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Abstract: This article is devoted to investigating the evolution of the probability density function
for power system excited by fractional stochastic noise. First, the single-machine-infinite-bus (SMIB)
power system model excited by fractional Gaussian noise (FGN) is established. Second, we derive
the Fokker–Planck–Kolmogorov (FPK) equation for the proposed model and solve the FPK equation
using the finite difference method. Finally, the numerical results verify that the addition of FGN
would influence dynamical stability of the SMIB power system under certain conditions.
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1. Introduction

In the past half century, Gaussian white noise has been widely used as an ideal mathe-
matic model for many noises and random processes in nature sciences and engineering [1–3].
However, some real noises or excitations have long-range (long-memory), strong spatial
and temporal correlations which are not described by Gaussian white noise. Fractional
Brownian motion (FBM) provides an important theoretical basis for the investigation of
long-correlation noise which is a more extensive stochastic process than Brownian mo-
tion (BM).

In 1968, Mandelbrot and Van Ness [4] defined the FBM for the first time and pro-
vided the construction of FBM. Since then, studies on stochastic dynamical systems driven
by FBM have attracted an increasing amount of attention. The fact that FBM is neither
semi-martingale nor Markov process renders the complete Itô stochastic analysis theory
not applicable to FBM. Therefore, the development of a new stochastic calculus is needed.
Duncan and Hu [5] provided the stochastic calculus of FBM with the Hurst parameter
in (1/2, 1). In Ref. [6], the Fokker–Planck–Kolmogorov (FPK) equation for the expecta-
tions and distribution densities of the solutions for one-dimensional stochastic differential
equations (SDEs) controlled by FBM with Hurst exponent H ∈ (0, 1) are obtained. These
results generalized similar findings for one-dimensional SDEs driven by FBM with Hurst
exponents H > 1/3 [7,8]. Kleptsyna et al. [9] employed models with multivariate FBM to
describe signal processes in filtering systems. Pei and Xu [10–12] investigated the stochastic
averaging principle for FBM and proved that the FBM-driven dynamical system would be
converged to the averaged stochastic dynamical system in the mean square sense. Deng and
Zhu [13] constructed a stochastic averaging method of quasi-non-integrable Hamiltonian
systems excited by fractional Gaussian noise (FGN). FBM has recently found extensive
applications in finance [14,15], geophysics [16], biology [17,18], signal analysis of functional
brain [19] and so on.

With the development of renewable energy, the uncertainties have created great
challenges to the new energy industry, especially in wind power generation, photovoltaic
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generation and so on. Thus, the research on power systems with the uncertainty was paid
more significant attention [20–23] in which the uncertainty is considered as a stochastic
process into the power system. Therefore, the power system under stochastic disturbances
can be modeled by a set of SDEs [24–26]. Wang et al. [27] improved the FPK equation to
analyze the evolution of the states probability density function (PDF) and determined the
impact of stochastic load perturbations on the single-machine-infinite-bus (SMIB) power
system stability. In Ref. [28], SDEs were adopted to describe continuous wind speed
models. Ju et al. [29] discussed the effect of additive Gaussian white noise on power system
dynamics based on the stochastic averaging method. Lin et al. [30] established a novel
optimal control strategy for power systems under Gaussian white noise excitation using
the dynamic programming method.

The studies above all focus on power systems excited by Gaussian white noise. There
are few studies on power systems under FGN excitation. In fact, in the modeling of
randomness of new energy power, the long-range dependence and probabilistic distribution
properties of different variables require consideration. Therefore, establishing a more
reasonable model to accurately describe the randomness of new energy power is necessary.
Thus, the proposed SMIB power system excited by FGN is established to explore the
dynamical stability in this paper.

This article is structured as follows. In Section 2, the stochastic model of SMIB power
system excited by FGN is proposed. In Section 3, the FPK equation for the proposed model
is derived. Section 4 provides a numerical solution of an SMIB power system excited by
FGN. In Section 5, according to the finite difference method (FDM), the solution of the FPK
equation is obtained. Finally, the conclusions are presented in Section 6.

2. Modeling Description
2.1. The FBM and FGN

FBM was named by Mandelbrot and Van Ness who provided in [4] a stochastic integral
representation of this process in terms of a standard BM, i.e.,

BH(t) =CH

{ ∫ 0

−∞
[(t− s)H− 1

2 − (−s)H− 1
2 ]dB(s)

+
∫ t

0
(t− s)H− 1

2 dB(s)
}

,
(1)

where B(t) is a standard BM and CH is a normalized constant.

Definition 1. Let the Hurst index H ∈ (0, 1), a FBM (BH(t))t≥0 of Hurst H is a continuous and
centered Gaussian process with covariance function

E[BH(t)BH(s)] =
1
2
(t2H + s2H − |t− s|2H), t, s ≥ 0 (2)

where t, s ∈ R+.

For H = 1/2, then the FBM is a standard BM. By Definition 1 we obtain that if
H > 1/2, the process (BH(t), t ≥ 0) exhibits a long-range dependence, that is, if r(n) =
E[BH(1)(BH(n + 1)− BH(n))], then we have ∑∞

n=1 r(n) = ∞. An FBM is also self-similar,
that is, (BH(αt), t ≥ 0) has the same probability law as (αH BH(t), t ≥ 0). Similar to the
standard BM, the FBM is not differentiable a.s. (almost surely). As the “derivative” of a BM
is usually referred to as Gaussian white noise, that of the FBM is referred to as FGN, i.e.,

WH(t) =
dBH(t)

dt
=

BH(t +4t)− BH(t)
4t

. (3)

Then, according to (2) and (3), the auto-correlation function (ACF) R(τ) of FGN WH

can be derived as
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R(τ) = E[WH(t + τ)WH(t)] = H(H + 1)|τ|2H−2 + 2H|τ|2H−1δ̃(τ), (4)

where δ̃(·) is the Dirac function.
It is easy to know (4) indicates that R(τ) is the Dirac function δ(τ) when H = 1/2,

which is the ACF of Gaussian white noise. Using Fourier transformation, the power spectral
density (PSD) S(ω) of FGN with 1/2 ≤ H < 1 can be obtained as follow

S(ω) =
1

2π

∫ ∞

−∞
R(τ)e−jωτdτ =

HΓ(2H) sin(Hπ)

π
|ω|1−2H . (5)

Figure 1 displays a few simulation results with ACF and PSD of the FGN when
1/2 ≤ H < 1. According to Figure 1, the PSD is close to a constant while the ACF
approaches Dirac function δ(τ) as H approaches 1/2. When H is close to 1, the PSD is
close to Dirac function δ(τ) while ACF is close to a constant. When H between 1/2 and
1, the ACF is limited value in a long time interval, which indicates long-range correlation.
Thus, when H with 1/2 and 1 the FGN is a steady Gaussian process. Figure 2 provides an
intuitive observation for the FGN with different Hurst index H.

(a) (b)

Figure 1. ACF (a) and PSD (b) of FGN.

(a) (b)

(c) (d)
Figure 2. Sample path of FGN with Hurst (a) H = 0.5, (b) H = 0.7, (c) H = 0.8, (d) H = 0.9.
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It is known that the FBM is not semimartingale. Therefore, the Itô stochastic analysis
theory is not applicable to FBM for H 6= 1/2. The Stratonovich type stochastic integral∫ t

0 fsδBH(s), with respect to the FBM introduced by Lin [31], Dai and Heyde [32], does
not satisfy in general the following property: E[

∫ t
0 fsδBH(s)] = 0. An Itô type stochastic

integral, [
∫ t

0 fsdBH(s)], is introduced by Duncan et al. [5], satisfying E[
∫ t

0 fsdBH(s)] = 0.
This property seems to be important in the modeling problem by SDEs with FGN as the
driving random process.

2.2. Malliavin Derivative and Stochastic Integration for FBM

For a fixed H ∈ ( 1
2 , 1), denote a function φ : R+ ×R+ → R+ by

φ(s, t) := H(2H − 1)|s− t|2H−2. (6)

Let f : R+ → R be a Borel measurable (deterministic) function. The function f belongs
to the Hilbert space L2

φ(R+) if

| f |2φ:=
∫ ∞

0

∫ ∞

0
φ(s, t) fs ftdsdt < ∞. (7)

The inner product on L2
φ(R+) is denoted by 〈·, ·〉φ.

Lemma 1. If f , g ∈ L2
φ(R+), then

∫ ∞
0 fsdBH(s) and

∫ ∞
0 gsdBH(s) are well defined zero mean,

Gaussian random variables with variances | f |2φ and |g|2φ, respectively, and

E
[ ∫ ∞

0
fsdBH(s)

∫ ∞

0
gsdBH(s)

]
=
∫ ∞

0

∫ ∞

0
f (s)g(t)φ(s, t)dsdt = 〈 f , g〉φ. (8)

Define a mapping Φ on L2
φ(R+):

(Φg)t :=
∫ T

0
φ(t, s)gsds, ∀g ∈ L2

φ([0, T]). (9)

Definition 2 (Malliavin Derivative). Let g ∈ L2
φ([0, T]). The φ-derivative of a random variable

F ∈ Lp in the direction of Φg is defined by

DΦg F(ω) = lim
δ→0

1
δ

{
F
(

ω + δ
∫ ·

0
(Φg)(u)du

)
− F(ω)

}
, (10)

if the limit exists in Lp(Ω,F ,P). Moreover, if there exists a process (Dφ
s Fs, s ≥ 0) such that

DΦg F =
∫ ∞

0 Dφ
s Fsgsds, a.s., for all g ∈ L2

φ(R+), then F is said to be φ-differentiable.

Next, we define a stochastic integral with respect to FBM considered in [33]. Let
{Ft}t≥0 be a stochastic process such that F ∈ L(0, T), and define

∫ T
0 FsdBH(s) by

∫ T

0
FsdBH(s) = lim

|π|→0

n−1

∑
i=0

Fπ
ti
�
(

BH(ti+1)− BH(ti)
)

, (11)

where |π|= max{ti+1 − ti, i = 0, 1, . . . , n− 1} and � is the Wick product. The Wick product
is a commutative, associative and distributive (over addition) binary operation.
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Definition 3 (The Wick product). Let F(ω) = ∑α cαHα(ω) and G(ω) = ∑β bβ Hβ(ω) are two
elements. Then the Wick product

F � G(ω) := ∑
α,β

aαbβ Hα+β(ω) = ∑
γ

(
∑

α+β=γ

aαbβ

)
Hγ(ω), (12)

where � presents the Wick product for F and G.

2.3. An Itô Formula

Lemma 2. Let (Fu, 0 ≤ u ≤ T) be a stochastic process and let E[sup0≤s≤T |Gs|] < ∞. Denote

ηt = ξ +
∫ t

0
Gudu +

∫ t

0
FudBH(u), ξ ∈ R (13)

for t ∈ [0, T]. Let
(

∂ f
∂x (s, ηs)Fs, s ∈ [0, T]

)
∈ L(0, T). Then, for t ∈ [0, T], the fractional Itô

formula is obtained

f (t, ηt) = f (0, ξ) +
∫ t

0

∂ f
∂s

(s, ηs)ds +
∫ t

0

∂ f
∂x

(s, ηs)Gsds

+
∫ t

0

∂ f
∂x

(s, ηs)FsdBH(s) +
∫ t

0

∂2 f
∂x2 (s, ηs)FsDφ

s ηsds.
(14)

Now the Itô formula for Rn-valued processes is given.

Lemma 3. Let (Fi
s , i = 1, . . . , n, s ∈ [0, T]) satisfy the conditions of Lemma 2 for F. Let

ξk
t =

∫ t

0
Fk

s dBH(s), k = 1, 2, . . . , n (15)

for t ∈ [0, T]. For k = 1, 2, . . . , n, let
(

fxk (s, ξ1
s , . . . , ξn

s )Fk
s , s ∈ [0, T]

)
be in L(0, T). Let

f : R+ × Rn → R be twice continuously differentiable with bounded derivatives to second
order, then

f (t, ξ1
t , . . . , ξn

t ) = f (0, 0, . . . , 0) +
∫ t

0

∂ f
∂s

(s, ξ1
s , . . . , ξn

s )ds

+
n

∑
k=1

∫ t

0

∂ f
∂xk

(s, ξ1
s , . . . , ξn

s )Fk
s dBH(s)

+
n

∑
k,l=1

∫ t

0

∂2 f
∂xk∂xl

(s, ξ1
s , . . . , ξn

s )Fk
s Dφ

s ξ l
sds. a.s.

(16)

In particular, if (σi
s, i = 1, . . . , n, s ∈ [0, T]) be in L2

φ then we have

f (t, ξ1
t , . . . , ξn

t ) = f (0, 0, . . . , 0) +
∫ t

0

∂ f
∂s

(s, ξ1
s , . . . , ξn

s )ds

+
n

∑
k=1

∫ t

0

∂ f
∂xk

(s, ξ1
s , . . . , ξn

s )σ
k
s dBH(s)

+
n

∑
k,l=1

∫ t

0

∂2 f
∂xk∂xl

(s, ξ1
s , . . . , ξn

s )σ
k
s

( ∫ s

0
σl

vφ(s, u)du
)

ds, a.s.

(17)

where φ(s, u) = H(2H − 1)|s− u|2H−2.

2.4. Model of Power System Excited by FGN

To provide a framework for exploring the PDF, an SMIB power system excited by
FGN is initially considered. The SMIB power system is shown in Figure 3. This FGN can be
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described as the stochastic disturbance of the bus load power with long-range dependence.
The normalized SMIB model with additive FGN is modeled as{

dδ =ωdt

dω =(P̄m − sin δ− D̄ω)dt + σdBH(t),
(18)

where δ is the relative rotating corner to the infinite bus, ω is the rotating rate with respect
to synchronous speed. The status vector is x = [x1, x2]

T = [δ, ω]T . The constants P̄m and
D̄ are, respectively, the normalized machine-based power and damping coefficients. The
dBH(t) denotes the FGN excitation and H is the Hurst index in a range of 1/2 < H < 1.
The parameter σ indicates the intensity of the additive FGN.

Figure 3. SMIB power system.

Writing Equation (18) in vector form

dx = f (x)dt + gdBH(t), (19)

where

f (x) =
[

f1(x)
f2(x)

]
=

[
x2

P̄m − sin x1 − D̄x2

]
and

g =

[
0
σ

]
.

3. The FPK Equation for SMIB Power System Excited by FGN

Applying fractional Itô formula Lemma 3 to the scalar function h(x), it will be given as

dh(x) =
(

dh(x)
dx

f (x) +
d2h(x)

dx2 g
∫ t

0
gφ(s, t)ds

)
dt +

dh(x)
dx

gdBH(t), (20)

where the function φ(s, t) is defined by

φ(s, t) = H(2H − 1)|s− t|2H−2. (21)

Taking the expectation of Equation (20), we have

E[dh(x)] =E
[

dh(x)
dx

f (x) +
d2h(x)

dx2 g
∫ t

0
gφ(s, t)ds

]
dt +E

[
dh(x)

dx
gdBH(t)

]
. (22)

Therefore, we obtain

E
[

dh(x)
dt

]
= E

[
dh(x)

dx
f (x) +

d2h(x)
dx2 g

∫ t

0
gφ(s, t)ds

]
. (23)

Denote p(x, t) as the PDF for the system state x at time t, we now recall

E[h(x)] =
∫ ∞

−∞
h(x)p(x, t)dx, (24)
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which implies that

E
[

dh(x)
dt

]
=
∫ ∞

−∞
h(x)

∂p(x, t)
∂t

dx. (25)

This leads to∫ ∞

−∞
h(x)

∂p(x, t)
∂t

dx =
∫ ∞

−∞

(
dh(x)

dx
f (x) +

d2h(x)
dx2 g

∫ t

0
gφ(s, t)ds

)
p(x, t)dx (26)

After the integration by part, we yield∫ ∞

−∞

dh(x)
dx

f (x)p(x, t)dx = p(x, t) f (x)h(x)|∞−∞−
∫ ∞

−∞
h(x)

∂( f (x)p(t, x))
∂x

dx. (27)

The first term on the right side of Equation (26) must vanish since p(x, t) = 0 at
x = ±∞. Then ∫ ∞

−∞

dh(x)
dx

f (x)p(x, t)dx = −
∫ ∞

−∞
h(x)

∂( f (x)p(t, x))
∂x

dx. (28)

In a similar way, we treat the second integral in Equation (26) to obtain

∫ ∞
−∞

d2h(x)
dx2 g

∫ t
0 gφ(s, t)dsp(x, t)dx =

∫ ∞
−∞ h(x)

∂2
(

g
∫ t

0 gφ(s,t)dsp(x,t)
)

∂x2 dx. (29)

Rendering back Equations (28) and (29) into Equation (26), the following equation can
be yielded

∫ ∞

−∞
h(x)

(
∂p(x, t)

∂t
+

∂( f (x)p(x, t))
∂x

−
∂2
(

g
∫ t

0 gφ(s, t)dsp(x, t)
)

∂x2

)
dx = 0. (30)

Hence, we deduce that

∂p(t, x)
∂t

+
∂( f (x)p(x, t))

∂x
−

∂2
(

g
∫ t

0 gφ(s, t)dsp(x, t)
)

∂x2 = 0. (31)

It is claimed the FBM-driven FPK equation for fractional SDE (19) because the diffusion
term in Equation (19) is the FBM.

From Equation (31), the corresponding FPK equation of SMIB power system excited
by FGN is given by

∂p(x, t)
∂t

= −∂ f1(x)p(x, t)
∂x1

− ∂ f2(x)p(x, t)
∂x2

+ Ht2H−1 σ2∂2 p(x, t)
∂x2

2
, (32)

where H is the Hurst index in a range 1/2 < H < 1 and p(x, t) is the time-dependent PDF.
The FPK Equation (32) is a parabolic two-dimensional partial differential equation having
given initial and boundary conditions. The initial condition for Equation (31) is

p(x0 | x, t) =
n

∏
i=1

δ̃(xi − x0) as t→ 0, (33)

where x0 is the initial running status and δ̃(·) is the Dirac function.
The solution of the FPK Equation (32) relies heavily on the boundary condition. Thus,

the two sets of boundary conditions are applied to the SMIB power system. On the one
hand, natural boundary conditions are presented

p(x1,+∞, t) = 0
p(x1,−∞, t) = 0.

(34)
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The PDF should vanish at x2 → ±∞ according to these boundary conditions. Among
the numerical solution of the appropriate FPK Equation (32), the two limited values are
adopted to approach the boundary of x2, as shown in Figure 4. Therefore, the natural
boundary conditions would be taken over the absorbing boundary conditions

p(x1, x2 min, t) = 0
p(x1, x2 max, t) = 0,

(35)

where the x2 max, x2 min are limited and defined the boundary of the calculation region in
the direction of x2. On the other hand, the periodic boundary conditions are given by

p(x1, x2, t) = p(x1 + 2π, x2, t). (36)

Since f (x) is periodical in 2π with x1(δ), the statud space (x1, x2) will be observed in
planar R2 or cylindrical S×R. For the sake of brevity, the cylindrical state-space S×R
will be supposed to the solution of the FPK Equation (32) for capturing the approximately
periodic behavior of limit cycle. The normalized condition of PDF must also be satisfied∫

p(x, t)dx = 1.

To some extent, the steady-state solution of the FPK equation is the most interesting,
i.e., the dynamical behavior of the system approaches steady status. It is worth noting
that the FPK equation may not have a stationary solution. Provided that the stationary
solution holds with t −→ ∞, thus p∞(x | x0) is the steady-state PDF. That is to say,
p∞(x | x0) = limt−→∞ p(x, t | x0). Under this stationary condition, Equation (32) becomes
the stationary FPK equation

∂ f1(x)p(x, t)
∂x1

+
∂ f2(x)p(x, t)

∂x2
− Ht2H−1 σ2∂2 p(x, t)

∂x2
2

= 0. (37)

Figure 4. Natural boundary conditions in the direction of x2.

4. Numerical Solution of SMIB Power System Excited by FGN

The numerical solution of fractional SDEs requires the time-domain numerical integra-
tion of Equation (18). The primary difference between the numerical solution of the system
for ordinary differential equations and fractional SDEs is the additional of the FBM over
the simulation interval [0, T].

To illustrate the numerical solution of the fractional SDE, Monte Carlo simulation
(MCS) is applied to solve Equation (18). The initial conditions can be chosen to locate
in the attractive zone for the stable equilibrium point (SEP) of the non-perturbed power
system, but near the stability boundary. In the non-perturbed power system, the trajectory
is supposed to be converged to the SEP. Figure 5a,b show the trajectories of random rotating
corner and frequency based on 20 Monte Carlo tests. Most trajectories intimately mimic the
deterministic dynamical trajectories. Nevertheless, an unpredicted behavior was exhibited
and rendered unstable in two of the 20 trajectories. The two unexpected trajectories suggest
that these two trajectories create a rotating orbit actually. Provided that the corners were
graphed on the rotating reference system, the two erratic phase diagrams seen in Figure 6
will match a limit cycle.
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(a) (b)

Figure 5. The trajectories of the SMIB power system excited by FGN. (a) The trajectories of the
rotating corner in SMIB power system excited by FGN; (b) The trajectories of the frequency in SMIB
power system excited by FGN.

Figure 6. The two irregular phase portraits correspond to a limit cycle.

Though each single operation offers a separate trajectory, multiple trials of the MCS
are required to produce statistical information for the SMIB power system excited by FGN.
It is worth noting that the two vertical lines marking p(x, t1) at 5 s and p(x, t2) at 15 s
in Figure 5a,b. The crossing section of the trajectory represented by the vertical lines
approaches status PDF x = [δ, ω]T for time t. With an increasing number of experiments,
the MCS will provide a more precise approximation of the actual PDF. However, the
number of trials is limited, therefore an approximate PDF can only be acquired.

The histograms offers a straightforward way to estimate and visualize the joint PDF.
Figures 7 and 8 display the approximate PDF for time t = 5 s and t = 25 s for 1500 runs,
respectively. Figure 7 indicates that the system states are intricate which can not stabilize
near the SEP at t = 5 s. When t = 25 s, Figure 8 indicates that a significant amount of system
status cluster surrounding the SEP (δ, ω) = (0, 0.5) and the arc encircles the SEP. This arc
and ridge respond to a set of status that locate on the limit cycle surrounding the SEP.

Though the histogram method offers a reliable approximate view of the PDF, the MCS
has the shortcoming of high computational load. In addition, because of the discretized
nature of this method, slight dynamical characteristics may be discarded or ignored. Hence,
there is a requirement to develop a method that can accurately predict the evolution of
PDFs and identify significant dynamical characteristics. The FPK equation offers such a
reliable method.
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Figure 7. Histogram of PDF at t = 5 s.

Figure 8. Histogram of PDF at t = 25 s.

5. Solution of the FPK Equation
5.1. Time-Dependent PDF

The FPK Equation (32) describes the evolution of the PDF for SMIB power system
excited by FGN. It is difficult to obtain the analytical solution by solving the FPK Equa-
tion (32). Therefore, the FDM is used for numerical calculation [34,35]. Using the FDM, the
derivatives in FPK Equation (32) are approximated as the form of finite differences. In this
method, the system state is preprocessed by discretization of space. Specifically, the state
space can be discretized as the [hmin, . . . , h, h + dt, . . . , hmax] where dt represented the step
size and h belongs to the [hmin, hmax]. Meanwhile, the time interval [0, T] is discretized as
[0, . . . , t, t + dt, . . . , T]. The differential in the FPK Equation (32) can then be formulated
as follows

∂ph
t

∂t
=

ph
t+1 − ph

t
dt

, (38)

∂ph
t

∂x1
=

ph
t+1 − ph−1

t
dx1

, (39)

∂ph
t

∂x2
=

ph
t+1 − ph−1

t
dx2

, (40)

∂2 ph
t

∂2x2
=

ph+1
t − 2ph

t + ph−1
t

(dx2)2 . (41)

Thus, the FPK Equation (32) is described as

ph
t+1 =ph

t +
dt

dx1

[
f h−1
1 ph−1

t − f h
1 ph

t

]
+

dt
dx2

[
f h−1
2 ph−1

t − f h
2 ph

t

]
− Ht2H−1σ2dt

(dx2)2

[
2ph

t − ph+1
t − ph−1

t

]
.

(42)
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Here, the absorbing boundary conditions (35) are considered during the iterations. The
convergent solution can be acquired by solving Equation (42). For the FDM, the space size
s = X×Y, where X, Y are, respectively, the space size of time interval and altitude interval.
In each iteration, we go through all the space two times and there are finite computing times
in each traversal. So the computation complexity of every iteration is small enough, which
means the iteration is also finite. Therefore, the computational complexity is acceptable in
practical application. The iteration ends when the iterative times exceed the threshold.

With the Hurst index fixed H = 0.65, Figure 9 exhibits the numerical results of the
time-dependent PDF in three-dimensional contours as well as the projection of the contours
in the plane at three different times t = 0.1 s, t = 5 s and t = 25 s, respectively.

Figure 9. The time-dependent PDF, i.e., (top) three-dimensional p(δ, ω) and (bottom) two-
dimensional contour.

At t = 0.1 s, the initial values approximately satisfy Equation (33). The evolution of
PDF is far from unstable equilibrium point (UEP) and SEP. In Figure 9, the initial state
x = (δ, ω) = (2, 2) is chosen. When t = 5 s, the time-dependent PDF experiences transient
changes. Most of the probability flows are closing the SEP, yet a few of them have gone
out of the main flow and are nearing the limit cycle ridge. Meanwhile, a small number
of probability flows are approaching UEP. Following a period of time, such as t = 25 s,
the probability flows around the UEP gradually decrease. The PDF is convergent to its
stationary solution. Two prominent features are found in the stationary solution. One is a
peak around the SEP and the other is a ridge that defines the limit cycle.

Based on the FDM, the PDFs for several different times are plotted in Figures 10 and 11
using discrete points. For the purpose of comparison, the MCS are also included in
Figures 10 and 11 using solid lines. A very good agreement between the FDM and MCS
for different times is observed. Therefore, the correctness of results obtained by the FDM
is verified.

Because the stability of the SMIB power system is forecasted from the stationary PDF,
the rest of this paper will concentrate on the stationary PDF.
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Figure 10. The evolution of PDF when ω is fixed.

Figure 11. The evolution of PDF when δ is fixed.

5.2. Stationary PDF

The stationary PDF is the solution of the FPK equation after it has attained steady-state.
In the case of high-damping or high-dissipation power system, the steady-state PDF would
be focused on the SEP. Yet in lightly damped power systems, the stationary PDF will largely
flow along the limit cycle ridge. Figures 12 and 13 display two extreme examples. The
PDF is closely aggregated in the peak surrounding the SEP in Figure 12. It is indicated
that almost all trajectories will be close to the SEP at high probability. Figure 13 illustrates
the other extreme of a very light-damping power system where almost all trajectories are
caught by the limit cycle.

Figure 12. Stationary PDF of high-damping system.
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Figure 13. Stationary PDF of light-damping system.

Generally, the steady-state PDF will have both peak and ridge features, depending on
the systematic parameters. For instance, let P̄m be fixed and D̄ be increased, then the height
of the peak will decrease, while the height of the ridge will increase. The peak corresponds
to the stability for the SMIB power system excited by FGN. The ridge is typically regarded
as unstable dynamical behavior, because the limit cycle is only present when the generator
angle is increasing.

A quantified criterion Ssindex is presented to express the steady-state PDF and the
damping factor

Sindex =
pp

max
pr

max
, (43)

where pp
max and pr

max are, respectively, the neighborhood maximum values of stationary
PDF near the peak and the ridge. The pp

max is corresponding to the SEP with the deter-
ministic system. Although the precise position of pr

max on the ridge is not easy to identify
since it is near the limit cycle, one will be guessed from the numerical solution. Figure 14
displays how the different stable regions vary with the damping parameter when param-
eters H = 0.65, P̄m = 0.5 and σ = 0.1 are fixed. A range of data points were obtained
under various damping factors shown in Figure 14. Note that the relationship between
ln(Sindex) and the damping coefficient can be linearly approximated. The critical damping
level is calculated to be D̄c = 0.419. In the SMIB power system excited by FGN, if the
damping factor is greater than D̄c, the system will just present SEP and without limit cycle.
Nevertheless, if the damping parameter is reduced to D̄c, the limit cycle will occur and
exist with the SEP at the same time. When the damping parameter is reduced further still,
the SEP will not appear, only leaving the limit cycle.

5.3. Impact of FGN on Stability

When FGN is introduced into the SMIB power system, the trajectories near bound-
aries will pass over the boundaries inadvertently and exhibit unpredictable behavior in a
deterministic system. When damping parameter approaches the critical damping value D̄c,
from Figures 12 and 13, the PDF shows both ridge and peak features. It can be seen from
Figure 14, while the peak and ridge features appear at the same time, the peak is dominant
in the probability stream. Thus, although the damping parameter is likely to be below the
critical value, the vast number of trajectories will remain drawn to the SEP rather than the
limit cycle. Simply put, the FGN in the SMIB power system indeed will improve system
stability under certain conditions.
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Figure 14. The plot of quantitative measure Ssindex versus D̄.

6. Conclusions

With the rising popularity of solar power generation, wind power generation and
other new energy sources, noise influence on new power systems is attracting significant
attention. Our intention is to solve the FPK equation to explore the evolution of the PDF in
the SMIB power system excited by FGN.

First, we introduced FGN into an SMIB power system to describe the random per-
turbation of the bus loading power with long-range dependence. Second, based on the
fractional Itô formula, the FPK equation for the SMIB power system excited by FGN was
derived. The MCS of the proposed power system showed that the evolution of the state
PDF over time would make the stability regions as the function of damping coefficient.
Finally, the FPK equation was solved numerically using the FDM. The qualitative analysis
indicated that the PDF exhibited several main characteristics that peaks and ridges are
associated with different stability responses. The numerical results verified that the FGN
would improve dynamical stability for certain conditions.

Though this article has concentrated only on the simplified SMIB power system, it still
expressed basic dynamical characteristics for large-scale power systems.
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