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Abstract: In recent years, deep learning has been applied in numerous fields and has yielded excellent
results. Convolutional neural networks (CNNs) have been used to analyze electrocardiography (ECG)
data in biomedical engineering. This study combines the Taguchi method and CNNs for classifying
ECG images from single heartbeats without feature extraction or signal conversion. All of the fifteen
types (five classes) in the MIT-BIH Arrhythmia Dataset were included in this study. The classification
accuracy achieved 96.79%, which is comparable to the state-of-the-art literature. The proposed model
demonstrates effective and efficient performance in the identification of heartbeat diseases while
minimizing misdiagnosis.

Keywords: Taguchi method; electrocardiography; arrhythmia; deep learning; convolutional
neural network

MSC: 92C55

1. Introduction

In recent years, deep learning applications have been developed in various fields and
represent effective methods to solve various identification problems [1,2]. Deep learning
was first introduced by Hinton et al. and focused on automatically learning features in
input data [3]. Deep learning architectures include recurrent neural networks (RNNs), long
short-term memory (LSTM) networks, convolutional neural networks (CNNs), and deep
belief networks (DBNs) [1,2]. Compared with conventional machine learning methods,
deep learning methods exhibit superior results in the fields of image recognition [4,5],
speech recognition [6], medical imaging [7–10], iris recognition [11], and face detection
and recognition [12]. In the field of biomedical engineering, many scholars have started to
use deep learning methods to classify lung diseases [13], diagnose breast cancer [7,14–16],
recognize brain hemorrhages from computed tomography [17], and detect arrhythmia
in electrocardiography (ECG) signals [18–22]. Deep learning with a CNN is prevalent
and demonstrates excellent performance in speech and image recognition. Representative
CNNs include LeNet [23], AlexNet [4], VGG [24], and GoogLeNet [25], which are pioneers
in the field.

Most ECG-related research is based on support vector machines (SVM), the K-nearest
neighbors algorithm (kNN), probabilistic neural networks (PNN), or radial basis function
neural networks (RBFNN) [26–40]. The accuracy of these classification methods is 90–99%.
A deep genetic ensemble of classifiers combining the advantages of ensemble learning, deep
learning, and evolutionary computation was designed [41]. The computer-aided diagnosis
(CAD) system of the aforementioned study was divided into four steps: (1) ECG signal
preprocessing, (2) heartbeat segmentation, (3) feature extraction, and (4) classification [42].
These steps are designed to recognize heartbeat types accurately; however, these methods
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are complex and cumbersome; therefore, numerous scholars have used deep learning
methods in ECG in recent years [42–45]. For example, in 2016, Zubair et al. [46] used a
one-dimensional (1D) CNN to classify ECG signals in the MIT-BIH Arrhythmia Database.
The classification accuracy of the CNN in that study was 92.70%. In 2017, Acharya et al. [47]
developed a nine-layer deep CNN to identify five categories of heartbeat automatically
using ECG signals in the MIT-BIH Arrhythmia Database; this CNN’s classification accuracy
was 94.03%. In 2018, Oh et al. [21] proposed an automated system that used a CNN and
LSTM to diagnose signals from the MIT-BIH Arrhythmia Database. The LSTM network is
another widely used deep learning algorithm for analyzing time series, and the accuracy
of this architecture is 98.10%. In 2018, Yildirim et al. [19] proposed the use of convolution
operations in ECG; 1000 10-s ECG signal segments were used from the MIT-BIH Arrhythmia
Database and classified using a 1D CNN. The overall classification accuracy was 91.33%.
A novel deep learning approach for ECG heartbeat classification was conducted on the
MIT-BIH Arrhythmia Database and showed more efficient results [48]. A deep residual
network (ResNet) was presented for the classification of cardiac arrhythmias [49]. In 2023, a
systematic review will be performed on the ECG database, preprocessing, DL methodology,
evaluation paradigm, performance metric, and code availability to identify research trends,
challenges, and opportunities for DL-based ECG arrhythmia classification [50].

In the aforementioned literature, CNNs have been used to detect arrhythmia in ECG
signals. CNNs comprise one or more convolutional layers and a completely connected
top layer (corresponding to a classical neural network); moreover, they include associated
weights and a pooling layer. This structure enables CNNs to accept two-dimensional
(2D) input data. CNNs provide superior results in terms of image and speech recognition
compared with other deep learning structures. Moreover, CNNs can be trained using a
back-propagation algorithm. Compared with other feedforward neural networks, CNNs
require fewer parameters; thus, their structure is favorable for deep learning [2].

Several scholars have used 2D ECG images for analysis. In 2018, Xu et al. [10] used the
modified frequency slice wavelet transform (MFSWT) on the MIT-BIH Atrial Fibrillation
Database and implemented a CAD system that automatically detects atrial fibrillation.
This method converts a 1-s ECG signal into a time-frequency image and then extracts and
classifies the time-frequency image using a 12-layer CNN; the method achieved average ac-
curacy, sensitivity, and specificity of 81.07%, 74.96%, and 86.41%, respectively, with five-fold
cross-validation. Moreover, when unsatisfactory ECG signals were excluded from the test
data, the average accuracy, sensitivity, and specificity rose to 84.85%, 79.05%, and 89.99%,
respectively. The study demonstrated that atrial fibrillation could be correctly detected
from transient signals. Samiee et al. [51] proposed a novel feature extraction method based
on the mapping of 1D EEG signals into a 2D texture image. The fault diagnosis method
first converts time-domain vibration signals into 2D gray-level images to exploit texture
information from the converted images [52]. Islam et al. converted a 1D vibration signal
to a 2D gray-level texture image for fault diagnosis of an induction motor [53]. Azad et al.
used a multi-class support vector machine for classification on texture data of 2D images,
which were transformed from 1D signals [54]. Li et al. (2018) [55] noted that although
CNNs can be used to classify ECG data in the diagnosis of cardiovascular diseases, the
ECG used in most related literature is a 1D ECG signal, but CNNs are more suitable for
multidimensional modes or image recognition applications. The authors combined the
heartbeat pattern and rhythm from 1D digital ECG signals in the MIT-BIH Arrhythmia
Database and used one-hot encoding to map them onto a 2D image. Using CNN for classi-
fication, the researchers achieved an average accuracy of 99.1%. In 2018, Al Rahhal et al. [9]
proposed a transfer learning method to detect and classify arrhythmia using data from
the MIT-BIH Arrhythmia Database, the Institute of Cardiological Technics (INCART), and
the MIT-BIH Supraventricular Arrhythmia Database (SVBD). The researchers employed a
deep CNN trained on ImageNet. Since this CNN could only use images as input, they used
the continuous wavelet transform (CWT) to convert 1D digital ECG signals into 2D ECG
time-frequency images. The results for the MIT-BIH Arrhythmia Database, INCART, and
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MIT-BIH SVDB data were superior to those obtained by previous methods. Augmented
data was commonly used to provide a comprehensive understanding of the heartbeat
morphology [56–59]. For example, an automated system named ‘CardioNet’ is proposed
for faster and more robust classification of heartbeats for arrhythmia detection using an
augmentation process [57].

The aforementioned applications of CNNs for analyzing ECG images necessitated
human intervention methods (e.g., MFSWT, one-hot encoding, CWT) to convert ECG
signals into images before CNN classification. This study aimed to eliminate human
intervention in the ECG signal conversion process while providing satisfactory results
in ECG classification. The proposed system combines the Taguchi method and CNNs
for arrhythmia classification by using ECG images with single heartbeats without feature
extraction or signal conversion. The main contributions of the study are as follows:

• Combining the Taguchi method and CNNs for arrhythmia classification.
• Comparing the classification results with and without electrocardiograph denoising.
• Parameter setting using orthogonal arrays in the convolution layers and max-pooling

layers of the CNN.
• Successfully classifies fifteen different types of heartbeats into five major classes.
• Using ECG images with single heartbeats without feature extraction or signal conversion.

The remainder of the paper is organized as follows: The material and method, includ-
ing the dataset, preprocessing, and architecture of CNN, are presented in Section 2. The
experimental results, including the ECG dataset used, preprocessing, and performance
using different combinations of orthogonal arrays, are given in Section 3. The comparative
analysis is given in Section 4. Finally, the conclusion is drawn in Section 5.

2. Materials and Methods
2.1. Data Used

The MIT-BIH Arrhythmia Database [60] was used in this study. The database includes
forty-eight 30-minute, two-lead ECG record segments comprising 15 beat types. This
study divided these 15 beat types into one of the following five categories according
to the Association for the Advancement of Medical Instrumentation (AAMI) EC57:1998
standard [61]: non-ectopic beats (N), supraventricular ectopic beats (S), ventricular ectopic
beats (V), fusion beats (F), and unknown beats (Q). Table 1 shows the beat types in the
arrhythmia database. These five categories were used for the experiments in this study.

Table 1. MIT-BIH Arrhythmia Database beat types classified according to the AAMI EC57:1998 standard.

Class Non Ectopic Beat (N) Supra-Ventricular
Ectopic Beats (S)

Ventricular
Ectopic Beats (V) Fusion Beat (F) Unknown Beat (Q)

Type

1. Normal beat 1. Atrial premature
beat

1. Premature
ventricular
contraction beat

1. Fusion of
ventricular and
normal beat

1. Paced beat

2. Left bundle branch
block beat

2. Aberrated atrial
premature beat

2. Ventricular
escape beat

2. Fusion of paced and
normal beats

3. Right bundle branch
block beat

3. Nodal (junctional)
premature beat 3. Unclassifiable beat

4. Atrial escape beat 4. Supra-ventricular
premature beat

5. Nodal (junctional)
escape beat
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2.2. Preprocessing
2.2.1. Electrocardiograph Denoising

When collecting ECG signals, the ECG signal amplitude can be inconsistent because
of the collection instruments chosen as well as patient and environmental factors; thus,
ECG signals often contain noise. However, ECG signal denoising can mostly restore the
original signal.

The denoising methods for ECG signals are many. This study referred to Singh et al. [62]
to select mother wavelet basis functions. Their method is mainly used to eliminate the noise
superimposed on an ECG signal. Therefore, in this study, all ECG signals were denoised
using a Daubechies wavelet (db8). Moreover, this study established sets of ECG images
both with and without denoising to compare the classification results and determine the
effect of denoising.

2.2.2. Heartbeat Segmentation

Each patient has a unique heartbeat pattern; however, in heartbeat segmentation, a
separate ECG signal is formed of PQRST for a single heartbeat. Related studies using
a fixed sample centered on the R peak have not ensured that a single ECG signal could
contain PQRST for a single heartbeat. Therefore, this study used Equations (1) and (2) to
segment heartbeats [63].

NLeft = (R N − RN−1)/2 (1)

NRight = (R N+1 − RN
)
/2 (2)

N = NLeft + NRight (3)

where RN is the position of the Nth R peak, NLeft is the total number of samples between
the (N − 1)th and Nth R peaks divided by 2, NRight is the total number of samples between
the Nth and (N + 1)th R peaks divided by 2, and N is the number of samples for the length
of the ECG signal. Figure 1 shows a schematic of heartbeat segmentation.

Mathematics 2023, 11, x FOR PEER REVIEW 4 of 19 
 

 

4. Atrial escape beat 4. Supra-ventricular 
premature beat    

5. Nodal (junctional) 
escape beat 

    

2.2. Preprocessing 
2.2.1. Electrocardiograph Denoising 

When collecting ECG signals, the ECG signal amplitude can be inconsistent because 
of the collection instruments chosen as well as patient and environmental factors; thus, 
ECG signals often contain noise. However, ECG signal denoising can mostly restore the 
original signal. 

The denoising methods for ECG signals are many. This study referred to Singh et al. 
[62] to select mother wavelet basis functions. Their method is mainly used to eliminate the 
noise superimposed on an ECG signal. Therefore, in this study, all ECG signals were de-
noised using a Daubechies wavelet (db8). Moreover, this study established sets of ECG 
images both with and without denoising to compare the classification results and deter-
mine the effect of denoising. 

2.2.2. Heartbeat Segmentation 
Each patient has a unique heartbeat pattern; however, in heartbeat segmentation, a 

separate ECG signal is formed of PQRST for a single heartbeat. Related studies using a 
fixed sample centered on the R peak have not ensured that a single ECG signal could 
contain PQRST for a single heartbeat. Therefore, this study used Equations (1) and (2) to 
segment heartbeats [63]. 𝑁 = 𝑅 𝑅 2⁄  (1)𝑁 = 𝑅 𝑅 2⁄  (2)𝑁 = 𝑁 𝑁  (3)

where 𝑅  is the position of the Nth R peak, 𝑁  is the total number of samples between 
the (N − 1)th and Nth R peaks divided by 2, 𝑁  is the total number of samples between 
the Nth and (N + 1)th R peaks divided by 2, and N is the number of samples for the length 
of the ECG signal. Figure 1 shows a schematic of heartbeat segmentation. 
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Figure 1. Schematic of heartbeat segmentation (The P wave in an ECG complex indicates atrial
depolarization. The QRS is responsible for ventricular depolarization and the T wave is ventricular
repolarization.).

2.3. Creating an Image Dataset

ECG signals were converted into ECG images to create an image database. MF-
SWT [10], one-hot encoding [38], and CWT [9] are commonly used to draw ECG images.
MFSWT and CWT map ECG signals onto spectrograms for analysis. One-hot encoding
obtains ECG images by encoding ECG signal records. All of these methods use ECG signals
to present ECG images in another form; thus, the original ECG signals cannot be presented.
The image indicates the ECG value of the ECG signal in the corresponding time space
by representing the amplitudes of the EEG signals as a function of time. Therefore, this
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study plotted ECG images using preprocessed ECG signals (Figure 2). This method directly
draws ECG images to obtain ECG image datasets with and without denoising.
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2.4. Convolutional Neural Network

A CNN is a conventional deep learning model comprising one or more convolution
layers and a completely connected layer, with an image input layer, pooling layer, average
pooling layer, rectified linear unit (ReLU) layer, dropout layer, and softmax layer. This
architecture enables CNNs to provide superior image and speech recognition compared
with other deep learning architectures [4,23–25]. This study employed a CNN because this
network does not require additional methods for artificial feature extraction or classifica-
tion [26–30]. The following provides a detailed description of the architecture. The more
network layers, the better the learning results. However, increasing the number of network
layers increases the calculation time; thus, the performance of learning architectures de-
pends on the complexity of the problem [64]. The number of parameter combinations in
CNN could be high; this study arranged CNN parameter combinations and selected the
optimal configuration using a Taguchi orthogonal array. The Taguchi method identifies key
effective parameters with much fewer experiments. The CNN model in the Deep Learning
Library constructed in Matlab software version R2019a was used for CNN model building
and execution in this study. The specification of the computer used for the calculation in
this study is an Intel(R) Core(TM) i7-8700 CPU at 3.20 GHz and 3.19 GHz with a RAM of
32.0 GB.

2.4.1. Image Input Layer

The image input layer is the first layer of a CNN and is a requirement of all networks.
Images with a size of 250 × 250 pixels were imported in this study.

2.4.2. Convolution Layers

A convolution is a linear operation that involves the multiplication between an array
of input data and a kernel, a two-dimensional array of weights. Convolution uses a ‘kernel’
to extract certain ‘features’ from an input image. After convolution, features are generated
and used as input to the subsequent layer. This study employed two convolution layers in
its CNN ReLU layers.
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ReLU refers to Rectified Linear Uni and is the most commonly used activation function
for the outputs of the CNN neurons [65]. The function of a ReLU layer is to convert input
neurons into new neuron outputs using Equation (4). In this function, x is the input of the
neuron. If x is greater than 0, h(x) directly outputs the input x. If x is less than or equal to 0,
the output of h(x) is 0. Therefore, the problem of gradient disappearance can be effectively
overcome. In this study, two ReLU layers were employed after the convolution layers.

h(x) =
{

x(x > 0)
0(x ≤ 0)

(4)

2.4.3. Max-Pooling Layers

The pooling layers compute the maximum or average over a region of a feature map.
The primary function of pooling is to reduce the number of features and parameters. Mean
pooling and maximum pooling are generally used. The maximum pooling used in this
study is based on the parameters of the kernel and stride set by the user to maximize
adjacent feature points. This study’s CNN included two pooling layers.

2.4.4. Fully Connected Layers

The fully connected layer connects with the output of the previous layer and is
typically used in the last stages of the CNN to connect to the output layer and construct the
desired number of outputs. The number of outputs can be determined, and the number of
categories for final classification is set or mapped to the final layer. This study utilized two
fully connected layers.

2.4.5. Softmax Layer

The Softmax layer is placed just before the output layer. Softmax assumes that each
example is a member of exactly one class. The Softmax layer must have the same number
of nodes as the output layer. Softmax assigns decimal probabilities to each class in a multi-
class problem. A softmax layer normalizes an input value to provide an output value of
0–1 using the softmax function and classifies the output according to the output value. This
study employed one softmax layer in its CNN.

Table 2 details the specifics of each parameter. Conv 1 kernel size = 11 × 11, 15 × 15
and 20 × 20; Conv 1 Number of kernel = 48 and 96; Conv 1 Stride = 4, 6 and 8; Conv 1
Padding = 1 and 2; Pooling 1 Kernel size = 3 × 3 and 5 × 5; Pooling 1 Stride = 2 and 3;
Conv 2 kernel size = 5 × 5 and 7 × 7; Conv 2 Number of kernel = 128 and 256; Conv 2
Stride = 1 and 2; Conv 2 Padding = 2, 3 and 4; Pooling 2 Kernel size = 2 × 2 and 3 × 3;
Pooling 2 Stride = 2 and 3. There are nine two-level factors and three three-level factors
in total for the above twelve parameters. Dropout: randomly dropping out nodes during
training was used to reduce overfitting and improve generalization error in CNN in this
study. The setting of dropout was suggested from related literature. A value of 0.5 was
selected for dropout from the tests of our experiments.

Table 2. Details of parameters of each layer of the proposed CNN.

No Layer Name Layer Parameters Experiment

1 Image Input Image size 250 × 250

2 Convolution 1

Kernel size 11 × 11, 15 × 15, 20 × 20

Number of Kernel 48, 96

Stride 4, 6, 8

Padding 1, 2

3 Activation function ReLU

4 Pooling 1 Kernel size 3 × 3, 5 × 5
Stride 2, 3
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Table 2. Cont.

No Layer Name Layer Parameters Experiment

5 Convolution 2

Kernel size 5 × 5, 7 × 7

Number of Kernel 128, 256

Stride 1, 2

Padding 2, 3, 4

6 Activation function ReLU

7 Pooling 2
Kernel size 2 × 2, 3 × 3

Stride 2, 3

8 Fully Connected 1000

9 Activation function ReLU

10 Dropout 0.5

11 Fully Connected 5

12 Soft-max

3. Results
3.1. Preprocessing
3.1.1. ECG Denoising

This study used a Daubechies wavelet (db8) [65] to perform denoising in MATLAB of
all ECG signals in the arrhythmia database. Figure 3 shows the signal denoising results
for the five categories: nonectopic beats (N), supraventricular ectopic beats (S), ventricular
ectopic beats (V), fusion beats (F), and unknown beats (Q). In Figure 3, the red is the
denoised signal, and the blue is the original signal. The results show that denoising can
substantially reduce the noise of an ECG signal while retaining the original peak.
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3.1.2. Heartbeat Segmentation

Table 3 shows that the heart rate of each patient is different, and thus, using a fixed
time interval or a fixed number of samples to perform heartbeat segmentation would be
inappropriate. Moreover, for any one patient, the heart rate may not be constant. Therefore,
this study used Equations (1)–(3) to perform heartbeat segmentation for each patient, and
the results are presented in Figure 4. The figure illustrates the 11–15th heartbeats of patient
100. Each patient’s heart rate was different; therefore, the number of heartbeat samples
varied by patient. The resampling technique was used to ensure the input dimension of
the image was the same size. Heartbeat segmentation was performed on 48 ECG signals
from the MIT-BIH Arrhythmia Database; Table 1 defines the five categories based on
the AAMI standard [61]. Non-ectopic beats (N) included the normal beat, left bundle
branch block beat, right bundle branch block beat, atrial escape beat, and nodal escape
beat. Since this type of beat accounted for 83% (n = 90,631) of the total heartbeats, ten
percent (90,631 × 10% = 9063) non-ectopic beats were randomly selected (Table 4) in this
study. Table 4 presents the number of ECG images (N = 9063, S = 2781, V = 7236, F = 803,
and Q = 8043); 80%, 10%, and 10% of the data comprised the training, validation, and
test sets, respectively, with 10-fold cross validations. Since the number of heart beats for
type F was notably lower than the other four types, the succeeding experiments were split
into classifying five types and four types (without type F) to compare the difference in
classification performance of unbalanced data.

Through preprocessing, 27,926 ECG signals for each of two experiments—with (Exper-
iment 1) and without (Experiment 2) denoising—were obtained, and corresponding ECG
images were drawn. The size of each ECG image was 250 × 250 pixels.

Table 3. Heart rates of patients from the MIT-BIH Arrhythmia Database.

No. Record Heart Rate No. Record Heart Rate No. Record Heart Rate

1 100 76 21 122 83 41 222 88
2 101 62 22 123 51 42 223 88
3 102 73 23 124 54 43 228 71
4 103 70 24 200 93 44 230 82
5 104 77 25 201 68 45 231 67
6 105 90 26 202 72 46 232 61
7 106 70 27 203 104 47 233 105
8 107 71 28 205 89 48 234 92
9 108 61 29 207 80

10 109 85 30 208 101
11 111 71 31 209 102
12 112 85 32 210 90
13 113 60 33 212 92
14 114 63 34 213 110
15 115 65 35 214 77
16 116 81 36 215 113
17 117 51 37 217 76
18 118 77 38 219 77
19 119 70 39 220 69
20 121 63 40 221 82

Table 4. Number of beats by type.

Class N S V F Q Total

Experiment 1 9063 2781 7236 803 8043 27,926

Experiment 2 9063 2781 7236 803 8043 27,926
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3.2. Convolutional Neural Network

According to Taguchi’s catalog of orthogonal arrays, this study used a L36 orthogonal
array for the parameter setting of 12 parameters (nine two-level factors and three three-
level factors in Table 2) in the convolution layers and max-pooling layers of the CNN.
The parameter settings are listed in Table 5. Table 5 also shows the average accuracies of
CNN classification for each parameter setting in Experiments 1 and 2, which were repeated
five times for the test dataset. The highest accuracy for Experiment 1 was 96.47%, and
the training time was 322 s (Experiment #10). The highest accuracy for Experiment 2
was 96.79%, and the training time was 290 s (Experiment #21). The parameter values of
Combination #10 for experiment 1 are Conv 1 kernel size = 11 × 11, Conv 1 Number of
kernel = 96, Conv 1 Stride = 4, Conv 1 Padding = 2, Pooling 1 Kernel size = 5 × 5, Pooling 1
Stride = 2, Conv 2 kernel size = 7 × 7, Conv 2 Number of kernel = 256, Conv 2 Stride = 1,
Conv 2 Padding = 4, Pooling 2 Kernel size = 2 × 2, Pooling 2 Stride = 2; the parameter values
of Combination #21 for experiment 2 are: Conv 1 kernel size = 20 × 20, Conv 1 Number of
kernel = 48, Conv 1 Stride = 4, Conv 1 Padding = 2, Pooling 1 Kernel size = 3 × 3, Pooling 1
Stride = 2, Conv 2 kernel size = 7 × 7, Conv 2 Number of kernel = 256, Conv 2 Stride = 1,
Conv 2 Padding = 4, Pooling 2 Kernel size = 3 × 3, Pooling 2 Stride = 3. Furthermore,
results showed that a smaller stride in the convolution layers corresponded to higher
accuracy. This observation indicates that a smaller stride in convolution extracts more
details from ECG images.
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Table 5. Performance of CNN under different parameter settings.

A B C D E F G H I J K L Experiment 1 Experiment 2

No.
Conv1
Kernel

Size

Conv1
Number of

Kernel

Conv1
Stride

Conv1
Padding

Pooling 1
Kernel

Size

Pooling 1
Stride

Conv2
Kernel

Size

Conv2
Number of

Kernel

Conv2
Stride

Conv2
Padding

Pooling 2
Kernel

Size

Pooling 2
Stride Acc. Time

Elapsed Acc. Time
Elapsed

1 11 × 11 48 4 1 3 × 3 2 5 × 5 128 1 2 2 × 2 2 96.47% 222 96.63% 216
2 15 × 15 48 6 1 3 × 3 2 5 × 5 128 1 3 2 × 2 2 96.17% 161 96.38% 161
3 20 × 20 48 8 1 3 × 3 2 5 × 5 128 1 4 2 × 2 2 96.02% 161 96.30% 161
4 11 × 11 48 4 1 3 × 3 3 7 × 7 256 2 2 2 × 2 2 95.77% 173 95.90% 173
5 15 × 15 48 6 1 3 × 3 3 7 × 7 256 2 3 2 × 2 2 95.48% 162 95.89% 161
6 20 × 20 48 8 1 3 × 3 3 7 × 7 256 2 4 2 × 2 2 95.72% 159 95.96% 159
7 11 × 11 48 4 2 5 × 5 2 5 × 5 128 2 3 3 × 3 2 95.38% 185 95.36% 185
8 15 × 15 48 6 2 5 × 5 2 5 × 5 128 2 4 3 × 3 2 94.12% 158 94.11% 160
9 20 × 20 48 8 2 5 × 5 2 5 × 5 128 2 2 3 × 3 2 90.37% 150 92.11% 152
10 11 × 11 96 4 2 5 × 5 2 7 × 7 256 1 4 2 × 2 2 96.47% 322 96.61% 322
11 15 × 15 96 6 2 5 × 5 2 7 × 7 256 1 2 2 × 2 2 95.76% 187 96.23% 188
12 20 × 20 96 8 2 5 × 5 2 7 × 7 256 1 3 2 × 2 2 94.75% 200 95.06% 201
13 11 × 11 96 6 1 5 × 5 3 5 × 5 256 1 4 3 × 3 2 96.07% 196 95.93% 195
14 15 × 15 96 8 1 5 × 5 3 5 × 5 256 1 2 3 × 3 2 94.29% 169 94.77% 172
15 20 × 20 96 4 1 5 × 5 3 5 × 5 256 1 3 3 × 3 2 96.26% 706 96.57% 711
16 11 × 11 96 6 2 3 × 3 3 7 × 7 128 2 4 3 × 3 2 93.79% 174 93.90% 182
17 15 × 15 96 8 2 3 × 3 3 7 × 7 128 2 2 3 × 3 2 93.07% 352 93.38% 181
18 20 × 20 96 4 2 3 × 3 3 7 × 7 128 2 3 3 × 3 2 93.42% 584 93.47% 540
19 11 × 11 48 6 2 3 × 3 2 7 × 7 256 1 2 3 × 3 3 95.84% 336 96.09% 403
20 15 × 15 48 8 2 3 × 3 2 7 × 7 256 1 3 3 × 3 3 95.26% 233 95.35% 262
21 20 × 20 48 4 2 3 × 3 2 7 × 7 256 1 4 3 × 3 3 96.47% 284 96.79% 290
22 11 × 11 48 6 1 5 × 5 3 7 × 7 128 1 3 3 × 3 3 93.17% 278 93.57% 166
23 15 × 15 48 8 1 5 × 5 3 7 × 7 128 1 4 3 × 3 3 93.04% 270 93.24% 158
24 20 × 20 48 4 1 5 × 5 3 7 × 7 128 1 2 3 × 3 3 93.24% 225 93.23% 185
25 11 × 11 48 8 2 5 × 5 3 5 × 5 256 2 3 2 × 2 3 94.60% 171 94.75% 151
26 15 × 15 48 4 2 5 × 5 3 5 × 5 256 2 4 2 × 2 3 95.91% 325 96.22% 185
27 20 × 20 48 6 2 5 × 5 3 5 × 5 256 2 2 2 × 2 3 94.36% 249 94.51% 168
28 11 × 11 96 8 1 3 × 3 2 5 × 5 256 2 3 3 × 3 3 95.10% 189 95.41% 168
29 15 × 15 96 4 1 3 × 3 2 5 × 5 256 2 4 3 × 3 3 96.06% 256 96.41% 247
30 20 × 20 96 6 1 3 × 3 2 5 × 5 256 2 2 3 × 3 3 94.79% 194 94.93% 196
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Table 5. Cont.

A B C D E F G H I J K L Experiment 1 Experiment 2

No.
Conv1
Kernel

Size

Conv1
Number of

Kernel

Conv1
Stride

Conv1
Padding

Pooling 1
Kernel

Size

Pooling 1
Stride

Conv2
Kernel

Size

Conv2
Number of

Kernel

Conv2
Stride

Conv2
Padding

Pooling 2
Kernel

Size

Pooling 2
Stride Acc. Time

Elapsed Acc. Time
Elapsed

31 11 × 11 96 8 2 3 × 3 3 5 × 5 128 1 4 2 × 2 3 95.20% 165 95.41% 173
32 15 × 15 96 4 2 3 × 3 3 5 × 5 128 1 2 2 × 2 3 95.86% 195 96.10% 204
33 20 × 20 96 6 2 3 × 3 3 5 × 5 128 1 3 2 × 2 3 95.24% 186 95.45% 195
34 11 × 11 96 8 1 5 × 5 2 7 × 7 128 2 2 2 × 2 3 91.83% 158 91.96% 254
35 15 × 15 96 4 1 5 × 5 2 7 × 7 128 2 3 2 × 2 3 95.03% 217 95.09% 498
36 20 × 20 96 6 1 5 × 5 2 7 × 7 128 2 4 2 × 2 3 92.73% 187 92.13% 321
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The CNN results under each parameter setting are discussed as follows: The detailed
information about the structures of the proposed CNN method that achieves the highest
accuracy for Experiments 1 and 2 is shown in Figure 5. Figure 6 represents the highest
accuracies of Experiments 1 and 2. Obviously, the accuracy for fusion beats (F) was
considerably lower than that for the other four categories. Therefore, this study removed
the F type and used CNN to classify it under the optimal parameter settings of Experiments
1 and 2. The metrics showing accuracy, precision, recall, and F1-score are listed in Table 6.
For five-class classification, the accuracy, precision, recall, and F1-score for Experiment 1 are
96.47%, 95.11%, 93.27%, and 94.14%, respectively. The accuracy, precision, recall, and F1-
score for Experiment 2 are 96.79%, 96.12%, 93.19%, and 94.52%, respectively. After deleting
fusion beats (F), the accuracy, precision, recall, and F1-score for Experiment 1 are 97.31%,
96.80%, 96.41%, and 96.60%, respectively. The accuracy, precision, recall, and F1-score
for Experiment 2 are 97.20%, 96.73%, 96.31%, and 96.51%, respectively. Figure 7 reveals
that removing F did not notably improve overall accuracy because the results for each
category remained similar. Thus, the results were classified into five categories. Moreover,
Figure 6 reveals no substantial difference in the individual or overall classification results
of Experiments 1 and 2; thus, the denoising of ECG images did not considerably improve
the accuracy of classification.
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Figure 5. CNN architecture.

Table 6. Performance metrics of experiments.

Class Accuracy Precision Recall F1-Score
Experiment 1 5 96.47% 95.11% 93.27% 94.14%
Experiment 2 5 96.79% 96.12% 93.19% 94.52%
Experiment 1 4 97.31% 96.80% 96.41% 96.60%
Experiment 2 4 97.20% 96.73% 96.31% 96.51%
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Figure 6. Experiment 1 and Experiment 2 confusion matrices of heartbeat classification results for the
test data.
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Figure 7. Experiment 1 and Experiment 2 confusion matrices of the heartbeat classification results
without F.

3.3. Comparison of Optimizers

This study used the stochastic gradient descent (SGD) optimization method in Experi-
ments 1 and 2 in Section 3.2. In addition, this study used different optimizers, including
SGD, adaptive moment estimation (Adam), and root-mean-square propagation (RMSProp),
to compare the classification accuracies of different optimizers. In these three optimizers,
the learning rate (η) was set to 0.001. Table 7. Performance of the proposed CNN with
different optimization methods shows the results of using different optimizers to train the
CNN. For both Experiments 1 and 2, SGD achieved the highest accuracy among the methods
at 96.47% and 96.79%, respectively. Figures 8 and 9 present the validation loss of Experiments
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1 and 2 during convergence of each of these three optimization methods, respectively. The
convergence of RMSProp was not satisfactory, having still not converged after 20 epochs.

Table 7. Performance of the proposed CNN with different optimization methods.

Optimization SGD Adam RMSProp
Learning rate (η) 0.001 0.001 0.001

Experiment 1 Acc. 96.47% 95.17% 92.37%
Experiment 2 Acc. 96.79% 93.02% 94.81%
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4. Discussion

Many ECG studies have used the MIT-BIH Arrhythmia Database for testing. Table 8
summarizes related research on arrhythmia. Martis et al. [26] and Pławiak [30] have used
machine learning methods to extract and classify ECG signal features. Since 2016, scholars
have used 1D CNNs for analyzing ECGs because they do not require feature extraction
for classification. The subtle changes in ECG signals are hardly detected by the naked
eye. Several computer-aided diagnosis systems have been presented in the last decade.
The standard steps in conventional machine learning methods for ECG classification are
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signal pre-processing, heartbeat segmentation, feature detection, feature selection, and
classification. To have higher classification accuracy, different pre-processing methods,
feature reduction methods, or extracted features were commonly executed with some
human intervention. The more human intervention, the more misjudgment. One of the
advantages of CNN is that the steps of feature reduction, feature extraction, and feature
selection are no longer required. To minimize the variation and effect of human intervention
and to learn the hidden information in the data, CNN is employed in this study. From the
literature, the classification accuracies of 1D-CNN (90–99%) [19,21,46,47] are comparable
to the results from conventional machine learning methods (90–99%) [26,30]. Instead
of a 1D CNN, as in much of the previous literature, a CNN was used to classify ECG
images in this study. Moreover, this study used variable signal lengths (Section 2.2.2).
Oh et al. [21] used variable signal lengths, too. In Oh’s study, 1D CNN with LSTM was able
to achieve 98.10% accuracy for classifying normal sinus rhythm, left bundle branch block
(LBBB), right bundle branch block (RBBB), atrial premature beats (APB), and premature
ventricular contraction (PVC). Unlike Oh’s study, all fifteen types (five classes) in the
MIT-BIH Arrhythmia Database [60] were included in this study.

Table 8. Comparison with related literature.

Year Author Length of Signal No of
Classes Feature Set Classifier Overall ACC.

2013 Martis et al. [26] 200 samples 5 DWT+ICA PNN 99.28%
2016 Zubair et al. [46] 1000 samples 5 Raw data 1D-CNN 92.70%
2017 Acharya et al. [47] 360 samples (1 s) 5 Raw data 1D-CNN 94.03%

2017 Acharya et al. [47] 2 s
5 s 4 Raw data 1D-CNN 92.50%

94.90%
2018 Oh et al. [21] Variable length 5 * Raw data CNN-LSTM 98.10%

2018 Pławiak [30] 3600 samples (10 s)
13
15
17

Frequency components
of the power spectral
density of the ECG

signal

Evolutionary-
Neural System

(based on SVM)

94.60%
91.28%
90.20%

2018 Yildirim et al. [19] 3600 samples (10 s)
13
15
17

Rescaling raw data 1D-CNN
95.20%
92.51%
91.33%

2018 Yildirim [66] 360 samples 5 Raw data DBLSTM-WS 99.39%
2019 Jiang et al. [56] 49,953 4 Augmented DAE+1D-CNN 98.40%
2021 Pal et al. [57] 29 Augmented CardioNet 98.92%
2021 Ullah [58] 109,446 5 * Generating new data CNN 99.12%
2022 Alqudah [67] 10,502 beats 6 MobileNet 93.80%
2022 Ma [59] 5 * Expanded data ECG-DCGAN 98.70%
2023 Pandy et al. [68] 5 * Balancing data Hybrid 99.40%

2023 This study 300 samples 5 Raw data Taguchi+CNN Experiment 2
96.79%

* Five classes selected from the dataset are not the same as those we selected in the study.

5. Conclusions

This study combines the Taguchi method and CNNs for classifying ECG images from
single heartbeats without feature extraction or signal conversion for fifteen heartbeats (five
classes) in the MIT-BIH Arrhythmia Dataset. The classification accuracy was 96.79%. The
developed system can serve as a starting point for creating a full-fledged tool for the early
detection of problems in the ECG signals of patients to guide doctors in their treatment.

The advantages of the proposed models include: classification made by the proposed
model that is reproducible with no observer biases; artificial feature extraction and selection
that are not required in the proposed model; and the CNN parameter setting that uses the
Taguchi orthogonal array and dramatically reduces the number of experiments. There are
some drawbacks and limitations; for example, the identification of the R peak is required;
small sample sizes for each group are used in this study; the sample size for each group is
imbalanced; and each sample cannot simultaneously be a member of multiple classes.
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Although the Taguchi-CNN model automatically recognizes five classes of heartbeat
on the MIT-BIH Arrhythmia Database with favorable results, the application of similar
CNNs on other databases is encouraged and needs to be considered in future research. Since
the Taguchi method was applied to reduce the number of experiments, not all parameter
combinations were tested in this study. The parameter settings outside the range of this
study were not tested. The selected parameter combination with the highest accuracy is
only guaranteed within the variable ranges in this study. Other optimization methods
for parameter setting are encouraged in future studies. In addition, since a small and
imbalanced sample size was used in this study, a larger and more balanced sample size is
expected to be tested in the future.
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