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Abstract: This paper primarily concerns the Whitham modulation equation of the complex modified
Korteweg–de Vries (cmKdV) equation with a step-like initial value. By utilizing the Lax pair, we
derive the N-genus Whitham equations via the averaging method. The Whitham equation can
be integrated using the hodograph transformation. We investigate Krichever’s algebro-geometric
scheme to propose the averaging method for the cmKdV integrable hierarchy and obtain the Whitham
velocities of the integrable hierarchy and the hodograph transformation. The connection between
the equations of the Euler–Poisson–Darboux type linear overdetermined system, which determines
the solutions of the hodograph transformation, is constructed through Riemann integration, which
demonstrates that the Whitham equation can be solved. Finally, a step-like initial value problem is
solved and an exotic wave pattern is discovered. The results of direct numerical simulation agree
well with the Whitham theory solution, which shows the validity of the theory.

Keywords: the cmKdV equation; Lax pair; averaging method; Whitham theory; algebro-geometric
scheme

MSC: 35Q53

1. Introduction

Nonlinear phenomena play a crucial role in various scientific fields such as fluid
mechanics, optical fibers, solid state physics, chemical dynamics and geochemistry, and are
modeled using nonlinear partial differential equations. Typical nonlinear dispersion equa-
tions include the Korteweg–de Vries (KdV) equation [1,2], the nonlinear Schrödinger (NLS)
equation [3,4], the sine-Gordon equation [5,6], the Camassa–Holm equation [7,8], etc. Their
precise solutions are of great significance for understanding the mechanisms and dynamic
behaviors of complex physical phenomena. Since Gardner et al. [9] proposed the inverse
scattering method for solving nonlinear integrable equations, many systematic and effective
methods have been developed successively, such as the Hirota bilinear method [10,11], the
Darboux transform [12], the Bäcklund transform [13], Painlevé’s analysis [14], the inverse
scattering method [9], the Riemann–Hilbert Method [15] and the Whitham method [16,17].
The Whitham method is a powerful tool for solving discontinuous initial value prob-
lems [18,19], that was developed by G. B. Whitham [20] in the 1960s. The main idea of the
Whitham method is to approximate a nonlinear wave by a slowly varying wave envelope
that satisfies a set of differential equations known as the Whitham equations.

In [21], Gurevich and Pitaevskii first applied the Whitham theory to the Korteweg–de
Vries (KdV) equation to study the self-similar solutions for dispersive shock waves (DSW),
whose evolution can be described by the diagonal Whitham equation. Tian [22,23] con-
nected the Whitham equation with the linear overdetermined equations of the
Euler–Poison–Darboux equations of the KdV equation and the NLS equation and ob-
tained the solution of the Whitham equation using Krichever’s algebro-geometric scheme.
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In recent years, the algebro-geometric scheme has been extensively studied and some
significant progress has been made [24,25]. Krichever [26,27] showed that when the fast
oscillations of periodic solutions are averaged or smoothed, the Whitham equation appears
as a modulation equation of the Riemann surface module; they also parameterized the
algebro-geometric periodic solutions and constructed an algebro-geometric n-orthogonal
curve coordinate system on the plane space. These results are important for understanding
the relationship between integrable systems and algebraic geometry. As we all know,
the KdV equation is a classical nonlinear wave equation typically used to describe the
propagation of shallow water waves. The complex modified Korteweg–de Vries (cmKdV)
adds a complex term, making it even more complex, thereby allowing the equation not
only to describe traditional shallow water waves but also simulate the nonlinear evolu-
tion of plasma waves [28], the propagation of shear waves in molecular chains [29] and
generalized elastic solids [30]. Furthermore, the equation can also be used to describe
coherent structures in some physical phenomena, such as solitary waves in disordered
media such as plasma and liquid crystals, and simulate shock waves and their interactions
in the aforementioned media. Therefore, the cmKdV equation has a wide range of applica-
tions in modern physics and engineering. We are interested in the modulation theory and
Krichever’s algebro-geometric scheme of the cmKdV equation,

φt +
3
2
|φ|2φx −

ε2

4
φxxx = 0, (1)

where φ is the complex wave envelope, ε is a small modulation scale, and x and t are
independent variables. The cmKdV equation has been studied using the Darboux transfor-
mation [31], the Hirota method [32], the inverse scattering transformation [33], the Riemann–
Hilbert problem [34,35], and so on. As we all know, the zero dispersion limit of the cmKdV
equation can be described using the Whitham equation [36–38]

∂τi
∂t

+ υi(τ1, τ2, · · · , τ2g+2)
∂τi
∂x

= 0, i = 1, 2, . . . , 2g + 2, (2)

with the ordering τ1 > τ2 > · · · > τ2g+2, where υi depends on the complete hyperelliptic
integral of genus g and will be given later. Equation (2) describes the slow modulation
of the parameter τi on the g-genus solution of integrable nonlinear evolutionary sys-
tems. Kodama [36] found that they are neither strictly hyperbolic nor genuinely nonlinear.
Wang et al. [37] gave the complete classification of discontinuous initial data. The Whitham
Equation (2) in the 1-genus case is transformed into a linear overdetermined system of the
Euler–Poisson–Darboux type equations [36],

2(τi − τj)
∂2q

∂τi∂τj
=

∂q
∂τi
− ∂q

∂τj
i, j = 2, 3, 4,

q(a, τ, τ, τ) = F(τ) i 6= j,
(3)

where a is a constant. The system (3) has a unique solution, which can be expressed
explicitly [39]. In this paper, we will connect the g-genus Whitham Equation (2) with a
high-dimensional Euler–Poisson–Darboux type linear overdetermined system,

2(τi − τj)
∂2q

∂τi∂τj
=

∂q
∂τi
− ∂q

∂τj
, i, j = 1, 2, . . . , 2g + 2,

q(τ, τ, ..., τ, b) = F(τ), i 6= j,
(4)

where b is a constant and prove that the solution of Equation (2) can be obtained using
Equation (4). The system can provide mathematical models based on the principles of
physics to describe the laws of fluid motion. It can be used to study the conservation law,
wave propagation, instability and other phenomena in fluid flow, which are of great signif-
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icance for understanding the properties of fluid mechanics and promoting the scientific
progress in related fields.

The organizational structure of this paper is as follows. In Section 2, based on the Lax
pair, the Whitham equations are established. In Section 3, Krichever’s algebro-geometric
scheme is analyzed to find the solution of a Whitham-type Equation (2). In Section 4,
the connection between the Whitham Equation (2) and the Euler–Poisson–Darboux type
linear overdetermined system is constructed. In Section 5, we solve a step-like initial value
problem. Finally, we provide our conclusions in the last section.

2. The Whitham Modulation Equation

In this section, we use an averaging method to establish the Whitham equation of
Equation (1) based on the Lax pair. Equation (1) can be obtained from the compatibility
condition ψxt = ψtx of the Lax pair

ψx = U(ξ)ψ, ψt = V(ξ)ψ, (5)

where

ψ =

(
ϕ1
ϕ2

)
, U(ξ) = i

ε

(
−ξ 0
0 ξ

)
+ 1

ε

(
0 φ

φ∗ 0

)
, V(τ) =

(
A B
C −A

)
, (6)

and

A =
1
4ε

(−εφ∗φx + εφφ∗x + 4iξ(ξ2 +
|φ|2

2
)),

B =
1
4ε

(−2iξεφx − 2|φ|2φ− 4ξ2φ + ε2φxx),

C =
1
4ε

(2iξεφ∗x + ε2φ∗xx − 2|φ|2φ∗ − 4ξ2φ∗).

(7)

For the Bloch function ϕ1

ϕ1 = ei(px−ωt)+χ(x,t,ξ), (8)

which satisfies the identity ∂t∂x ln ϕ1 = ∂x∂t ln ϕ1, where ξ is the spectral parameter, p is
the quasimomentum and ω is the quasienergy. From (5)–(7), we have

ϕ1|ξ→∞ → ei(− ξ
ε x+ ξ3

ε t). (9)

Consider the Riemann surface of genus g ≥ 0:

Sg =
{

Π = (ξ,<), <2 =
2g+2

∏
j=1

(ξ − τj)
}

, τ1 > τ2 > . . . > τ2g+2, (10)

where Sg is a two-sheet cover of CP1; the upper (or lower) sheet denotes the points
(ξ,<) ∈ Sg for which < = <(ξ,~τ) (< = −<(ξ,~τ)).

The averaged equations take the form

∂T < ∂x ln ϕ1 >= ∂X < ∂t ln ϕ1 >,

where X and T are slowly varying variables and <> denotes averaging over one pe-
riod. The system of averaged equations for many-genus solutions of the cmKdV equa-
tion can be expressed in Riemann invariants, namely the Whitham Equation (2). Since
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∂x ln ϕ1 = ip + χx , ∂t ln ϕ1 = −iω + χt , limτ→∞ χ = 0, it follows that ∂p/∂T = ∂ω/∂X.
For p and ω, which are Abelian differentials of the second kind on Sg, we obtain

∂Ω1/∂t = ∂Ω3/∂x. (11)

The cmKdV equation is on one sheet of the Riemann surface and the Abelian differential
has this form:

Ωi =
Ql(ξ)dξ

<(ξ) , i = 1, 2, . . . , g, (12)

where

<(ξ) =
√
(ξ − τ1)(ξ − τ2) · · · (ξ − τ2g+2), (13)

and Ql(ξ) is a polynomial in ξ of degree l, which is related with the number of genera and
the asymptotic behavior.

From (8) and (9), we find the asymptotic behavior:

Ω1 → −
1
ε

dξ + o
(d(ξ)

ξ

)
is the quasimomentum, (14)

Ω3 → −
3
ε

ξ2dξ + o
(d(ξ)

ξ

)
is the quasienergy. (15)

For the multi-gap solution of the cmKdV equation, µ2 = <2g+2(ξ). Therefore, in order to
satisfy the requirements of (14) and (15), we need

Ω(g)
1 = −1

ε

Qg+1(ξ)dξ

<(ξ) , Ω(g)
3 = −3

ε

Qg+3(ξ)dξ

<(ξ) . (16)

The Whitham velocities in (2) are the following [36,40]:

υi =
Ω(g)

3

Ω(g)
1

= 3
Qg+3

Qg+1
= 3

Q2

Q0
. (17)

Now define two polynomials

Q0(ξ; τ1, τ2, · · · , τ2g+2) = ξg+1 + α1ξg + · · ·+ αg, (18)

Q2(ξ; τ1, τ2, · · · , τ2g+2) = ξg+3 + a1ξg+2 + a2ξg+1 + a3ξg + γ1ξg−1 + · · ·+ γg,

with α1, α2, · · · , αg, a1, a2, a3 and γ1, γ2, . . . , γg uniquely determined by the conditions

∫ τ2k+1

τ2k+2

Q0(ξ; τ1, τ2, · · · , τ2g+2)

<(ξ) dξ = 0,

∫ τ2k+1

τ2k+2

Q2(ξ; τ1, τ2, · · · , τ2g+2)

<(ξ) dξ = 0, k = 1, 2, . . . , 2g + 2,
(19)

where

<(ξ) =
√
(ξ − τ1)(ξ − τ2) · · · (ξ − τ2g+2), (20)

and the sign is given by
√

1 = 1.
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The motions of τ1, τ2, . . . , τ2g+2 are determined by Whitham Equations (2) with velocities

υi(τ1, τ2, . . . , τ2g+2) = 3
Q2(τi; τ1, τ2, . . . , τ2g+2)

Q0(τi; τ1, τ2, . . . , τ2g+2)
, i = 1, 2, . . . , 2g + 2. (21)

We first consider the case in which a single valued function x represents the evolution
curve. In this case, g = 0 and Equation (18) becomes

Q0 = ξ + α1,

Q2 = ξ3 + a1ξ2 + a2ξ + γ1,
(22)

where α1, a1, a2 and γ1 are determined by (19) and (20). In fact,

α1 = a1 = −τ1 + τ2

2
, (23)

a2 = −1
8
(τ2

1 + τ2
2 ) +

1
4

τ1τ2, (24)

γ1 = − 1
16

(τ3
1 + τ3

2 ) +
1
16

(τ2
1 τ2 + τ1τ2

2 ). (25)

According to Equation (21), Equation (2) becomes

τit + υi(τ1, τ2)τix = 0, i = 1, 2, (26)

where

υ1 =
15
8

τ2
1 +

3
4

τ1τ2 +
3
8

τ2
2 , υ2 =

3
8

τ2
1 +

3
4

τ1τ2 +
15
8

τ2
2 , (27)

whose solution satisfies the characteristic equation

x = υi(τ1, τ2)t + fi(τ1, τ2), i = 1, 2, (28)

where x = fi(τ1, τ2) are the initial curves.
The 1-genus case is given by g = 1 and Equation (18) becomes

Q0 = ξ2 + α1ξ + α2,

Q2 = ξ4 + a1ξ3 + a2ξ2 + a3ξ + γ1,
(29)

where α1, a1, a2 and γ1 are

α1 = a1 = −1
2

e1(τ), (30)

α2 =
1
2
(τ1τ2 + τ3τ4)−

1
2
(τ1 − τ3)(τ2 − τ4)

E(s)
K(s)

, (31)

a2 = −1
8

e1(τ)
2 +

1
2

e2(τ), (32)

a3 = − 1
16

(τ1 − τ2 − τ3 + τ4)(τ1 − τ2 + τ3 − τ4)(τ1 + τ2 − τ3 − τ4), (33)

γ1 =
1

48
(3τ1τ2(τ

2
1 + τ2

2 ) + 3τ3τ4(τ
2
3 + τ2

4 ) + 2(τ1τ2 + τ3τ4)
2

− 2(τ3 + τ4)(τ1 + τ2)(τ1τ2 + τ3τ4)− (τ1τ4 + τ2τ3)(τ1τ3 + τ2τ4))

− 1
48

(τ1 − τ3)(τ2 − τ4)(3e1(τ
2) + 2e2(τ))

E(s)
K(s)

,

(34)
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with

e1(τ) =
4

∑
i=1

τi, e2(τ) = ∑
i<j

τiτj, i, j = 1, 2, 3, 4, (35)

s =

√
(τ1 − τ2)(τ3 − τ4)

(τ1 − τ3)(τ2 − τ4)
, (36)

and K(s) and E(s) are complete elliptic integrals of the first and second kind, respectively.
According to Equation (21), Equation (2) becomes

τit + υi(τ1, τ2, τ3, τ4)τix = 0, i = 1, 2, 3, 4, (37)

where

υ1 =
3
8

4

∑
i=1

τ2
i +

1
4 ∑

i<j
τiτj +

1
2
(

4

∑
i=1

τi + 2τ1)
(τ1 − τ2)(τ1 − τ4)K(s)

(τ1 − τ4)K(s) + (τ4 − τ2)E(s)
, (38)

υ2 =
3
8

4

∑
i=1

τ2
i +

1
4 ∑

i<j
τiτj +

1
2
(

4

∑
i=1

τi + 2τ2)
(τ1 − τ2)(τ3 − τ2)K(s)

(τ3 − τ2)K(s) + (τ1 − τ3)E(s)
, (39)

υ3 =
3
8

4

∑
i=1

τ2
i +

1
4 ∑

i<j
τiτj +

1
2
(

4

∑
i=1

τi + 2τ3)
(τ3 − τ4)(τ3 − τ2)K(s)

(τ3 − τ2)K(s) + (τ2 − τ4)E(s)
, (40)

υ4 =
3
8

4

∑
i=1

τ2
i +

1
4 ∑

i<j
τiτj +

1
2
(

4

∑
i=1

τi + 2τ4)
(τ4 − τ3)(τ4 − τ1)K(s)

(τ4 − τ1)K(s) + (τ1 − τ3)E(s)
. (41)

The Whitham system can also be derived using the methods of multiphase averaging [40,41]
and multiple scale expansions regardless of the integrability of the systems [42]. Taking
the limits s → 0 and s → 1, the velocities of the 1-genus can be reduced to the ones of
a 0-genus and the boundaries connecting the 1-genus and 0-genus are continuous. The
periodic solution of the cmKdV Equation (1) can be expressed as follows [36],

ρ =
1
4
(τ1 − τ2 − τ3 + τ4)

2 + (τ1 − τ2)(τ3 − τ4)sn2
(√(τ1 − τ3)(τ2 − τ4)

ε
(ξ − ξ0), s

)
, (42)

where sn is the Jacobian elliptic function, ξ = x − Vt is the traveling transformation,
V = 3

8 (∑
4
i=1 τi)

2 − 1
2 ∑4

i<j τiτj is the traveling velocity and ξ0 is the phase shift.
Similarly, the velocities of the multi-genus Whitham Equation (2) can be expressed

using complete hyperelliptic integrals of genus g. In fact, the Whitham Equation (2) can be
integrated using a hodograph transformation and, more precisely, we get the following
theorem due to Tsarev [43].

Theorem 1. If wi(~τ), where ~τ denotes (τ1, τ2, . . . , τ2g+2) solves the overdetermined linear system

∂wi
∂τi

= aij(τ1, τ2, . . . , τ2g+2)[wi − wj], i, j = 1, 2, . . . , 2g + 2, i 6= j, (43)

where

aij(τ1, τ2, . . . , τ2g+2) =
1

υi − υj

∂υi
∂τj

, i, j = 1, 2, . . . , 2g + 2, i 6= j, (44)

then the solution (τ1(x, t), τ2(x, t), . . . , τ2g+2(x, t)) of the hodograph transformation

x = υi(τ1, τ2, . . . , τ2g+2)t + wi(τ1, τ2, . . . , τ2g+2), i = 1, 2, . . . , 2g + 2, (45)

satisfies Equation (2).
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It is worth noting that the hodograph method (45) is a generalization of the characteris-
tic method (28). The linear overdetermined system (43) satisfies the compatibility condition
and has local solutions. These solutions usually cannot be expanded globally, because aij
in (44) are singular on the phase transition boundaries. Proving the existence of a global
solution to the system (43) and using it to construct the solution to the initial value problem
of the Whitham Equation (2) are very important problems. In the single-genus case, we
will find explicit global solutions to (43) and solve the initial problem of Equation (2).

3. Krichever’s Algebro-Geometric Scheme

In this section, we will analyze Krichever’s scheme to find the solutions of the Whitham
Equation (2). According to Jenkins [44], we can define

Pn(ξ, τ1, τ2, · · · , τ2g+2) = ξn+1 + a1,nξn + · · ·+ an+1,n, (46)

where the coefficients a1,n, a2,n, . . . , an+1,n are uniquely determined by these two conditions

Pn(ξ, τ1, τ2, . . . , τ2g+2)

R(ξ)
= ξn−g−1 + O(ξ−2), for large |ξ|, (47)

and ∫ τk

τk+1

Pn(ξ, τ1, τ2, · · · , τ2g+2)

<(ξ) dξ = 0, k = 1, 2, . . . , 2g + 2. (48)

It is easy to show that these conditions uniquely determine Pn(ξ)’s. Obviously, we have
Q0 = Pg and Q2 = 3Pg+2 for the cmKdV Equation (1), where Q0 and Q2 are given in
Equation (18).

We consider a simple initial value with τ2 = b, then the initial curves are

τ1(x, 0) = a(x), τ2(x, 0) = b, (49)

and the initial function x = f1(τ1, b) = f (u), where a(x) is a function of x.
Suppose the initial function x = f (u) has the form

f (u) = β0 + β1u + · · ·+ βkuk + · · · , (50)

where only a finite number of βk’s are non-zero.
Construct P(ξ) as

P(ξ) =
+∞

∑
k=0

βk
Ak

Pk+g(ξ), (51)

where

Ak =
1 · 3 · 5 · · · (2k− 1)

2kk!
. (52)

The Whitham-type Equation (2) is equivalent to[
Q0(ξ;~τ)
<(ξ)

]
t

+

[
Q2(ξ;~τ)
<(ξ)

]
x

= 0, (53)

which can be generalized to the cmKdV hierarchy by the following theorem.
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Theorem 2. If [
Pg(ξ;~τ)
<(ξ)

]
t

+

[
P(ξ;~τ)
<(ξ)

]
x

= 0 (54)

holds, then if, and only if,

τit + Wi(~τ)τix = 0, i = 1, 2, . . . , 2g + 2, (55)

where

Wi(~τ) =
P(τi;~τ)
Pg(τi;~τ)

, i = 1, 2, . . . , 2g + 2. (56)

Proof. From (54), we have[
Pg(ξ;~τ)
<(ξ)

]
t

+

[
P(ξ;~τ)
<(ξ)

]
x

=
<2(ξ)[(∂/∂t)Pg(ξ;~τ) + (∂/∂x)P(ξ;~τ)]− (1/2)M

<3(ξ)
,

(57)

where

M = Pg(ξ;~τ)(∂/∂t)<2(ξ) + P(ξ;~τ)(∂/∂x)<2(ξ)]. (58)

According to Equation (20), we get

Pg(ξ;~τ)
∂

∂t
<2(ξ;~τ) + P(ξ;~τ)

∂

∂x
<2(ξ;~τ)

= −
2g+2

∑
i=1

[Pg(ξ;~τ)τit + P(ξ;~τ)τix]Πj 6=i(ξ − τj),
(59)

which vanish at ξ = τi if, and only if,

Pg(ξ;~τ)τit + P(ξ;~τ)τix = 0. (60)

The proof of the second part is as follows. The time evolution, Equation (60), allows us to
rewrite Equation (57) as: [

Pg(ξ;~τ)
<(ξ)

]
t

+

[
P(ξ;~τ)
<(ξ)

]
x

=
N(ξ)

<(ξ) , (61)

where

N(ξ) =
∂Pg(ξ;~τ)

∂t
+

∂P(ξ;~τ)
∂x

+
1
2

2g+2

∑
i=1

[
Pg(ξ;~τ)− Pg(τi;~τ)

(ξ − τi)
τit +

P(ξ;~τ)− P(τi;~τ)
(ξ − τi)

τix

] (62)
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is a power series of ξ. By Equation (47) and Equation (51), we get the expansion at ξ = ∞

Pg(ξ;~τ)
<(ξ) = ξ0 + O(ξ−2),

P(ξ;~τ)
<(ξ) =

+∞

∑
k=0

βk
Ak

ξk + O(ξ−2),
(63)

which mean that[
Pg(ξ;~τ)
<(ξ)

]
t

+

[
P(ξ;~τ)
<(ξ)

]
x

= O(ξ−2), for large |ξ|. (64)

Therefore, from Equation (61), we have

N(ξ) = <(ξ)O(ξ−2) = O(ξg−1), for large |ξ|, (65)

which shows that N(ξ) is a polynomial of ξ with a maximum degree of g− 1.
Now consider the Riemann surface defined by<(ξ) and cut along interval [τ2g+2, τ2g+1],

[τ2g, τ2g−1], . . . , [τ2, τ1]. We define the ak cycle as a closed contour, which surrounds the
notch on the upper Riemann graph clockwise [τ2k+2, τ2k+1]. The bk cycle, defined as a
closed contour, starts from τ2k+2 and goes to τ2g+2, crosses to the lower level and finally
returns to τ2k+2.

Integrating (61) along the cycle bk yields

∮
bk

N(ξ)

<(ξ) dξ =
∂

∂t

[ ∮
bk

Pg(ξ;~τ)
<(ξ) dξ

]
+

∂

∂x

[ ∮
bk

P(ξ;~τ)
<(ξ) dξ

]
= 0, k = 1, 2, . . . , g, (66)

in which, we used Equation (48) and Equation (51) in the last equation. This is equivalent
to ∫ 2k+1

2k+2

N(ξ)

<(ξ) dξ = 0, for all k = 1, 2, . . . , g, (67)

which proves that N(ξ) has at least one zero in the interval [τ2k+2, τ2k+1], so N(ξ) has at
least g + 1 zeros. This combined with Equation (65) shows that N = 0. Equation (54)
immediately follows from Equation (61). The proof of Theorem 2 is complete.

We first state the following classical results about entropy in conservation law theory [45].

Theorem 3. If Equation (55) implies the existence of an additional conservation law

∂

∂t
U(~τ) +

∂

∂x
G(~τ) = 0, (68)

then we have

Wi(~τ) =
(∂/∂τi)G(~τ)

(∂/∂τi)U(~τ)
, i = 1, 2, . . . , 2g + 2. (69)

The next result shows that the Wi’s of Equation (56) solve the system (43) of Theorem 1,
which can be proved using the method of Levermore [46].

Theorem 4. W and υ are satisfied for i, j = 1, 2, . . . , 2g + 2, and i 6= j:

1
Wi −Wj

∂Wi
∂τj

=
1

υi − υj

∂υi
∂τj

. (70)
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Proof. By (20), Theorem 2 and Theorem 3, we have

Wj(~τ) =

(
∂

∂τj

[
P(ξ;~τ)
<(ξ)

])
(

∂
∂τj

[
Pg(ξ;~τ)
<(ξ)

]) , j = 1, 2, . . . , 2g + 2

=
(ξ − τj)(∂/∂τj)P(ξ;~τ) + (1/2)P(ξ;~τ)
(ξ − τj)(∂/∂τj)Pg(ξ;~τ) + (1/2)Pg(ξ;~τ)

,

which yields

∂P
∂τj
−Wj

∂Pg

∂τj
= −1

2
P−WjPg

ξ − τj
, j = 1, 2, . . . , 2g + 2. (71)

From Equations (56) and (71), we can get

∂Wi(~τ)

∂τj
=

∂

∂τj

[
P(τi;~τ)
Pg(τi;~τ)

]
, i 6= j

=
[∂τj P(τi;~τ)]Pg(τi;~τ)− [∂τj Pg(τi;~τ)]P(τi;~τ)

Pg(τi;~τ)2

=
∂τj P(τi;~τ)−Wi∂τj Pg(τi;~τ)

Pg(τi;~τ)

= (Wj −Wi)
∂τj Pg(τi;~τ)

Pg(τi;~τ)
− 1

2
P(τi;~τ)−WjPg(τi;~τ)
(τi − τj)Pg(τi;~τ)

= (Wj −Wi)
∂τj Pg(τi;~τ)

Pg(τi;~τ)
− 1

2
Wi −Wj

τi − τj
,

(72)

which shows that

1
Wi −Wj

∂Wi
∂τj

= −
∂τj Pg(τi;~τ)

Pg(τi;~τ)
− 1

2
1

τi − τj
. (73)

In particular, the above argument also applies to the case of the Whitham-type Equations (1).
Therefore, we also have

1
υi − υj

∂υi
∂τj

= −
∂τj Pg(τi;~τ)

Pg(τi;~τ)
− 1

2
1

τi − τj
; (74)

when combined with Equation (73), Theorem 4 is proved.

Finally, we combine Theorem 1 and Theorem 2 to construct the transformation

x = υi(~τ)t + Wi(~τ),

=

[
3

Pg+2(ξ;~τ)
Pg(ξ;~τ)

t +
P(ξ;~τ)
Pg(ξ;~τ)

]
ξ=τi

, i = 1, 2, . . . , 2g + 2.
(75)

4. Linear Overdetermined Systems of the Euler–Poisson–Darboux Type

In this section, we show the relation between the Whitham Equation (2) and linear
overdetermined systems of the Euler–Poisson–Darboux type (4).

First we define [44]

φi(ξ;~τ) =
ci1 + ci2ξ + . . . + cig−1ξg−2 + cigξg−1

<(ξ) , i = 1, 2 . . . , g, (76)
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where the constants cik are uniquely determined by the normalization conditions∮
ak

φi(ξ)dξ = δik, i, k = 1, 2, . . . , g, (77)

and the cycles ak’s are as previously given.
Fixing the point A on the Riemann surface, we define ∂Π as the standard 4g-edge

path, i.e.,

A
a1−→ A

b1−→ A
a−1

1−→ A
b−1

1−→ A
a2−→ A

b2−→ A
a−1

2−→ A
b−1

2−→ A · · · −→A. (78)

Therefore, we have∮
∂Π

[ ∫ ξ

A
φi(E)dE

]
P(ξ)
<(ξ)dξ

=
g

∑
k=1

{[ ∮
ak

+
∮

bk

+
∮

a−1
k

+
∮

b−1
k

][
P(ξ)
<(ξ)

∫ ξ

A
φi(E)dE

]
dξ

}

=
g

∑
k=1

{
−
[ ∮

ak

P(ξ)
<(ξ)dξ

][ ∮
bk

φi(ξ)dξ

]
+

[ ∮
ak

φi(ξ)dξ

][ ∮
bk

P(ξ)
<(ξ)dξ

]}
= −

g

∑
k=1

σki

∮
ak

P(ξ)
<(ξ)dξ,

where we have used Equations (48) and (51) in the last equation, and

σki =
∮

bk

φi(ξ)dξ. (79)

On the other hand, by Equation (76) we have

∮
∂Π

[ ∫ ξ

A
φi(E)dE

]
P(ξ)
<(ξ)dξ =

g

∑
j=1

cij

∮
∂Π

[ ∫ ξ

A

Ej−1

R(E)
dE
]

P(ξ)
<(ξ)dξ. (80)

The integral [ ∫ ξ

A

Ej−1

<(E)
dE
]

P(ξ)
<(ξ)dξ (81)

has only one singular point at ξ = ∞, and the residue can be obtained as follows. Expanding
1/<(ξ) at ξ = ∞ , we find

1
<(ξ) = ξ−g−1[Γ0(~τ) + Γ1(~τ)ξ

−1 + · · ·+ Γm(~τ)ξ
−m + · · · ], (82)

which gives

ξ j−1

<(ξ) =
∞

∑
m=0

Γm(~τ)ξ
j−g−m−2. (83)

Therefore, we obtain
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∫ ξ

A

Ej−1

<(E)
dE = C0 +

∞

∑
m=0

Γm(~τ)

j− g−m− 1
ξ j−g−m−1

= C0 +
∞

∑
m=0

Γm(~τ)

j− g−m− 1
µg+m−j+1,

(84)

where we introduce ξ = 1
µ , µ is the local coordinate and C0 is a constant.

By Equations (47) and (51), we have

P(ξ)
<(ξ) =

∞

∑
n=0

βn

An

Pn+g(ξ)

<(ξ)

=
∞

∑
n=0

βn

An

[
ξn + O(ξ−2)

]
, for large |ξ|,

=
∞

∑
n=0

[
βn

An
µ−n + O(µ2)

]
, for small |µ|,

(85)

which together with (84) gives

Residueξ=∞

{[ ∫ ξ

A

Ej−1

<(E)
dE
]

P(ξ)
<(ξ)dξ

}
(86)

= Residueµ=0

{[
C0 +

∞

∑
m=0

Γm(~τ)

j− g−m− 1
µg+m−j+1

]
×
[ ∞

∑
n=0

βn

An
µ−n + O(µ2)

]
(−µ−2)dµ

= − ∑
g+m−j−n=0

βn

An

Γm(~τ)

j− g−m− 1

=
∞

∑
m=0

βm+g−j

(m + g− j + 1)Am+g−j
Γm(~τ).

This, together with Equations (79) and (80), yields

−
g

∑
k=1

σki

∮
ak

P(ξ)
<(ξ)dξ = 2π

√
−1

g

∑
j=1

cij

( ∞

∑
m=0

βm+g−j

(m + g− j + 1)Am+g−j
Γm(~τ)

)
, (87)

which is the Riemann bilinear relation. Rewriting it in the matrix form, we obtain


σ11 σ21 · · · σg1
σ21 σ22 · · · σg3

...
...

. . .
...

σ1g σ2g · · · σgg




∮
a1

P(ξ)
<(ξ)dξ∮

a2

P(ξ)
<(ξ)dξ

...∮
ag

P(ξ)
<(ξ)dξ

 = −2π
√
−1


c11 c12 · · · c1g
c21 c22 · · · c2g
...

...
. . .

...
cg1 cg2 · · · cgg




qg(~τ)
qg−1(~τ)

...
q1(~τ)

, (88)

where

qn(~τ) =
∞

∑
m=0

βm+n−1

(m + n)Am+n−1
Γm(~τ), n = 1, 2, . . . , g. (89)

It follows from Equations (76) and (79) that
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σ11 σ21 · · · σg1
σ21 σ22 · · · σg3

...
...

. . .
...

σ1g σ2g · · · σgg

 =


c11 c12 · · · c1g
c21 c22 · · · c2g
...

...
. . .

...
cg1 cg2 · · · cgg




∮
b1

1
<(ξ)dξ

∮
b2

1
<(ξ)dξ · · ·

∮
bg

1
<(ξ)dξ∮

b1

ξ
<(ξ)dξ

∮
b2

ξ
<(ξ)dξ · · ·

∮
bg

ξ
<(ξ)dξ

...
...

. . .
...∮

b1

ξg−1

<(ξ)dξ
∮

b2

ξg−1

<(ξ)dξ · · ·
∮

bg

ξg−1

<(ξ)dξ

. (90)

The regularity of matrix (cij) follows from Equations (76) and (79), while that of matrix
(
∮

bk
(ξ j−1/<(ξ))dξ) is also easy to check. This, together with (88) and (90), gives

∮
b1

1
<(ξ)dξ

∮
b2

1
<(ξ)dξ · · ·

∮
bg

1
<(ξ)dξ∮

b1

ξ
<(ξ)dξ

∮
b2

ξ
<(ξ)dξ · · ·

∮
bg

ξ
<(ξ)dξ

...
...

. . .
...∮

b1

ξg−1

<(ξ)dξ
∮

b2

ξg−1

<(ξ)dξ · · ·
∮

bg

ξg−1

<(ξ)dξ





∮
a1

P(ξ)
<(ξ)dξ∮

a2

P(ξ)
<(ξ)dξ

...∮
ag

P(ξ)
<(ξ)dξ

 = −2π
√
−1


qg(~τ)

qg−1(~τ)
...

q1(~τ)

. (91)

Inverting this, we obtain

∮
ak

P(ξ)
<(ξ)dξ =

√
−1

g

∑
n=1

K(k)
n qn, k = 1, 2, . . . , g, (92)

where
K(1)

g K(1)
g−1 · · · K(1)

1

K(2)
g K(2)

g−1 · · · K(2)
1

...
...

. . .
...

K(g)
g K(g)

g−1 · · · K(g)
1

 = −2π



∮
b1

1
<(ξ)dξ

∮
b2

1
<(ξ)dξ · · ·

∮
bg

1
<(ξ)dξ∮

b1

ξ
<(ξ)dξ

∮
b2

ξ
<(ξ)dξ · · ·

∮
bg

ξ
<(ξ)dξ

...
...

. . .
...∮

b1

ξg−1

<(ξ)dξ
∮

b2

ξg−1

<(ξ)dξ · · ·
∮

bg

ξg−1

<(ξ)dξ



−1

(93)

is the real matrix in view of Equation (20). In particular, by Equations (51), (89) and (91),
we get

∮
ak

Pg(ξ)

<(ξ) dξ =
√
−1K(k)

1 . (94)

Next, integrating Equation (54) yields

∂

∂t

[ ∮
ak

Pg(ξ;~τ)
<(ξ) dξ

]
+

∂

∂x

[ ∮
ak

P(ξ;~τ)
<(ξ) dξ

]
= 0, k = 1, 2, . . . , g. (95)

The first and second terms of Equation (95) are proportional to the wave numbers and
frequencies of the modulated multiphase waves for the cmKdV hierarchy, respectively.

Applying Theorem 3 to Equation (95) and using Equations (91) and (94), we get that
for i = 1, 2, . . . , 2g + 2,

Wi(~τ) =

[
1 +

K(k)
1

(∂/∂τi)K
(k)
1

∂

∂τi

]
q1(~τ) +

g

∑
n=2

[
(∂/∂τi)K

(k)
n

(∂/∂τi)K
(k)
1

+
K(k)

n

(∂/∂τi)K
(k)
1

∂

∂τi

]
qn(~τ), (96)

which establishes the following theorem.

Theorem 5. There are fixed real functions H1(~τ), H2(~τ), . . . , Hg(~τ), so that the system, Equation (43),
has solutions for all polynomial initial data Equations (50)

Wi(~τ) =

[
1 +

H1

(∂/∂τi)H1

∂

∂τi

]
q1(~τ) +

g

∑
n=2

[
(∂/∂τi)Hn

(∂/∂τi)H1
+

Hn

(∂/∂τi)H1

∂

∂τi

]
qn(~τ) (97)
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for i = 1, 2, . . . , 2g + 2, where the qn’s are given by Equation (89).

It immediately follows from Equation (20) that

2(τi − τj)
∂2

∂τi∂τj

[ 1
<(ξ)

]
=

∂

∂τi

[ 1
<(ξ)

]
− ∂

∂τj

[ 1
<(ξ)

]
, i 6= j. (98)

Combined with Equation (82), (98) shows that the Γm’s satisfy Equation (4). From (89),
Γm(~τ)’s of (82) obeys

Γm(τ, τ, . . . , τ) =
(2g + 1)(2g + 3) · · · (2g + 2m− 1)

2mm!
τm, m = 0, 1, 2, . . . , (99)

which establishes the following theorem.

Theorem 6. Each qn(~τ) of (89) solves the linear overdetermined system of Euler–Poisson–Darboux
Equation (4) with F(τ) given by

F(τ) =
2g−1

1 · 3 · 5 · · · (2g− 1)
τ−n+1/2 dg−n

dτg−n

{
τg−1/2[ dg−1

dτg−1 f (τ)
]}

(100)

for n = 1, 2, . . . , g.

For the special initial value (49), the Whitham Equation (2) has the property that τ4 = b,
and τ1, τ2, τ3 are nontrivial functions of (x, t). If g = n = 1, we have

q1(τ, τ, τ, b) = f (τ).

In particular, when g = 1, we have

Wi(~τ) =

[
1 +

H1

(∂/∂τi)H1

∂

∂τi

]
q1(~τ), i = 1, 2, 3, 4. (101)

Choosing β2 = 3/8 and the other βk’s to be zero in Equation (56), we obtain P = Pg+2.
Therefore we have

υi(τ1, τ2, τ3, τ4) = 3
Pg+2(τi; τ1, τ2, τ3, τ4)

Pg(τi; τ1, τ2, τ3, τ4)

= 3
[

1 +
H1

(∂/∂τi)H1

∂

∂τi

]
1
3

Γ2(τ1, τ2, τ3, τ4)

=
3
8
(τ1 + τ2 + τ3 + τ4)

[
τ1 + τ2 + τ3 + τ4 + 2

H1

(∂/∂τi)H1

]
, i = 1, 2, 3, 4.

(102)

In there, we used (21) in the first equation, (56), (89) and (21) in the second equation
and Γ2(τ1, τ2, τ3, τ4) = (3/8)(τ1 + τ2 + τ3 + τ4)

2 of Equation (82) in the last equation.
Combined with Equation (101), we have

Wi(~τ) =
4
3

[(
1

τ1 + τ2 + τ3 + τ4

)
υi −

3
8
(τ1 + τ2 + τ3 + τ4)

]
∂q1(τ1, τ2, τ3, τ4)

∂τi

+ q1(τ1, τ2, τ3, τ4), i = 1, 2, 3, 4,
(103)

which is the connection of the solutions between the Whitham Equation (37) of 1-genus
and Euler–Poisson–Darboux equations.
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5. A Step-like Initial Value Problem

Consider Equation (1) with the initial data

φ(x, 0) =
√

ρ(x, 0) exp(i
S(x, 0)

ε
), (104)

where ρ(x, 0) and S(x, 0) are real functions that are independent of ε. The solution of
Equation (1) in the form

φ(x, t; ε) =
√

ρ(x, t; ε) exp(i
S(x, t; ε)

ε
), (105)

where ρ is the density, and v = ∂S/∂x is the velocity of the hydrodynamics. Substituting
(105) into Equation (1), the conservation form of the cmKdV Equation (1) is obtained.
Taking the limit ε → 0 and writing the conservation form in diagonal form, the 0-genus
Whitham equation is derived again [36], which is identical to (26).

We consider the step-like initial data

ρ(x, 0) =

{
ρL, x < 0,

ρR, x > 0,
and v(x, 0) =

{
vL, x < 0,

vR, x > 0,
(106)

where ρL, ρR, vL and vR are constants. Choosing ρL = 0.1225, ρR = 1.1025, vL = −1.3 and
vR = 0.5, the distributions of Riemann variables and the structures of density function ρ are
shown in Figure 1. Here, we have used a 1-genus Whitham Equation (37). The fundamental
wave structures of rarefaction wave (RW) and DSW, along with the relevant mathematical
theory, are presented in Ref. [37]. In this case, the Riemann invariants are divided into six
regions, which, from left to right, are plateau, DSW, RW, DSW, RW and plateau. We now
give the solutions for each region and the boundary velocities.

-5 0 5 10 15

x

-1

-0.5

0

0.5

1

1.5

(a)

-5 0 5 10 15

x

0

0.5

1

1.5
(b)

Numercial Simulations
Analytical Solution

Figure 1. The self-similar solution with initial condition of τR
+ = 1.3, τR

− = −0.8, τL
+ = −0.3, τL

− = −1
with t = 4. (a) The distribution of Riemann invariants. (b) The structure diagram of density function ρ.

(I) For x/t 6 υ2(τ
∗, τ∗, τL

+, τL
−),

τ+ = τL
+, τ− = τL

−,

where τ∗ satisfies ∂υ2(τ
∗, τ∗, τL

+, τL
−)/∂τ∗ = 0, is the vertex of the parabola.

(II) For υ2(τ
∗, τ∗, τL

+, τL
−) < x/t < υ2(τ1, τL

+, τL
+, τL
−),

x
t
= υ1(τ1, τ2, τL

+, τL
−),

x
t
= υ2(τ1, τ2, τL

+, τL
−), τ3 = λL

+, τ4 = λL
−.
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(III) For υ2(τ1, τL
+, τL

+, τL
−) 6 x/t 6 υ2(τ1, τR

− , τR
− , τL
−),

τ+ = −1
5

τL
− +

2
15

√
30 · x

t
− 9(τL

−)
2, τ− = τL

−.

(IV) For υ2(τ1, τR
− , τR
− , τL
−) < x/t < υ2(τ1, τR

− , τL
−, τL
−),

x
t
= υ1(τ1, τR

− , τ3, τL
−), τ2 = τR

− ,
x
t
= υ3(τ1, τR

− , τ3, τL
−), τ4 = τL

−.

(V) For υ2(τ1, τR
− , τL
−, τL
−) 6 x/t 6 υ+(τR

+ , τR
−)

τ+ = −1
5

τR
− +

2
15

√
30 · x

t
− 9(τR

−)
2, τ− = τR

− .

(VI) For x/t > υ+(τR
+ , τR
−),

τ+ = τR
+ , τ− = τR

− .

Direct numerical simulation can effectively test the validity of theoretical solutions [47].
Here, we compare the Whitham theoretical solution with the direct numerical simulation
solution obtained from finite differences. It turns out that the two results are in good
agreement (see Figure 1). However, it is important to note that in this study, we only
considered one specific initial value problem. In fact, using the same method, we can obtain
solutions for arbitrary step-like initial data.

6. Conclusions

In conclusion, we have studied the cmKdV Equation (1), which is the second member
in the cmKdV hierarchy. We have derived the N-genus Whitham equations based on the
Lax pair and provided detailed descriptions of the 0-genus (26) and 1-genus (37) Whitham
equations as special cases. In order to solve the Whitham equation, Krichever’s algebro-
geometric scheme was established, and the connection between Whitham equation of
single-genus and Euler–Poisson–Darboux equations was constructed. With respect to
the cmKdV Equation (1), which involves two initial curves, we have employed a simple
example where one curve remained constant while the other one varied. Additionally,
a step-like initial value problem as an example was solved, and the Whitham modulation
solution agreed well with the numerical solution (seen in Figure 1), which proves the
validity of the theoretical solution. The results of this paper also provide an effective
mathematical method for solving discontinuous initial value problems.
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