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Abstract: The majority of approaches proposed in the past few decades to solve life test problems
have differed markedly from those used for closely related, yet broader, issues. Due to the complexity
of data that are generated each day in many practical domains, as a result of the development of
scales for rating the success or failure of reliability, a new domain of reliability has been created. This
domain is referred to as life classes, where specific probability distributions are presented. In this
study, it is shown that the use of the quality-of-fit technique to solve problems involving life testing
makes sense, and produces simpler processes that are roughly equivalent or superior to those used
in traditional procedures. They may also behave better in limited samples. This work investigates
a novel quality-of-fit test statistic; it is based on an exponential transform and is compared to the
best renewal used Laplace test in increasing convex ordering (NBRULC). Evidence for approach
normality is provided. The calculated variables include powers, Pitman asymptotic effectiveness,
and critical points. Methods on how to handle censored data were also studied. Our experiments
have real-world applications in the fields of medicine and engineering.

Keywords: NBRULC reliability class; goodness-of-fit approach; aging; life testing; right censored
data; computer simulation; comparative study; COVID-19; statistics and numerical data

MSC: 62C07; 62G99; 62N01; 62N02; 62N05

1. Introduction

Reliability can be compared to quality over time. Since workmanship and manufac-
turing are quality factors, a product would be deemed as low quality if it malfunctions or
breaks right after purchase. Poor reliability, on the other hand, is when product components
fail before one anticipates them to. Therefore, there is a distinction between quality and
reliability that has to do with time, more precisely, the product’s lifetime. Reliability is offi-
cially defined as the capacity of a thing to carry out an essential task under predetermined
circumstances for a predetermined amount of time. The likelihood of an item performing
a necessary function under specified conditions for a specific amount of time is another

Mathematics 2023, 11, 2805. https://doi.org/10.3390/math11132805 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11132805
https://doi.org/10.3390/math11132805
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5619-210X
https://orcid.org/0000-0002-7585-5519
https://orcid.org/0000-0002-7828-3536
https://doi.org/10.3390/math11132805
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11132805?type=check_update&version=3


Mathematics 2023, 11, 2805 2 of 22

definition that addresses the probabilistic nature of assessing reliability. As a result, reliabil-
ity is a measure of technical uncertainty, and estimating reliability requires the application
of statistics, specifically the probability theory. Testing completed items or components
under settings that mimic real-world use until failure occurs is the typical method for
gauging system reliability. Although it may seem that having more data would increase
one’s trust in the reliability level, this practice is frequently costly and time-consuming.
Therefore, it is particularly important to consider the lifespan of products before all test
units experience a malfunction. Aging concepts explain how a part or a system can expe-
rience improvements or deterioration as it ages. According to the aging characteristics,
many types of life distributions are categorized or characterized in the literature. The
exponential distribution almost always falls into one of these classifications, which is a
significant feature in such classifications. Any reliability analysis must take stochastic aging
into account, and numerous test statistics have been established in the literature, comparing
exponential growth to various aging options. Our objective is to provide an overview of
these advancements. Researchers in statistics and reliability analysis have looked at testing
exponentiality problems using different age classes of life distributions from a variety of
angles; for more information, see Bryson and Siddiqui [1], Bhattacharyya et al. [2], Barlow
and Proschan [3], Klefsjo [4], Khan et al. [5], Kumazawa [6], Mahmoud et al. [7,8], Ma-
jumder and Mitra [9], Bhattacharyya et al. [10], Navarro [11], Abu-Youssef et al. [12], Ghosh
and Mitra [13], Navarro and Pellerey [14], El-Morshedy et al. [15], EL-Sagheer et al. [16]
Gadallah et al. [17], Mansour [18], Ghosh and Mitra [19], Majumder and Mitra [20], Lai
and Xie [21], Etman et al. [22], Ghosh and Majumder [23], Bakr and Al-Babtain [24], and
Ghosh and Mitra [25] and Alqifar et al. [26]. The goodness-of-fit test indicates whether
the data in one’s sample correspond to the data one would anticipate seeing in the actual
population. More specifically, it is used to determine if sample data from a population with
a normal distribution or a Weibull distribution fit the distribution. Numerous researchers
have created tests for exponentiality against particular types of life distributions using the
goodness-of-fit approach. To provide examples, Mahmoud and Abdul Alim [27], Kayid
et al. [28], Bera et al. [29], Mahmoud et al. [30], Abu-Youssef et al. [31], Bakr et al. [32],
Abu-Youssef and El-Toony [33], Abu-Youssef and Gerges [34], and Etman et al. [35]. We
created a brand-new class of life distribution models to account for the efficacy and power
of the test utilized in this study. The goal of creating a systematic method for studying
events and processes occurring in the world was driven by the essential requirements
of modern science and technology. It follows that the need for such an approach in the
investigation of technological products and system reliability is quite natural. There are
real-life instances where system components gradually degrade over time, eventually
reaching the end of the manufacturer’s warranty period; they then need to be renewed
through the replacement of spare parts. In this case, renewal is intended to enhance the
system’s functionality, but it cannot surpass the superior state it had at age t. For example,
after several hours of flight, the aviation administration may wish to replace a portion of
an airplane engine. The airlines contend that this replacement is, at best, unneeded, and
may potentially be detrimental to the aircraft. Airlines will examine if an aviation engine,
after hours of renewal, is as good as a new engine by using operational data to support
their claims.

The structure of this essay can be summarized as follows: The NBRU, NBRUL, and
NBRULC classes of life distributions are defined in the remaining portions of this section.
In Section 2, a goodness-of-fit test based on an exponentiality test is discussed regarding
the NBRULC class. For several popular alternatives, the Pitman asymptotic is presented in
Section 3. Section 4 includes simulations of the key areas, power estimates for the Monte
Carlo null distribution, and a suggested test for right-censored data. Section 5 tabulates a
few crucial numbers and deals with right-censored data. Finally, we discuss a few examples
to show the utility of the statistical test in Section 6.
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Preliminary:
A random variable X is said to be

(i) ‘New better than renewal used’, denoted by X ∈ NBRU, if

WF(x + t) ≤ F(x)WF(t); x, t,≥ 0.

(ii) ‘New better (worse) than renewal used’ in the Laplace transform order, denoted by X ∈
NBRUL, if ∫ ∞

0
e−sxWF(x + t)dx ≤WF(t)

∫ ∞

0
e−sxF(x)dx; x, t, s ≥ 0,

or ∫ ∞

0

∫ ∞

x+t
e−sxF(u)dudx ≤

∫ ∞

0

∫ ∞

t
e−sxF(x)F(u)dudx,

where WF(x + t) = 1
µ

∫ ∞
x+t F(u)du.

(iii) ‘New better than renewal used’ in the Laplace transform in increasing convex order, denoted
by X ∈ NBRULC, if∫ ∞

0

∫ ∞

t
e−sxWF(x + u)dxdu ≤ (≥)

∫ ∞

0

∫ ∞

t
e−sxF(x)WF(u)dxdu; x, t, s ≥ 0,

or ∫ ∞

0

∫ ∞

x+t
e−sxWF(u)dxdu ≤ (≥)

∫ ∞

0

∫ ∞

t
e−sxF(x)WF(u)dxdu,

this could be rewritten as∫ ∞

0
e−sxΓ(x + t)dx ≤

∫ ∞

0
e−sxF(x)Γ(t)dx,

where Γ(x + t) =
∫ ∞

x+t WF(u)du. It is clear that

• IFR ⊂ IFRA ⊂ NBU ⊂ NBUE ⊂ NBRU ⊂ NBRUL ⊂ NBRULC.
• IFR ⊂ IFRA ⊂ NBU ⊂ NBRU ⊂ NBRUL ⊂ NBRULC.
• IFR ⊂ IFRA ⊂ NBU ⊂ NBUE ⊂ HNBUE.

2. Testing against NBRULC Alternatives

We discuss the potential that H0 : F is exponential in this section as opposed to the
related hypothesis H1 : F, which states that it is not exponential but NBRULC. Using the
subsequent theorem is necessary for creating our test statistic.

Theorem 1. Let X be an NBRULC random variable with distribution function F, then

ζ(s)− 1 ≥ µ[s2 − s] + µ(2)ζ(s)[
1
2

s2 − 1
2

s3] + (s3 − s2)[µζ(s) + ζ(1)ζ(s)− ζ(s)] + s2ζ(1)− s2, (1)

for s ≥ 0 and s 6= 1, where

ζ(s) = Ee−sX =

∞∫
0

e−sxdF(x).

Proof. Since F is NBRULC, then∫ ∞

0
e−sxΓ(x + t)dx ≤

∫ ∞

0
e−sxF(x)Γ(t)dx; x, t ≥ 0.

Consider the following integral∫ ∞

0

∫ ∞

0
e−te−sxΓ(x + t)dxdt ≤

∫ ∞

0
e−tΓ(t)

∫ ∞

0
e−sxF(x)dxdt. (2)
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Setting

I1 =
∫ ∞

0

∫ ∞

0
e−te−sxΓ(x + t)dxdt,

hence

I1 =
∫ ∞

0

∫ ∞

v
e−ve−s(u−v)Γ(u)dudv

=
∫ ∞

0

∫ v

0
e−ue−s(v−u)Γ(v)dudv

=
1

1− s
[
∫ ∞

0
e−svΓ(v)dv−

∫ ∞

0
e−vΓ(v)dv]; s 6= 1.

Note that, ∫ ∞

0
e−svΓ(v)dv =

1
2

E
∫ ∞

0
e−sv[V − v]2 I(V > v)dv

=
1
2

E
∫ V

0
e−sv[V2 − 2vV + v2]dv

=
µ(2)

2s
− µ

s2 −
1
s3 ζ(s) +

1
s3 .

Therefore,

I1 =
1

1− s
{

µ(2)

2s
− µ

s2 −
1
s3 ζ(s) +

1
s3 −

µ(2)

2
+ µ + ζ(1)− 1}. (3)

Setting

I2 =
∫ ∞

0
e−tΓ(t)

∫ ∞

0
e−sxF(x)dxdt

= E
∫ ∞

0
e−tΓ(t)

∫ ∞

0
e−sx I(X > x)dxdt.

= E
∫ ∞

0
e−tΓ(t)

∫ X

0
e−sxdxdt =

1
s
(1− ζ(s))

∫ ∞

0
e−tΓ(t)dt.

Therefore,

I2 = (
1
s
− 1

s
ζ(s))(

µ(2)

2
− µ− ζ(1) + 1). (4)

Substituting (3) and (4) into (2), we have

ζ(s)− 1 ≥ µ[s2 − s] + µ(2)ζ(s)[
1
2

s2 − 1
2

s3] + (s3 − s2)[µζ(s) + ζ(1)ζ(s)− ζ(s)] + s2ζ(1)− s2.

Thus, the proof is complete. Let us put forward the starting point from exponentiality
as follows

δ(s) = [ 1
2 s3 − 1

2 s2]µ(2)ζ(s) + [s2 − s3]ζ(1)ζ(s) + [s2 − s3]µζ(s)
+[s3 − s2 + 1]ζ(s) + [s− s2]µ− s2ζ(1) + s2 − 1.

(5)

Be aware that while δ(s) = 0 for H0, δ(s) > 0 for H1. The empirical estimate of δ(s),
given X1, X2, ..., Xn as a sample at random from distribution F, can be found as

δ̂(s) =
1
n2

n

∑
i=1

n

∑
j=1
{[1

2
s3 − 1

2
s2]X2

i e−sXj + [s2 − s3]e−Xi e−sXj + [s2 − s3]Xie
−sXj

+[s3 − s2 + 1]e−sXi + [s− s2]Xi − s2e−Xi + s2 − 1}.

Let ∆(s) = δ(s)
µ3 , which is approximated by the formula ∆̂(s) = δ̂(s)

X3 , X is the sample
mean to make the test invariant. Then,
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∆̂(s) = 1
n2X3

n
∑

i=1

n
∑

j=1
{[ 1

2 s3 − 1
2 s2]X2

i e−sXj + [s2 − s3]e−Xi e−sXj + [s2 − s3]Xie
−sXj

+[s3 − s2 + 1]e−sXi + [s− s2]Xi − s2e−Xi + s2 − 1}.
(6)

It should be noted that ∆̂(s) is an impartial estimator of δ(s). Set

φ(Xi, Xj) = [ 1
2 s3 − 1

2 s2]X2
i e−sXj + [s2 − s3]e−Xi e−sXj + [s2 − s3]Xie

−sXj

+[s3 − s2 + 1]e−sXi + [s− s2]Xi − s2e−Xi + s2 − 1,
(7)

and define the symmetric kernel

ψs(Xi, Xj) =
1
2! ∑ φs(Xi, Xj),

where the total of all configurations of Xi, Xj. Then, ∆̂(s) in (6) is comparable to the Un-
statistic, given by

Un =
1
(n

2 )

n

∑
i<j

ψs(Xi, Xj). (8)

The following theorem can be used to prove that ∆̂(s) is asymptotically normal.

Theorem 2.

(a) As n → ∞,
√

n(∆̂(s)− ∆(s)) is asymptotically normal, having a mean of 0 and variance
σ2(s), where σ2(s) is determined by

σ2(s) = Var{[ 1
2 s3 − 1

2 s2]X2ζ(s) + [s2 − s3]e−Xζ(s) + [s2 − s3]Xζ(s)
+[s3 − s2 + 1]e−sX + [s− s2]X− s2e−X + [ 1

2 s3 − 1
2 s2]µ(2)e−sX

+[s2 − s3]e−sXζ(1) + [s2 − s3]µe−sX + [s3 − s2 + 1]ζ(s)
+[s− s2]µ− s2ζ(1) + 2s2 − 2}.

(9)

(b) Under H0, the variance σ2
0 (s) is

σ2
0 (s) =

s6(−1 + s)2(8 + 3s)(7 + s)
12(1 + s)3(1 + 2s)(2 + s)

. (10)

Proof. We may determine the mean and variance using the conventional U-statistics theory,
see Lee [36], and by conducting the following calculations

σ2 = Var{η(X)},

where
η(X) = η1(X) + η2(X),

η1(X) = E(φ(X1, X2) | X1) = [
1
2

s3 − 1
2

s2]X2
∫ ∞

0
e−sxdF(x) + [s2 − s3]e−X

∫ ∞

0
e−sxdF(x)

+[s2 − s3]X
∫ ∞

0
e−sxdF(x) + [s3 − s2 + 1]e−sX + [s− s2]X− s2e−X + s2 − 1,

and

η2(X) = E(φ(X1, X2) | X2) = [
1
2

s3 − 1
2

s2]e−sX
∫ ∞

0
x2dF(x) + [s2 − s3]e−sX

∫ ∞

0
e−xdF(x)

+[s2 − s3]e−sX
∫ ∞

0
xdF(x) + [s3 − s2 + 1]

∫ ∞

0
e−sxdF(x) + [s− s2]

∫ ∞

0
xdF(x)

−s2
∫ ∞

0
e−xdF(x) + s2 − 1.
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Therefore,

η(X) = [
1
2

s3 − 1
2

s2]X2
∫ ∞

0
e−sxdF(x) + [s2 − s3]e−X

∫ ∞

0
e−sxdF(x)

+[s2 − s3]X
∫ ∞

0
e−sxdF(x) + [s3 − s2 + 1]e−sX + [s− s2]X− s2e−X

+[
1
2

s3 − 1
2

s2]e−sX
∫ ∞

0
x2dF(x) + [s2 − s3]e−sX

∫ ∞

0
e−xdF(x)

+[s2 − s3]e−sX
∫ ∞

0
xdF(x) + [s3 − s2 + 1]

∫ ∞

0
e−sxdF(x)

+[s− s2]
∫ ∞

0
xdF(x)− s2

∫ ∞

0
e−xdF(x) + 2s2 − 2.

Upon using (7), we have

σ2
0 (s) = Var{[ s

3 − s2 + 2
2

]e−sX − [
2s3

s + 1
]e−X + [

s3 − s2

2(s + 1)
]X2

+[
s2 − 2s3 + s

s + 1
]X + [

3s3 + s2 − 2s− 2
2(s + 1)

]}.

From (9) and after some computations, (10) can be reported.

3. Pitman’s Asymptotic Efficiency of ∆̂(s)

Pitman’s asymptotic efficiency is a term used to compare the effectiveness of two
statistical tests based on the sizes of their sample populations. It is referred to as the
percentage of the minimum sample sizes that must be used for each test to obtain a
specific degree of significance and power, at which point, the alternative hypothesis begins
to approach the null hypothesis. A test with a greater Pitman’s efficiency needs fewer
observations than a test with a lower efficiency to obtain the same accuracy. A comparison
of several tests for mean, variance, or proportion equality between two populations, for
instance, can be made using the asymptotic Pitman efficiency. Based on the bare minimum
sample size necessary, the Pitman efficiency can assist the method in selecting the optimal
test for a specific problem. The following are some possible restrictions or presumptions
of the asymptotic Pitman efficiency: Its asymptotic foundation makes it susceptible to
becoming unreliable for samples of small or medium sizes. The rate of convergence of the
test statistics’ finite distributions is influenced by the selection of alternative hypotheses
and the level of significance; this rate of convergence also has an impact. Other factors,
such as robustness, simplicity, or interpretability, which could influence the test selection,
are not taken into consideration. It is conceivable that this does not accurately reflect how
tests for other or higher levels are performed. Additionally, it does not account for the
cost of errors or the loss function. In this section, we evaluate the effectiveness of Pitman’s
asymptotic efficiency (PAE) method for the linear failure rate (LFR), Weibull, and Makeham
distributions, using the probability models listed below.

(i) The Weibull distribution: F1(x) = e−xθ
; x ≥ 0, θ ≥ 1.

(ii) The LFR distribution: F2(x) = e−x− θ
2 x2

; x ≥ 0, θ ≥ 0.

(iii) The Makeham distribution: F3(x) = e−x−θ(x+e−x−1); x ≥ 0, θ ≥ 0.

Be mindful that for θ = 0, F1(u) and F3(u) minimize exponential distributions,
whereas for θ = 1, F2(u) does the same. The PAE can be reported as

PAE(∆(s)) =
1

σ0(s)

∣∣∣∣ d
dθ

δθ(s)
∣∣∣∣

θ→θ◦

, (11)
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where

δθ(s) = [
1
2

s3 − 1
2

s2]µ(2θ)ζθ(s) + [s2 − s3]ζθ(1)ζθ(s) + [s2 − s3]µθζθ(s)

+[s3 − s2 + 1]ζθ(s) + [s− s2]µθ − s2ζθ(1) + s2 − 1,

ζθ(s) =
∫ ∞

0
e−sxdFθ(x), µ(2θ) = 2

∫ ∞

0
xFθ(x)dx, µθ =

∫ ∞

0
Fθ(x)dx.

Hence,

d
dθ

δθ(s) = [
1
2

s3 − 1
2

s2][µ(2θ)ζ
8
θ(s) + µ8

(2θ)ζθ(s)] + [s2 − s3][ζθ(1)ζ8θ(s) + ζ8θ(1)ζθ(s)]

+[s2 − s3][µθζ8θ(s) + µ8
θζθ(s)] + [s3 − s2 + 1]ζ8θ(s) + [s− s2]µ8

θ − s2ζ8θ(1),

where

µ8
θ =

∫ ∞

0
F8

θ(x)dx, µ8
(2θ) = 2

∫ ∞

0
xF8

θ(x)dx, ζ8θ(s) = −
∫ ∞

0
e−sxdF8

θ(x).

Using the PAE definition in (11), we have

PAE(δ) =
1
σ0

∣∣∣∣∣ [
1
2 s3 − 1

2 s2][µ(2θ)ζ
8
θ(s) + µ8

(2θ)ζθ(s)] + [s2 − s3][ζθ(1)ζ8θ(s) + ζ8θ(1)ζθ(s)]

+[s2 − s3][µθζ8θ(s) + µ8
θζθ(s)] + [s3 − s2 + 1]ζ8θ(s) + [s− s2]µ8

θ − s2ζ8θ(1)

∣∣∣∣∣
θ→θ0

.

For a few different values of s, Table 1 compares our test ∆̂(s) to those of Mugdadi and
Ahmad [37] (δ(3)), Kango [38] (K∗), and Abdel-Aziz [39] (∆̂RN).

Table 1 demonstrates that statistic ∆̂(s) is more effective than statistics δ(3), K∗ and
∆̂RN for the three alternative families.

Table 1. Some competitive tests are contrasted with the PAE test.

Distribution δ(3) K∗ ∆̂RN Our Test ∆̂(s)

s = 0.09 s = 0.9 s = 2

Weibull 0.170 0.132 0.223 0.597 0.851 1.023
LFR 0.408 0.433 0.535 0.851 0.974 0.996

Makeham 0.039 0.144 0.184 0.148 0.213 0.249

4. The Monte Carlo Method

The Monte Carlo simulation makes use of random sampling to predict the potential
outcomes of an unknown event. It was developed in World War II by Stanislaw Ulam and
John von Neumann. Using an expected range of values rather than using predetermined
input values, a Monte Carlo simulation forecasts a succession of outcomes. It creates
random samples using a probability distribution and then computes the outcomes for
each sample. This procedure is repeated numerous times to produce a distribution of
potential conclusions that may be statistically examined. The steps below can be used to
evaluate the likelihood of an event occurring using a Monte Carlo simulation: choose the
random variables that will affect the occurrence whose likelihood one wants to calculate.;
identify each random variable’s probability distribution and create random samples using it;
analyze the event for each sample and determine its frequency; to calculate the percentage,
divide the total number of samples by the number of iterations, and then multiply the
result by 100; repeat this method numerous times, then determine the mean and standard
deviations of the percentages. One will receive an assessment of the event likelihood and
the level of uncertainty surrounding it as a result.
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4.1. Critical Points

A critical value (C.V) in statistics refers to a specific point in a distribution of a test
statistic; it is conducted to determine whether the null hypothesis may be rejected. This
group is referred to as the rejection region or the critical zone. One critical value typically
exists for one-sided tests, while two critical values often exist for two-sided tests. The
statistical literature does not provide a clear consensus on whether the critical value or
probability value method is preferable. Depending on the circumstance and preference,
each has benefits and drawbacks. Using 10,000 samples, n = 5(5)100, this part mimics the
crucial points of the null Monte Carlo distribution. For 90%, 95%, and 99%, the upper
percentile of ∆̂ (0.09) was identified. As seen in Table 2 and Figure 1, the critical values rose
with higher confidence levels and fell with higher sample sizes.

Table 2. The statistic’s critical values of ∆̂(0.09).

n 90% 95% 99%

5 0.0001268 0.0001343 0.0001457
10 0.0001041 0.0001100 0.0001194
15 0.0000951 0.0001003 0.0001085
20 0.0000906 0.0000955 0.0001034
25 0.0000868 0.0000916 0.0000994
30 0.0000839 0.0000887 0.0000952
35 0.0000817 0.0000865 0.0000942
40 0.0000795 0.0000843 0.0000916
45 0.0000775 0.0000822 0.0000890
50 0.0000763 0.0000810 0.0000887
55 0.0000745 0.0000799 0.0000868
60 0.0000734 0.0000785 0.0000861
65 0.0000713 0.0000769 0.0000848
70 0.0000706 0.0000765 0.0000839
75 0.0000693 0.0000748 0.0000824
80 0.0000685 0.0000738 0.0000818
85 0.0000667 0.0000725 0.0000802
90 0.0000662 0.0000722 0.0000805
95 0.0000655 0.0000711 0.0000793

100 0.0000647 0.0000703 0.0000781
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Figure 1. Relationship between the sample size, the level of confidence, and the critical values.

4.2 The power estimates of the test

Calculations used to establish the minimal sample size for a study are called power estimates
in statistics. The probability that the null hypothesis will be correctly rejected, assuming it is
true, is known as strength. It is based on four basic factors: power, significance level, sample
size, and the number of observations or research participants. The proposed test’s potency
was evaluated at the (1−α)% confidence level, α = 0.05, using the 10,000 samples provided
in Table 3 as a basis. Assume that θ has the proper values for the Weibull distribution (WD),
and gamma distribution (GD) at n = 10, 20 and 30, respectively. Table 3 demonstrates that
the ∆n(0.09) test we employed has adequate power for all other alternatives.

Table 3. Estimates of the power of ∆n(0.09).
n θ Weibull Gamma

10
2
3
4

0.9650
0.9997
1.0000

0.5671
0.8950
0.9568

20
2
3
4

0.9931
1.0000
1.0000

0.7116
0.9320
0.9847

30
2
3
4

0.9994
1.0000
1.0000

0.7498
0.9560
0.9922

11

Figure 1. Relationship between the sample size, the level of confidence, and the critical values.
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4.2. The Power Estimates of the Test

The calculations used to establish the minimal sample size for a study are referred to
as power estimates in statistics. The probability that the null hypothesis will be correctly
rejected, assuming it is true, is known as strength. It is based on four basic factors: power,
significance level, sample size, and the number of observations or research participants.
The proposed test’s potency was evaluated at the (1− α)% confidence level, α = 0.05,
using the 10,000 samples provided in Table 3 as a basis. Assume that θ has proper values
for the Weibull distribution (WD), and gamma distribution (GD) at n = 10, 20, and 30,
respectively. Table 3 demonstrates that the ∆n(0.09) test we employed has adequate power
for all other alternatives.

Table 3. Estimates of the power of ∆n(0.09).

n θ Weibull Gamma

10
2 0.9650 0.5671
3 0.9997 0.8950
4 1.0000 0.9568

20
2 0.9931 0.7116
3 1.0000 0.9320
4 1.0000 0.9847

30
2 0.9994 0.7498
3 1.0000 0.9560
4 1.0000 0.9922

5. Testing for Censored Data

It is recommended to use a test statistic to contrast H0 and H1 with data that have
been randomly right-censored. In a life-testing model or a clinical study where patients
may be lost (censored) before the completion of a trial, such censored data are frequently
the only types of information that are accessible. This hypothetical experiment can be
formalized as follows. Assume that n items are checked, with X1, X2, . . . , Xn representing
the actual lifespan of each item. We allow X1, X2, . . . , Xn to be independently and identically
distributed (i.i.d.) under the assumption of a continuous life distribution, F. Assume that
Y1, Y2, . . . , Yn are (i.i.d.) according to a continuous life distribution, G. Additionally, assume
that X and Y are independent variables. The pairs are visible in the randomly right-censored
model (Zj, δj), j = 1, . . . , n, where Zj = min(Xj, Yj) and

δj =

{
1, if Zj = Xj (j-th observation is uncensored)
0, if Zj = Yj (j-th observation is censored).

(1)

Let Z(0) = 0 < Z(1) < Z(2) < · · · < Z(n) denote the ordered Z and δ(j) is δj corre-
sponding to Z(j). The product limit estimator was suggested by Kaplan and Meier [40]
using the censored data (Zj, δj), j = 1, . . . , n.

Fn(X) = ∏
[j:Z(j)≤X]

{(n− j)/(n− j + 1)}δ(j) ; X ∈ [0, Z(n)].

We now propose the following test statistic to compare H0 : φ̂c = 0 to H1 : φ̂c > 0,
using the randomized right censored data

φ̂c = [
1
2

s3 − 1
2

s2]µ(2)ζ(s) + [s2 − s3]ζ(1)ζ(s) + [s2 − s3]µζ(s)

+[s3 − s2 + 1]ζ(s) + [s− s2]µ− s2ζ(1) + s2 − 1,
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where ζ(s) =
∞∫
0

e−sxdFn(x). It is possible to rewrite φ̂c for computational purposes.

φ̂c = [
1
2

s3 − 1
2

s2]Φη + [s2 − s3]τη + [s2 − s3]Ωη

+[s3 − s2 + 1]η + [s− s2]Ω− s2τ + s2 − 1,

where

Ω =
n

∑
k=1

[
k−1

∏
m=1

Cδ(m)
m

(
Z(k) − Z(k−1)

)
],

Φ = 2
n

∑
i=1

[
i−1

∏
v=1

Z(i)C
δ(v)
v

(
Z(i) − Z(i−1)

)
],

η =
n

∑
j=1

e−sZ(j) [
j−2

∏
p=1

Cδ(p)
p −

j−1

∏
p=1

Cδ(p)
p ],

τ =
n

∑
j=1

e−Z(j) [
j−2

∏
p=1

Cδ(p)
p −

j−1

∏
p=1

Cδ(p)
p ],

and
dFn(Zj) = Fn(Zj−1)− Fn(Zj), ck = [n− k][n− k + 1]−1.

The test invariance is achieved by letting

∆̂c =
φ̂c

Z̄3 , where Z =
n

∑
i=1

Z(i)

n
. (12)

In Table 4 and Figure 2, the crucial percentages of the ∆̂c tests for the samples taken
n = 10(10)100 are displayed. The null Monte Carlo distribution’s crucial values were
found using the common exponential distribution, using the Mathematica 12 program at
s = 0.9, and with 10,000 replications. The critical values increased as the confidence level
increased and decreased as sample numbers increased, respectively, as shown in Figure 2
and Table 4.

Table 4. The superior percentages of ∆̂c with 10,000 replications at s = 0.9.

n 90% 95% 99%

10 0.0018839 0.0069971 0.0171796
20 0.0018178 0.0066184 0.0158503
30 0.0017509 0.0061387 0.0137694
40 0.0016926 0.0059580 0.0133870
50 0.0015313 0.0057832 0.0123716
60 0.0014402 0.0055886 0.0119811
70 0.0012656 0.0052264 0.0112588
80 0.0012082 0.0045355 0.0101906
90 0.0011823 0.0044339 0.0098655

100 0.0010760 0.0040471 0.0090138

Estimates of the Test Power ∆c(s)

At a significance level of α = 0.05, we assessed the test power using the occasion
parameter values of θ based on 10,000 samples, at n = 10, 20 and 30 for the gamma, LFR,
and Weibull distributions. Table 5 exemplifies how the power estimations for this test
∆c(0.9) for all other options were suitable.
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Figure 2. Relationship between the sample size, the level of confidence, and the critical values.

5.1 Estimates of the test power ∆c(s)

At a significance level of α = 0.05, we assessed the test’s power using occasion parameter
values of θ based on 10,000 samples, at n = 10, 20 and 30 for the gamma, LFR, and Weibull
distributions. Table 5 exemplifies how the power estimations for this test ∆c(0.9) for all
other options, were suitable.

Table 5. Estimates of the power of ∆c(0.9).
n θ Weibull LFR Gamma

10
2
3
4

0.6162
0.6219
0.6222

0.4496
0.4843
0.5035

0.3541
0.3954
0.4173

20
2
3
4

0.8289
0.8328
0.8351

0.6308
0.6792
0.7203

0.4049
0.4647
0.5278

30
2
3
4

0.9148
0.9193
0.9193

0.7376
0.7994
0.8224

0.5497
0.6949
0.8167

14

Figure 2. Relationship between the sample size, the level of confidence, and the critical values.

Table 5. Estimates of the power of ∆c(0.9).

n θ Weibull LFR Gamma

10
2 0.6162 0.4496 0.3541
3 0.6219 0.4843 0.3954
4 0.6222 0.5035 0.4173

20
2 0.8289 0.6308 0.4049
3 0.8328 0.6792 0.4647
4 0.8351 0.7203 0.5278

30
2 0.9148 0.7376 0.5497
3 0.9193 0.7994 0.6949
4 0.9193 0.8224 0.8167

6. Censored and Uncensored Observations in Applications to Real Data

Data that are controlled (censored) exist, suggesting that some details are omitted or
are not comprehensive. Data that have not been filtered are completely known, indicating
that they contain all pertinent information. Controlled data can be difficult to analyze
statistically since they call for unique approaches and presumptions to deal with missing
or insufficient data. Data that are unsupervised (uncensored) do not suffer from these
problems, making them easier to analyze. In this Section, the data sets have been discussed
and analyzed based on a significance level α = 0.05.

6.1. Non-Censored Data
6.1.1. Dataset I: Methylmercury Poisoning

The listed times of death within the week were recorded (using single dosage levels)
in a Florida State University experiment to study the effects of methylmercury poisoning
on the life spans of fish (see Kochar [41]).

6.000 6.143 7.286 8.714 9.429
9.857 10.143 11.571 11.714 11.714

The data representation plots are presented in Figure 3; it was found that there are no
extreme observations and the nucleation intensity is asymmetric (left-bimodal-skewed).
It was discovered that the critical value, which can be found in Table 2, is exceeded by
∆̂ = 0.0001122. We then accept H1, which says that the data collection has NBRULC
properties rather than exponential growth.
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property rather than exponential growth.
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Figure 3. Non-parametric plots for data set I.

6.1.2 Data set II: Endurance of ball bearings

Pavur et al. [42] took into consideration the information below. The findings of a life test
investigation on 23 ball bearings are shown in the following as the number of revolutions (in
ten million) till failure.

1.788 2.892 3.300 4.152 4.212 4.560 4.848 5.184
5.196 5.412 5.556 6.78 6.864 6.864 6.988 8.412
9.312 9.864 10.512 10.584 12.792 12.804 17.340

The data visualization plots are reported in Figure 4, and it was reported that there
are some extreme observations and the nucleation intensity is asymmetric (bimodal-right-
skewed). The data set’s exponential feature is demonstrated by the null hypotheses, which
are disproved. When ∆̂ = 0.0001074 is found because it exceeds the pertinent critical value

16

Figure 3. Non-parametric plots for dataset I.

6.1.2. Dataset II: Endurance of Ball Bearings

Pavur et al. [42] took into consideration the information below. The findings of a life
test investigation on 23 ball bearings are shown in the following, indicating the number of
revolutions (in ten million) until failure.

1.788 2.892 3.300 4.152 4.212 4.560 4.848 5.184
5.196 5.412 5.556 6.78 6.864 6.864 6.988 8.412
9.312 9.864 10.512 10.584 12.792 12.804 17.340

The data visualization plots are presented in Figure 4. It was reported that there are
some extreme observations and the nucleation intensity is asymmetric (bimodal-right-
skewed). The dataset’s exponential features are demonstrated by the null hypotheses,
which are disproved. When ∆̂ = 0.0001074, it is found to exceed the pertinent critical value
in Table 2.

6.1.3. Dataset III: Leukaemia

Check out the information from Abouammoh et al. [43]. These numbers indicate a
group of 43 leukemia patients from a Saudi Arabian Ministry of Health hospital, with order
values in years, as follows:

0.315 0.496 0.699 1.145 1.208 1.263 1.414 2.025 2.036 2.162
2.211 2.370 2.532 2.693 2.805 2.910 2.912 3.192 3.263 3.348
3.348 3.427 3.499 3.534 3.718 3.751 3.858 3.986 4.049 4.244
4.323 4.323 4.381 4.392 4.397 4.647 4.753 4.929 4.973 5.074
5.203 5.274 5.384
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in Table 2.
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Figure 4. Non-parametric plots for data set II.

6.1.3 Data set III: Leukaemia

Check out the information from Abouammoh et al. [43]. These numbers indicate a group of
43 Leukaemia patients from a Saudi Arabian Ministry of Health hospital, with order values
in years as follows

0.315 0.496 0.699 1.145 1.208 1.263 1.414 2.025 2.036 2.162
2.211 2.370 2.532 2.693 2.805 2.910 2.912 3.192 3.263 3.348
3.348 3.427 3.499 3.534 3.718 3.751 3.858 3.986 4.049 4.244
4.323 4.323 4.381 4.392 4.397 4.647 4.753 4.929 4.973 5.074
5.203 5.274 5.384

The data representation plots are sketched in Figure 5, and it was noted that there
are no extreme observations and the nucleation intensity is asymmetric (left-skewed). It
was discovered that the critical value, which can be found in Table 2, is exceeded by ∆̂ =
0.0001222. We then accept H1, which says that the data collection has NBRULC property

17

Figure 4. Non-parametric plots for dataset II.

The data representation plots are sketched in Figure 5; there are no extreme observa-
tions and the nucleation intensity is asymmetric (left-skewed). It was discovered that the
critical value, which can be found in Table 2, is exceeded by ∆̂ = 0.0001222. We then accept
H1, which states that the data collection has NBRULC properties rather than exponential
growth.rather than exponential growth.
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Figure 5. Non-parametric plots for data set III.

6.1.4 Data set IV: Leukaemia

Take a look at the data below, which shows the survival periods (in years) following diagnosis
for 43 patients with a specific kind of leukemia (see, Kotz and Johnson [44]). The data can
be listed as

0.019 0.129 0.159 0.203 0.485 0.636 0.748 0.781 0.869 1.175
1.206 1.219 1.219 1.282 1.356 1.362 1.458 1.564 1.586 1.592
1.781 1.923 1.959 2.134 2.413 2.466 2.548 2.652 2.951 3.038
3.6 3.655 3.754 4.203 4.690 4.888 5.143 5.167 5.603 5.633

6.192 6.655 6.874

The data visualization plots are reported in Figure 6, and it was clear that there are
no extreme observations and the nucleation intensity is asymmetric-bimodal (right-skewed).
The data set’s exponential feature is demonstrated by the null hypotheses, which are dis-
proved. When ∆̂ = 0.0001048 is found because it exceeds the pertinent critical value in

18

Figure 5. Non-parametric plots for dataset III.
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6.1.4. Dataset IV: Leukaemia

Take a look at the data below, which show the survival periods (in years) following
the diagnoses of 43 patients with specific kinds of leukemia (see Kotz and Johnson [44]).
The data can be listed as follows:

0.019 0.129 0.159 0.203 0.485 0.636 0.748 0.781 0.869 1.175
1.206 1.219 1.219 1.282 1.356 1.362 1.458 1.564 1.586 1.592
1.781 1.923 1.959 2.134 2.413 2.466 2.548 2.652 2.951 3.038

3.6 3.655 3.754 4.203 4.690 4.888 5.143 5.167 5.603 5.633
6.192 6.655 6.874

The data visualization plots are presented in Figure 6; it is clear that there are no
extreme observations and the nucleation intensity is asymmetric-bimodal (right-skewed).
The dataset’s exponential features are demonstrated by the null hypotheses, which are
disproved. When ∆̂ = 0.0001048, is found, it exceeds the relevant critical value in Table 2.

6.1.5. Dataset V: Carbon Fibers

Two sets of data that were introduced by Badar and Priest [45] and used by Kundu
and Gupta [46] are discussed in this segment. The strength of individual carbon fibers
evaluated under tension at gauge lengths of 20 mm is measured in set A using GPA. For
set B, individual carbon fibers were tested under stress at gauge lengths of 10 mm; the
strength was evaluated in GPA. Size 63 applies to sets A and B. The data visualization plots
are listed in Figures 7 and 8.

Dataset A:
1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944
1.958 1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098
2.140 2.179 2.224 2.240 2.253 2.270 2.272 2.274 2.301
2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490
2.511 2.514 2.535 2.554 2.566 2.570 2.586 2.629 2.633
2.642 2.648 2.684 2.697 2.726 2.770 2.773 2.800 2.809
2.818 2.821 2.848 2.880 2.954 3.012 3.067 3.084 3.090Table 2.
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Figure 6. Non-parametric plots for data set IV.

6.1.5 Data set V: Carbon fibers

Two sets of data that were introduced by Badar and Priest [45] and used by Kundu and
Gupta [46] were discussed in this segment. Strength for single carbon fibers evaluated in
tension at gauge lengths of 20 mm is measured in set A using GPA. For set B, single carbon
fibers tested under stress at gauge lengths of 10 mm had their strength evaluated in GPA.
Size 63 applies to sets A and B. The data visualization plots are listed in Figures 7 and 8.

19

Figure 6. Non-parametric plots for dataset IV.
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In such a case, the estimated value, ∆̂ = 0.0001036, exceeds the crucial value shown in
Table 2 by a significant amount. Given the α = 0.05 significant level, it is true because these
types of data satisfy the NBRULC characteristic.

Dataset B:
1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397
2.445 2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614
2.616 2.618 2.624 2.659 2.675 2.738 2.740 2.856 2.917
2.928 2.937 2.937 2.977 2.996 3.030 3.125 3.139 3.145
3.220 3.223 3.235 3.243 3.264 3.272 3.294 3.332 3.346
3.377 3.408 3.435 3.493 3.501 3.537 3.554 3.562 3.628
3.852 3.871 3.886 3.971 4.024 4.027 4.225 4.395 5.020

In such a case, the estimated value, ∆̂ = 0.0001131, exceeds the crucial value shown in
Table 2 by a significant amount. Given the α = 0.05 significant level, it is true because these
types of data satisfy the NBRULC characteristic.

6.1.6. Dataset VI: COVID-19

According to EL-Sagheer et al. [47], this information indicates the fatality rate for
COVID-19 in the Netherlands from 31 March to 30 April 2020. The information is as follows:

14.918 10.656 12.274 10.289 10.832 7.099 5.928 13.211
7.968 7.584 5.555 6.027 4.097 3.611 4.960 7.498
6.940 5.307 5.048 2.857 2.254 5.431 4.462 3.883
3.461 3.647 1.974 1.273 1.416 4.235

Data set A:
1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944
1.958 1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098
2.140 2.179 2.224 2.240 2.253 2.270 2.272 2.274 2.301
2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490
2.511 2.514 2.535 2.554 2.566 2.570 2.586 2.629 2.633
2.642 2.648 2.684 2.697 2.726 2.770 2.773 2.800 2.809
2.818 2.821 2.848 2.880 2.954 3.012 3.067 3.084 3.090
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Figure 7. Non-parametric plots for set A of data set V.

In such a case, the estimated value, ∆̂ = 0.0001036, exceeds the crucial value shown in
Table 2 by a significant amount. Given the α = 0.05 significant level, it is true because this
kind of data satisfies the NBRULC characteristic.

Data set B:
1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397
2.445 2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614
2.616 2.618 2.624 2.659 2.675 2.738 2.740 2.856 2.917
2.928 2.937 2.937 2.977 2.996 3.030 3.125 3.139 3.145
3.220 3.223 3.235 3.243 3.264 3.272 3.294 3.332 3.346
3.377 3.408 3.435 3.493 3.501 3.537 3.554 3.562 3.628
3.852 3.871 3.886 3.971 4.024 4.027 4.225 4.395 5.020

In such a case, the estimated value, ∆̂ = 0.0001131, exceeds the crucial value shown in
Table 2 by a significant amount. Given the α = 0.05 significant level, it is true because this

20

Figure 7. Non-parametric plots for set A of dataset V.
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Figure 8. Non-parametric plots for set B of data set V.

6.1.6 Data set VI: COVID-19

According to EL-Sagheer et al. [47], this information indicates the fatality rate for COVID-19
in Netherlands between 31- 3 - 2020 to 30 - 4 - 2020. Information is

14.918 10.656 12.274 10.289 10.832 7.099 5.928 13.211
7.968 7.584 5.555 6.027 4.097 3.611 4.960 7.498
6.940 5.307 5.048 2.857 2.254 5.431 4.462 3.883
3.461 3.647 1.974 1.273 1.416 4.235

The data visualization plots are reported in Figure 9. It was discovered that the critical
value, which can be found in Table 2, is exceeded by ∆̂ = 0.0001081. We then accept H1,

21

Figure 8. Non-parametric plots for set B of dataset V.

The data visualization plots are presented in Figure 9. It was discovered that the
critical value, which can be found in Table 2, is exceeded by ∆̂ = 0.0001081. We then accept
H1, which states that the data collection has NBRULC properties rather than exponential
growth.which says that the data collection has NBRULC property rather than exponential growth.
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Figure 9. Non-parametric plots for data set VI.

6.1.7 Data set VII: COVID-19

According to Almongy et al. [48], this information indicates the fatality rate for COVID-19
in Italy between 27- 2 - 2020 to 27- 4 - 2020. Information is

4.571 7.201 3.606 8.479 11.410 8.961 10.919 10.908 6.503
18.474 11.010 17.337 16.561 13.226 15.137 8.697 15.787 13.333
11.822 14.242 11.273 14.330 16.046 11.950 10.282 11.775 10.138
9.037 12.396 10.644 8.646 8.905 8.906 7.407 7.445 7.214
6.194 4.640 5.452 5.073 4.416 4.859 4.408 4.639 3.148
4.040 4.253 4.011 3.564 3.827 3.134 2.780 2.881 3.341
2.686 2.814 2.508 2.450 1.518

The data representation plots are listed in Figure 10. The data set’s exponential feature
is demonstrated by the null hypotheses, which are disproved. When ∆̂ = 0.0001027 is found
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Figure 9. Non-parametric plots for dataset VI.

6.1.7. Dataset VII: COVID-19

According to Almongy et al. [48], this information indicates the fatality rate for
COVID-19 in Italy from 27 February to 27 April 2020. The information is as follows:
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4.571 7.201 3.606 8.479 11.410 8.961 10.919 10.908 6.503
18.474 11.010 17.337 16.561 13.226 15.137 8.697 15.787 13.333
11.822 14.242 11.273 14.330 16.046 11.950 10.282 11.775 10.138
9.037 12.396 10.644 8.646 8.905 8.906 7.407 7.445 7.214
6.194 4.640 5.452 5.073 4.416 4.859 4.408 4.639 3.148
4.040 4.253 4.011 3.564 3.827 3.134 2.780 2.881 3.341
2.686 2.814 2.508 2.450 1.518

The data representation plots are listed in Figure 10. The dataset’s exponential features
are demonstrated by the null hypotheses, which are disproved. When ∆̂ = 0.0001027, it is
determined to exceed the critical value specified in Table 2.

6.1.8. Dataset VIII: Wind Speed

We used the following dataset, which was originally obtained from NCDC. These data
represent the wind speed measured in knots for the first sample (set A) for 23 days and the
second sample for 25 days (see, Ghazal et al. [49]).

Dataset A:
8.6 3.8 5.4 4.4 2.2 3.8 4.5 6.3
3.4 4.1 3.8 8.6 13.0 11.3 12.4 12.4
5.0 3.4 3.8 5.3 3.6 5.8 4.2

The data visualization plots are presented in Figure 11 (set A); there are no extreme
observations and the nucleation intensity is asymmetric-bimodal (right-skewed).because it exceeds the pertinent critical value in Table 2.
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Figure 10. Non-parametric plots for data set VII.

6.1.8 Data set VIII: Wind speed

We used the following dataset, which was originally obtained from (NCDC). This data
represents the wind speed measured in knots for the first sample (set A) for 23 days and the
second sample for 25 days (see, Ghazal et al. [49]).

Data set A:
8.6 3.8 5.4 4.4 2.2 3.8 4.5 6.3
3.4 4.1 3.8 8.6 13.0 11.3 12.4 12.4
5.0 3.4 3.8 5.3 3.6 5.8 4.2

The data visualization plots are reported in Figure 11 (set A), and it was noted that
there are no extreme observations and the nucleation intensity is asymmetric-bimodal (right-

23

Figure 10. Non-parametric plots for dataset VII.

In such a case, the estimated value, ∆̂ = 0.0001084, exceeds the crucial value shown in
Table 2 by a significant amount. Given the α = 0.05 significant level, it is true because these
types of data satisfy the NBRULC characteristic.

Dataset B:
2.4 2.9 3.3 3.4 3.5 3.7 3.8 3.9 4.0
4.1 4.2 4.5 4.6 4.8 5.1 5.3 5.5 6.0
6.2 6.5 7.8 8.2 8.4 9.4 10.9
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The data visualization plots are presented in Figure 12 (set B); there are some extreme
observations and the nucleation intensity is asymmetric-multimodal (right-skewed). In
such a case, the estimated value, ∆̂ = 0.0001183, exceeds the crucial value shown in Table 2
by a significant amount. Considering the significance level of α = 0.05, it can be concluded
that these types of data satisfy the NBRULC characteristic.

skewed).
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Figure 11. Non-parametric plots for set A of data set VIII.

In such a case, the estimated value, ∆̂ = 0.0001084, exceeds the crucial value shown in
Table 2 by a significant amount. Given the α = 0.05 significant level, it is true because this
kind of data satisfies the NBRULC characteristic.

Data set B:
2.4 2.9 3.3 3.4 3.5 3.7 3.8 3.9 4.0
4.1 4.2 4.5 4.6 4.8 5.1 5.3 5.5 6.0
6.2 6.5 7.8 8.2 8.4 9.4 10.9

The data visualization plots are reported in Figure 12 (set B), and it was noted that
there are some extreme observations and the nucleation intensity is asymmetric-multimodal
(right-skewed). In such a case, the estimated value, ∆̂ = 0.0001183, exceeds the crucial value
shown in Table 2 by a significant amount. Given the α = 0.05 significant level, it is true
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Figure 11. Non-parametric plots for set A of dataset VIII.because this kind of data satisfies the NBRULC characteristic.
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Figure 12. Non-parametric plots for set B of data set VIII.

6.2 Censored Data

6.2.1 Data set IX: Lung cancer

The following data show the number of weeks that 61 individuals who received cyclophos-
phamide for incurable lung cancer survived and were taken into consideration by Lagakos
and Williams ([50]) and Lee and Wolfe ([51]). (Representing the patients whose treatment
was stopped due to a deteriorating condition, there are 28 censored observations and 33
uncensored observations.

• Censored observations:
0.14 0.14 0.29 0.43 0.57 0.57 1.86 3.00 3.00 3.29
3.29 6.00 6.00 6.14 8.71 10.57 11.86 15.57 16.57 17.29
18.71 21.29 23.86 26.00 27.57 32.14 33.14 47.29

• Uncensored observations:
0.43 2.86 3.14 3.14 3.43 3.43 3.71 3.86 6.14 6.86 9.00
9.43 10.71 10.86 11.14 13.00 14.43 15.71 18.43 18.57 20.71 29.14
29.71 40.57 48.57 49.43 53.86 61.86 66.57 68.71 68.96 72.86 72.86

If all available survival statistics, both censored and uncensored, are considered. We dis-
cover that Table 4’s essential value exceeds our conclusion, which is ∆c(0.9) = −0.00099279
We can therefore clearly see the exponential nature of the data.

25

Figure 12. Non-parametric plots for set B of dataset VIII.
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6.2. Censored Data
6.2.1. Dataset IX: Lung Cancer

The following data represent the number of weeks that 61 individuals, who received
cyclophosphamide for incurable lung cancer, survived and were considered in the studies
by Lagakos and Williams [50] and Lee and Wolfe [51]. For the patients whose treatments
were stopped due to a deteriorating condition, there are 28 censored observations and
33 uncensored observations.

• Censored observations:

0.14 0.14 0.29 0.43 0.57 0.57 1.86 3.00 3.00 3.29
3.29 6.00 6.00 6.14 8.71 10.57 11.86 15.57 16.57 17.29
18.71 21.29 23.86 26.00 27.57 32.14 33.14 47.29

• Uncensored observations:

0.43 2.86 3.14 3.14 3.43 3.43 3.71 3.86 6.14 6.86 9.00
9.43 10.71 10.86 11.14 13.00 14.43 15.71 18.43 18.57 20.71 29.14

29.71 40.57 48.57 49.43 53.86 61.86 66.57 68.71 68.96 72.86 72.86

When considering all available survival statistics, both censored and uncensored,
we discover that Table 4’s essential value exceeds our conclusion, which is ∆c(0.9) =
−0.00099279. We can, therefore, clearly see the exponential nature of the data.

6.2.2. Dataset XI: Melanoma

Consider the information from Susarla and Van Ryzin [52]. These numbers represent
the survival rates of 46 melanoma patients. Among them, 35 (non-censored material) have
complete lifetime information. The following observations have been redacted, in order, as
follows:

13 14 19 19 20 21 23 23 25 26
26 27 27 31 32 34 34 37 38 38
40 46 50 53 54 57 58 59 60 65
65 66 70 85 90 98 102 103 110 118

124 130 136 138 141 234

The following is the hierarchy of the censored observations:

16 21 44 50 55 67 73 76 80 81
86 93 100 108 114 120 124 125 129 130

132 134 140 147 148 151 152 152 158 181
190 193 194 213 215

If we take into account both censored and uncensored survival statistics, the essen-
tial value in Table 4 exceeds our outcome, which is ∆c(0.9) = −2.65634 × 10−23. The
exponential properties of the data are, therefore, evident to us.

7. Conclusions

An exponential comparison of different life distributions has garnered much attention.
Based on the goodness-of-fit technique, we introduced a new test statistic in this study to
evaluate the exponential versus non-exponential NBRULC class of life distributions. For the
uncensored and censored data, Tables 1 and 3 calculated and tabulated the critical values
for this test. The efficiency of the Pitman asymptotic efficiency was discussed, and power
estimates were simulated for families of the most common age distribution in reliability. The
Monte Carlo critical points for the null distribution were simulated. Moreover, the power
estimations of this test were computed for a few typical alternative distributions. Several
key values were listed along with the power estimates for the censored and uncensored
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data for this test; moreover, the issue of properly suppressed data was also discussed. To
illustrate the usefulness of the recommended test in the reliability analyses of censored and
uncensored data, this paper covered several applications.
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