξ(t) + σ−1r(t)q(t)− σ−1µ(t)q(t− δ)]dt

− q(t)dW(t), t ∈ [0, T],

dξ(t) = − r(t)ξ(t)dt + {σ−1r(t)ξ(t)− σ−1EFt [µ(t + δ)ξ(t + δ)]}dWt, t ∈ [0, T],

y(T) = γ, z(t) = 0, t ∈ [−δ, 0),

x(0) = − G1y(0), x(t) = 0, t ∈ (T, T + δ],

p(T) = 0, p(t) = 0, q(t) = 0, t ∈ [−δ, 0),

ξ(0) = G1 p(0)− G2y(0), ξ(t) = 0, t ∈ (T, T + δ].

(31)

5. Concluding Remarks

In this paper, we discuss the stochastic backward Stackelberg games with delay
motivated by some interesting economic and financial problems. Since the corresponding
Hamilton system is particularly complicated, we focus on the linear systems. The optimal
strategies of the follower and the leader are expressed by an AFBSDDE, which is a new kind
of double FBSDE. Furthermore, the AFBSDDE is proved to be uniquely solvable, and we
then obtain the unique equilibrium of the LQ backward Stackelberg game. Although this
paper deals with systems with state delays, our approach is still valid for the systems with
control delays. In addition, it is worthwhile to consider the state feedback representation
of the equilibrium. Another possible research direction is to investigate the maximum
principle for the leader’s optimal control problem under a structure that describes the
follower’s control as a function of the leader’s control and the adjoint variable. We will
study these challenging topics in the future.
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