
Citation: Derpich, I.; Valencia, J.;

Lopez, M. The Set Covering and

Other Problems: An Empiric

Complexity Analysis Using the

Minimum Ellipsoidal Width.

Mathematics 2023, 11, 2794.

https://doi.org/10.3390/

math11132794

Academic Editors: Cláudio Alves

and Telmo Pinto

Received: 26 April 2023

Revised: 2 June 2023

Accepted: 13 June 2023

Published: 21 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

The Set Covering and Other Problems: An Empiric Complexity
Analysis Using the Minimum Ellipsoidal Width
Ivan Derpich † , Juan Valencia † and Mario Lopez *

Industrial Engineering Department, Universidad de Santiago, Ave. Victor Jara 3769, Santiago 9170124, Chile;
ivan.derpich@usach.cl (I.D.); juan.valencia.l@usach.cl (J.V.)
* Correspondence: mario.lopez@usach.cl
† These authors contributed equally to this work.

Abstract: This research aims to explain the intrinsic difficulty of Karp’s list of twenty-one problems
through the use of empirical complexity measures based on the ellipsoidal width of the polyhedron
generated by the constraints of the relaxed linear programming problem. The variables used as
complexity measures are the number of nodes visited by the B&B and the CPU time spent solving
the problems. The measurements used as explanatory variables correspond to the Dikin ellipse
eigenvalues within the polyhedron. Other variables correspond to the constraint clearance with
respect to the analytical center used as the center of the ellipse. The results of these variables in terms
of the number of nodes and CPU time are particularly satisfactory. They show strong correlations,
above 60%, in most cases.

Keywords: integer programming; branch and bound; combinatorial optimization; set covering
problem

MSC: 90C10

1. Introduction

The NP-completeness of Karp’s 21 problems list dates back to 1972 [1]. It is a list
of classical problems that meet computational complexity characteristics. Some of the
list’s problems solved in this paper included the set covering problem, the set packaging
problem, the knapsack multi-demand problem, and some general integer programming
problems. There were statistically significant relationships between the branching and
bound tree number of nodes and the resolution time. Explanatory variables included
geometric measurements corresponding to an inner Dikin ellipse that replicates the shape
of the linear polyhedron. The test problems used are classics in combinatorics, computer
science, and computational complexity theory.

The set covering problem, also known as SCP, is an NP-complete class problem. Solu-
tions to these problems usually consist of finding a solution set to cover, totally or partially,
a set of needs at the lowest possible cost. In many cases, the distance or the response time
between customers and service delivery points is critical to customer satisfaction. For
example, if a building catches fire, the fire station response time is vital; the longer the
delay, the greater the building damage. In this case, the SCP model ensures that at least
one fire station is at a close enough distance in order for fire engines to reach the building
within a certain time. Set packing is also a classic problem. It consists of packaging sets of
disjoint k subsets. The problem is visibly an NP problem because, given k subsets, subsets
are disjoint 2 to 2 in polynomial time [2,3]. The optimization problem consists of finding
the maximum number of sets, from 2 to 2 disjoints in a list. It is a maximization problem
formulated as a packaging integer programming problem, and its dual linear problem
is the set cover problem [4]. The multi-dimensional knapsack (MKP) problem involves
selecting a set of items to carry in a knapsack subject to one or more restrictions. These

Mathematics 2023, 11, 2794. https://doi.org/10.3390/math11132794 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11132794
https://doi.org/10.3390/math11132794
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9759-7285
https://doi.org/10.3390/math11132794
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11132794?type=check_update&version=1


Mathematics 2023, 11, 2794 2 of 22

may be the knapsack weight or volume. The objective function of this problem seeks to
maximize a linear function in 0–1 variables subject to knapsack constraints. Finally, the
multi-dimensional and multi-demand knapsack problem is the multi-dimensional knap-
sack problem to which added compliance restrictions present some demand conditions [5].
The CPU time is key when solving an MIP/BIP problem using the branch and bound (B&B)
algorithm. It depends on the search tree size associated with the algorithm. B&B finds the
solution by recursively dividing the search space. The space is a tree where the root node is
associated with the integer solution space. The brother nodes are a solution space partition
of the parent node. At each node, the subspace is an MIP/BIP and its linear programming
(LP) relaxation is solved to supply a linear solution. If the LP is not workable or better
than the primary solution (the best integer value found), the procedure prunes the node. A
previous article proposed complexity indices to estimate the B&B tree size, which applies
to the multi-dimensional backpack problem [6].

1.1. B&B Tree Counting Literature Review

Knuth [7] proposed the first method to estimate the search tree size of the branch
and bound (B&B) algorithm. This method works by repeatedly sampling the search tree
sequence and estimating a measure of the node number to disaggregate. This calculates
the B&B tree by repeatedly following random paths from the root. As the search may
prove to be extensive, Purdom [8] improved the method by following more than one
path from a node. Tree size was estimated by performing a partial backtracking search.
This modification exponentially improves results with the tree height. Purdom called this
method Partial Backtracking. Chen [9] improved Knuth’s proposed method using heuristic
sampling to estimate its efficiency. This updated version produces significantly higher
efficiency estimates for tree search strategies commonly used. These are depth first, breadth
first, best first, and iterative deepening. Belov et al. [10] combined Knuth’s sampling
procedure with the abstract B&B tree developed by Le Bodic and Nemhauser [11]. Knuth’s
original method uses the distribution of node knowledge in a B&B tree by reducing the
variance in tree size estimates, while Le Bodic and Nemhauser provide a theoretical B&B
tree model. Belov et al. combined these two methods to obtain a significant estimation
accuracy increase. According to Belov et al. and the conducted experiments, the error
decreased by more than half in the a priori estimation. The abstract tree developed by Le
Bodic and Nemhauser [11] is a formula based on the concept of gain by branching into any
node. They use an a priori estimate of the gain obtained by branching left or right into any
node. They also use what they call gap, which is the gain value that allows for obtaining
the optimal integer solution via branching. Their use of the abstract tree seeks to find the
best variable to branch, i.e., to obtain a tree of minimum size. Other estimation methods
are the Weighted Backtrack Estimator [12], Profile Estimation [13], and the Sum of Subtree
Gaps [14]. Recently, Refs. [15–17] developed methods based on machine learning in the
context of integer programming. Fischetti in [18] proposed a classifier to predict specific
points online. Finally, Hendel et al. [19] developed a new version of the old method of
estimating the B&B tree. They integrated Le Bodic and Nemhauser’s [11] theoretical tree
and new measures such as "leaf frequency". A leaf in the B&B tree is a node that does not
dis-aggregate, and this may be because it delivers an integer solution, which is unfeasible
or needs pruning. They then use this and other measures of algorithm progress using
machine learning’s random forest model to estimate the size of the B&B tree. Next, they
integrate this technique into the SCIP constrained integer programming software [20]. The
application of these methods occurs throughout the algorithm, since they require a few
iterations to start with the estimate, and there are iterations for recalculations. Its accuracy
also grows as the algorithm progresses, and so does the availability of information.

1.2. Our Contribution to the Problem of Estimating the B&B Tree

Our estimation of the B&B tree research line, including the methods developed in
this work, follows the conditioning concept in integer programming [21–23]. Vera and



Mathematics 2023, 11, 2794 3 of 22

Derpich [24] proposed dimensions for the polyhedron width, based on m (number of
constraints) and n (number of variables). The dimension used is to estimate the number
of upper bounds of iterations of the B&B algorithm and the Lenstra algorithm [25]. Vera
and Derpich also proposed two measures concerning the polyhedron ellipsoidal width,
which are the maximum slack and a term called the “distance to ill-posedness of the integer
problem”, which Vera documented in [22]. The number of iterations of the B&B algorithm’s
proposed dimensions [25] corresponds to worst-case dimensions. They are similar when
compared with those proposed by Le Bodic and Nemhauser [11], since both give values far
from the real values obtained. Vera and Derpich’s [22] proposed dimensions basis includes
concepts that reflect the shape and spatial orientation of the polyhedron. Earlier approaches
do not capture these factors. Therefore, these dimensions also predict the B&B tree node
number and CPU time. These are the conceptual basis of this work. The indices developed
in this work use a Dikin ellipse inside the polyhedron. They show a good correlation
with the B&B algorithm CPU time and the number of nodes visited. The Dikin ellipse
allows for the estimation of the polyhedron ellipsoidal width, which iterates n times to
estimate the B&B tree. This enables applications to new, related geometric indices, starting
with the constraints of the linear programming problem generated by relaxing the integer
variables. The proposed indices’ basis is the concept of polyhedron flatness. This means
that if a polyhedron is thin in some direction, the B&B algorithm might run faster. In this
article, we seek to test how much this idea influences the B&B tree size, characterized by
the number of nodes visited and the CPU time. The underlying conjecture for the proposed
experimental design is that a narrower polyhedron will be faster to cross. Therefore, the
B&B tree will be smaller and vice versa, i.e., in a narrower polyhedron, the B&B tree will
be larger. These new factors are related to the dimensions of the matrices associated with
the polyhedron of the relaxed problem, as well as the maximum and minimum slacks with
respect to the center of the ellipse. To test the relationship between these measures and the
B&B tree’s number of nodes, we designed an experimental study and found a strong linear
correlation. The empirical study included set covering, set packing, and other general
problems of integer programming. Data came from the public library MIPLIB [26–28]. We
also assessed the multi-demand multi-dimensional knapsack (MDMKP) problem. Data
were taken from OR-Library [28].

Following this introduction, and because they support the proposed complexity in-
dices, Section 2 develops the concepts related to the polyhedron ellipsoidal width. Section 3
presents the problems under study in mathematical formulations, which are set covering,
set packing, and multi-demand multi-dimensional backpack. Section 4 presents the experi-
mental design, detailing the test problems used and the results obtained. Section 5 presents
a discussion in which the work is compared with others that are similar in some way, and,
finally, Section 6 summarizes the main findings and future work.

2. Methods and Materials
Polyhedron Ellipsoidal Width

Let K be a convex set in which Rn; we define the integer width of K as follows:

wz(K) = w(v, K) (1)

w(v, K) = {vTx : x ∈ K} − {vTx : x ∈ K} (2)

If we restrict the vectors v to the Euclidean space set of unit vectors, with a unitary
norm, we obtain the total width according to the coordinate axes {x1, x2, . . . , xn}. The
integer width is a very interesting geometric measure. It is related to the existence of at
least one integer point. If there is at least one integer point, this width cannot be too small.
This is an important result because [29] stated that wZ(K) ≤ f (n) if K does not contain an



Mathematics 2023, 11, 2794 4 of 22

integer point. Lenstra considered f (n) to be of the order of cn2
o , where c0 is a constant. The

problem approach that we study in this paper is as follows.

max: {cTx : Ax ≤ b, x ≥ 0, x ∈ Zn} (3)

We assume that the polyhedron given by Ax ≤ b is bounded and denotes the problem
data with the letter d, so that d = (A, b) ∈ Rmxn+m. This is the problem-specific instance.
We denote by P(d) the {x : Ax ≤ b} polyhedron, and by α1,. . . ,αm,{x : Ax ≤ b} the row
vectors of A. Next, we analyze an application of Lenstra’s flatness theorem [30]. We obtain
a dimension that depends on geometry rather than dimensional factors. As in the classical
flatness theorem analysis, the basis of the estimate lies in rounding the polyhedron using
inscribed and circumscribed ellipses. Ellipses are intended to interpret the polyhedron
shape with certainty. Therefore, let us build a pair of ellipses with a common center x0.

E = {x ∈ Rn : (x− x0)TQ(x− x0) ≤ 1} (4)

and
E′ = {x ∈ Rn : (x− y)TQ(x− y) ≤ γ2} (5)

so that
E ⊂ P(d) ⊂ E′ (6)

where Q is a definite positive matrix. The matrices have different possibilities, depending
on the value of γ. John proposes [31] an ellipse E′ with minimal volume by making γ = n
However, computing x0 becomes a hard problem. We use an approach based on the classic
setup of interior point methods in convex linear optimization [32]. Suppose that we know
a self-concordant barrier function Φ, on a convex body, with parameter v as in Nesterov
and Nemirosky [33]. Then, let

x0 = argmin{Φ(x) : x ∈ intP(d)} (7)

Let Q = ∇2Φ(x0) and E be a unit radius inner ellipse, known as a Dikin ellipse. Thus,
if we take γ = m + 1, for example, we use the traditional logarithmic barrier function

Φ(x) = −∑n
i=1 log(bi − αt

i x) ,

with v = m. The point x0 is the K = P(d) analytical center and the matrix Q is

Q = AT D(x0)−2 A (8)

with
D(x) = diag(b1 − αT

1 x, b2 − αT
2 x, . . . , bm − αT

mx) (9)

where diag() denotes a diagonal matrix constructed with the corresponding elements.
The fact that the matrix Q naturally connects with the polyhedron’s geometric properties
justifies the ellipsis construction choice. The following is the ellipses’ geometrical result.

Proposition 1. Let Q be a positively defined symmetric real matrix by defining a pair of ellipses as
in (4). Then,

Wz(P(d)) ≤ 2(m + 1)
√

min(utQ−1u) : uεZn, u 6= 0 (10)

Demonstration.
The term

√
min(utQ−1u) is ellipse E’s radius, according to the direction u.

2
√

min(utQ−1u) is the ellipse E’s width, according to vector u.
Multiplying by (m + 1), we obtain the expanded ellipse E′.
Then, 2

√
min(utQ−1u) is ellipse E′’s width, according to the vector u.

The value 2
√

min(utQ−1u) is greater than the polyhedron P(d)’s width, according to
vector u�.



Mathematics 2023, 11, 2794 5 of 22

Proposition 2. Let v1, . . . , vn be the positive definite matrix Q orthonormal eigenvectors, and λmin
be the smallest eigenvalue of Q. Then, for any u ∈ Rn,

uTQ−1u ≤ (
1

λmin
)

n

∑
i=1

vT
i u2 (11)

Demonstration.
Since Q is symmetric and defined as positive, the result comes from the fact that

Q−1 = ∑n
i=1

1
λi

vivT
i

It follows that

uTQ−1u = ∑n
i=1

1
λi
(uTvi)

2

Then, taking the minimum eigenvalue, we have

uTQ−1u ≤ ∑n
i=1

1
λmin

vT
i u2�

Because we use it in our analysis, we describe the result of Vera [22], which relates the
matrix Q eigenvalues to the matrix AT A eigenvalues and other data.

Proposition 3. Let Q = AT D(x0)−2 A with D(x) = diag(b1− αT
1 x, . . . , bn − αT

m), bi − αT
i > 0,

i = 1, . . . , m. Let λmin and λmax be the smallest and largest Q eigenvalues, respectively. Let µmin
and µmax be the smallest and largest AT A eigenvalues, respectively. Additionally, let hmax be the
highest and lowest D(x) values. Then, it fulfills

λmin ≥
µmin

(hmax(x0))2 (12)

λmax ≥
µmax

(hmin(x0))2 (13)

Demonstration [22,24].

Proposition 4. Let λi and vi be the matrix Q eigenvalues and eigenvectors, respectively,
i = 1, . . . , n Let u be a possible solution. Then, we have the following:

w(u, P(d)) ≤ 2(m + 1)‖vmax‖2
hmax(x0)√

umin
(14)

Demonstration.
From Proposition 1’s demonstration, we have

Wz(P(d)) ≤ 2(m + 1)
√

min(utQ−1u) : uεZn, u 6= 0 (15)

From Proposition 2, we have

uTQ−1u ≤ (
1

λmin
)

n

∑
i=1

vT
i u2 (16)

Taking an upper bound with a norm-2 higher eigenvector, we have

n

∑
i=1

(vT
i u)2 ≤

n

∑
i=1

(vT
maxu)2 (17)

Assuming that ‖u‖∞ ≤ 1, then

n

∑
i=1

(vT
i u)2 ≤

n

∑
i=1

(vT
maxu)2 ≤ ‖vmax‖2

2 (18)



Mathematics 2023, 11, 2794 6 of 22

Additionally, from Proposition 3, we have

1
λmin

≤ (hmax(x0))2

umin
(19)

w(u, P(d)) ≤ 2(m + 1)

√
(

1
λmin

)
n

∑
i=1

(vT
i u)2 ≤ 2(m + 1)

hmax(x0)√
umin

‖vmax‖2� (20)

In a previous paper, Ref. [34] built a disjunction to branch variables in the B&B, based
on the associated linear polyhedron ellipsoidal. This simultaneously branches various
variables, as if it was a super ruler that uses ellipsoidal width uTQ−1u. This rule proved to
be more efficient than the known strong branching rule. The latter often leads to a smaller
search tree, although it requires much more time to select branching variables. Figure 1
shows the ellipses used, in an exponential rounding approach, where Q is a positive definite
matrix. This is a shortest vector problem version. Micciancio [35] considers it a difficult
problem. We use Proposition 4 as a dimension only. Therefore, we do not solve it optimally.
However, we use an upper bound of the optimal value, which captures some aspects of the
original problem that reproduce the intrinsic difficulty of a particular instance. Based on
Proposition 4, we propose the next dimension related to polyhedron P(d)’s geometry.

Figure 1. Ellipsoidal rounding using a pair of Dikin ellipses.

3. Experimental Design

This section describes the experimental design and shows the mathematical structure
of the test problem considered, which is part of Karp’s list. The previous section found the
variables related to geometric aspects. On this basis, a linear search established relationships
between these variables. Additionally, two measures were related to the B&B tree, which
were the number of explored nodes and the algorithm’s CPU time. Thus, the relationship
searching work is fully experimental, and the results relate to the test problems only.
They are not generalizable to other cases without re-running a similar experiment. The
statistical model employed is a multiple regression model that uses the ANOVA test,
using the F statistic to validate the overall model significance. The explained variables are
the following:

1. The solved instance CPU time, using the B&B algorithm.
2. The number of nodes scanned by the B&B algorithm.

The explanatory variables studied were xi, i = 1, 2, 3, 4, 5, 6 as follows:



Mathematics 2023, 11, 2794 7 of 22

1. λmax(Q) is the maximum eigenvalue of the matrix Q = AT H(xo)−2 A;
2. λmin(Q) is the minimum eigenvalue of the matrix Q = AT H(xo)−2 A;
3. µmax is the maximum eigenvalue of the matrix AT A;
4. µmin is the minimum eigenvalue of the matrix AT A;
5. hmax(x0) = maxi{bi − αT

i x0} is the maximum slack to the center x0;
6. hmin(x0) = mini{bi − αT

i x0} is the minimum slack to the center x0.

We constructed two multiple regression models, named Model 1 and Model 2. The
first uses the CPU time as the explained variable. The second model uses the number of
nodes as the explained variable. The models are as follows:

Model 1: Number of nodes = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6
Model 2: CPU time = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6

3.1. Used Test Problems
3.1.1. The Set Covering Problem

This problem seeks to find the minimum number of variables with which to cover all
sets at least once. [35,36] provided a formal definition. Let us look at this problem through
an example. Suppose that we must cover with antennas a set of geographical areas in a
city. Then, we define xj as a binary variable, i.e., 1 if an antenna is located in the area and
0 otherwise. Installing an antenna in area j has the cost cj ≥ 0 and cj ∈ Rn. There are n
geographical areas. Then, j = 1, . . . , n. Formally, the set covering problem is expressed
as follows:

minz =
n

∑
j=1

cjxj (21)

subject to
n

∑
j=1

xj ≥ 1, ∀j (22)

xj =

{
1 i f an antenna is in the area j

0 otherwise
(23)

Mj: areas served by an antenna located in area J.

3.1.2. The Set Packing Problem

Varizani [36] formulated the maximum set packing integer linear program as follows:

max = ∑
s∈S

xS (24)

subject to
∑
s∈S

xS ≤ 1∀e ∈ U (25)

xS ∈ {0, 1}s ∈ S (26)

where U is the cover set.

3.1.3. The Multi-Dimensional Knapsack Problem

All coefficients are non-negative. More precisely, we can assume, without loss of
generality, cj ≥ 0, bi ≥ 0 and ∑n

j=1 aij ≤ bi, ∀i ∈ M Furthermore, any MKP with at least
one of the parameters aij equal to 0 may be replaced by an equivalent MKP with positive
parameters, i.e., both problems have the same feasible solutions [29].

z = max
n

∑
j=1

cjxj (27)



Mathematics 2023, 11, 2794 8 of 22

subject to
n

∑
j=1

aijxj ≤ bi∀i ∈ M = {1, . . . , m}, (28)

xj ∈ {0, 1}∀j ∈ N = {1, . . . , n}, (29)

3.1.4. The Multi-Demand Multi-Dimensional Knapsack Problem

This problem comes from OR-Library and Beasley documented it in 1990. There are
nine data files: MDMKPC T1, . . . , MDMKPC T9. Each file has fifteen instances. In total,
there are 90 test problems, which are the test problems of [29]. The MDMKP problem to
solve is

z = max
n

∑
j=1

cjxj (30)

subject to
n

∑
j=1

aijxj ≤ bi∀i = 1, . . . , m (31)

n

∑
j=1

aijxj ≤ bi∀i = m + 1, m + 2, . . . , m + q (32)

xj ∈ {0, 1}∀j ∈ N = {1, . . . , n}, (33)

MDMKP instances result from appropriately modifying the MKP instances resolved in
each combination cost type (either positive or mixed), and q number of constraints = (q = 1,
q = m/2 and q = m, respectively). Number of test problems (K = 15), 6 cost coefficients
cj, j = 1, . . . , n. The first 3 correspond to the positive cost case for q = 1, q = m/2
and q = m ≥ constraints, respectively. The last 3 correspond to the mixed cost case for
q = 1, q = m/2 and q = m ≥ constraints, respectively [29].

We took the test problems from two public libraries, MIPLIB and OR-Library. Table 1
shows problems from the MIPLIB library. There are binary and MIP programs, as well
as other types of problems. The considered problems are knapsack, set covering, set
packing, and other problems. The test problems from OR-Library correspond to the
multi-dimensional knapsack problem and the multi-demand and multi-dimensional knap-
sack problem.

Table 1. List of problems studied from MIPLIB library.

Number Instance Constraints Variables Nonzeroes Integers Binaries Constraint Version
Classification MIPLIB

1 opm2-z7-s2 31,798 2023 79,762 0 2023 Knapsack 2010
2 mine 90-10 6270 900 15407 0 900 Knapsack 2010
3 mine 166-5 8429 830 19412 0 830 Knapsack 2010
4 opm2-z6-s1 15,533 1350 41,844 0 1350 Knapsack 2017
5 opm2-z7-s8 31,798 2023 79,756 0 2023 Knapsack 2017
6 reblock67 2523 670 7495 0 670 Knapsack 2010
7 m100n500k4r 100 500 2000 0 500 Set covering 2010
8 iis-100-0-cov 3831 100 22,986 0 100 Set covering 2010
9 iis-pima-cobv 7201 768 71,941 0 768 Set covering 2010

10 iis-glass-cov 5375 214 63,918 0 214 Set covering 2017
11 iis-hc-cov 9727 297 142,971 0 297 Set covering 2010
12 glass-sc 6119 214 63,918 0 214 Set covering 2017
13 iis-bupa-cov 4803 345 38,392 0 345 Set covering 2017
14 reblock166 17,024 1660 39,442 0 1660 knapsack 2010



Mathematics 2023, 11, 2794 9 of 22

Table 1. Cont.

Number Instance Constraints Variables Nonzeroes Integers Binaries Constraint Version
Classification MIPLIB

15 macrophage 3164 2260 9492 0 2260 Mip 2010
16 mik-250-20-75-1 195 270 9270 175 75 Mip 2017
17 mik-250-20-75-2 195 270 9270 175 75 Mip 2017
18 mik-250-20-75-3 195 270 9270 175 75 Mip 2017
19 mik-250-20-75-4 195 270 9270 175 75 Mip 2017
20 toll-like 4408 2883 13,224 0 2883 Knapsack 2017
21 mas76 12 151 1640 0 150 Knapsack 2017
22 mas74 13 151 1706 0 150 Set covering 2017
23 cod105 1024 1024 57,344 0 1024 Knapsack 2017
24 reblock115 4735 1150 13,724 0 1150 Mip 2017
25 neos5 63 63 2016 0 53 MIB 2017
26 pg5_34 225 2600 7700 0 100 Mip 2017
27 gen-ip036 46 29 1303 29 0 Mip 2017
28 mik-250-20-75-5 195 270 9270 175 750 Mip 2017
29 rmine6 8429 830 19,412 0 830 Kna 2017
30 mik-250-1-100.1 195 251 - 150 100 Set covering 2017
31 sp98ic 825 10,894 316,317 0 10,894 Mip 2017
32 neos13 20,852 1827 253,842 0 1815 Set covering 2017
33 sp7ic 1033 12,497 316,629 0 12,497 Set covering 2017
34 cv08r139-94 2398 1864 6456 0 1864 Set covering 2017

4. Results

Table 1 shows the problems solved using the MIPLIB library. These were inequality-
type constraint problems. They included set covering, set packing, knapsack multi-
dimensional, knapsack multi-dimensional and multi-demand, general integer, binary,
and integer. It should be noted that some resolution times were lengthy.

4.1. MIPLIB Library Test Problem Results

Tables 2 and 3 show the results of the nodes and CPU times obtained by solving the
problems optimally with different threads for instances of the MIPLIB library. The most
time-consuming problem was mas74, which took 25,447 s to solve with two threads.

High CPU times coincide with the number of highly scanned nodes, which is a sign of
the consistency of the results. However, the average CPU time per node scanned is 0.017 s,
with a standard deviation of 0.0631. This gives a coefficient of variation of 3.7, which
indicates that these results are highly dispersed. The average number of restrictions of the
instances is 5850.82 and the average number of variables is 1521.11, while the standard
deviation is 8390.56 and 2711.22, respectively. This gives coefficients of variation of 1.43 and
1.78, respectively, for constraints and variables. Comparing these dispersions with the
CPU time/node results, it can be concluded that the instances are less dispersed than the
resolution results.

Table 2. Nodes explored vs. different threads of Cplex (nodes) of MIPLIB library.

N° Problem Cplex 2 Thread Cplex 4 Thread Cplex 8 Thread Cplex 12 Thread
Nodes 2 Nodes 4 Nodes 8 Nodes 12

1 opm2-z7-s1 941 1120 1672 2178
2 mine 90-10 28,157 26,957 29,068 76,974
3 mine 166-5 837 1051 1142 449
4 opm2-z6-s7 749 1418 1046 890
5 opm2-z7-s8 3382 3130 2933 3881
6 reblock67 107,994 91,053 79,944 125,561
7 m100n500k4r1 152,665 46,190 69,232 85,296
8 iis-100-0-cov 223,353 217,678 148,831 148,153



Mathematics 2023, 11, 2794 10 of 22

Table 2. Cont.

N° Problem Cplex 2 Thread Cplex 4 Thread Cplex 8 Thread Cplex 12 Thread
Nodes 2 Nodes 4 Nodes 8 Nodes 12

9 iis-pima-cov 22,172 31,780 42,218 20,296
10 iis-glass-cov 79,065 142,796 80,250 67,054
11 iis-hc-cov 160,515 149,142 134,323 177,704
12 glass-sc 499,757 507,667 561,998 501,703
13 iis-bupa-cov 353,578 377,314 295,739 382,852
14 reblock166 70,248 80,192 48,870 72,225
15 macrophage 101 50 49 76
16 mik-250-20-75-1 31,408 15,160 10,350 11,222
17 mik-250-20-75-2 4185 4336 6462 7590
18 mik-250-20-75-3 5570 12,734 14,604 18,770
19 mik-250-20-75-4 145,575 56,777 85,056 59,346
20 toll-like 25,252 114,548 290,787 149,336
21 mas76 180,932 232,596 327,231 2,440,166
22 mas74 3,717,795 3,296,023 3,167,109 2,440,166
23 cod 105 83 49 47 47
24 reblock 155 1,418,057 1,518,810 2,315,210 1,544,191
25 neos 5 288,450 306,724 167,241 932,326
26 pg5 _ 34 2534 1738 3891 4182
27 mik-250-20-75-5 6030 14,242 15,572 9705
28 gen-ip036 1,668,103 1,715,837 1,646,320 2,105,963
29 mik-250-1-100.1 49,763 69,329 30,172 36,646
30 rmine 6 137843 150,624 187,319 223,924
31 sp98ic 27,739 47,291 46,401 46,401
32 neos 13 6221 3926 11,199 9622
33 sp97ic 823,181 580,500 1,001,882 1,001,882
34 cvs08r139-94 374,311 200,833 231,599 248,878

Table 3. CPU time explored vs. different threads of Cplex (seconds) of MIPLIB library

N° Problem Cplex 2 Thread Cplex 4 Thread Cplex 8 Thread Cplex 12 Thread
CPU Time 2 CPU Time 4 CPU Time 8 CPU Time 12

1 opm2-z7-s1 42 42 68 88
2 mine 90-10 68 30 25 61
3 mine 166-5 3 2 2 5
4 opm2-z6-s7 11 12 16 13
5 opm2-z7-s8 94 53 65 78
6 reblock67 156 67 48 80
7 m100n500k4r1 68 12 11 18
8 iis-100-0-cov 1329 444 305 327
9 iis-pima-cov 420 222 399 236

10 iis-glass-cov 1413 675 974 660
11 iis-hc-cov 3369 1879 1837 2226
12 glass-sc 5758 5983 12,613 18,354
13 iis-bupa-cov 3807 3202 5354 14,624
14 reblock166 175 99 58 101
15 macrophage 3 3 5 9
16 mik-250-20-75-1 7 2 2 6
17 mik-250-20-75-2 2 2 2 6
18 mik-250-20-75-3 2 2 1 6
19 mik-250-20-75-4 25 6 7 10
20 toll-like 662 439 3922 749
21 mas76 28 22 37 37
22 mas74 25,447 8395 19,801 19,142
23 cod 105 24 18 23 27
24 reblock 155 13,023 3219 6575 3647
25 neos 5 45 18 10 68



Mathematics 2023, 11, 2794 11 of 22

Table 3. Cont.

N° Problem Cplex 2 Thread Cplex 4 Thread Cplex 8 Thread Cplex 12 Thread
CPU Time 2 CPU Time 4 CPU Time 8 CPU Time 12

26 pg5 _ 34 12 6 8 13
27 mik-250-20-75-5 2 2 2 6
28 gen-ip036 213 216 189 430
29 mik-250-1-100.1 9 7 3 8
30 rmine 6 315 166 175 223
31 sp98ic 280 121 126 132
32 neos 13 76 76 92 95
33 sp97ic 11,082 2090 4132 7607
34 cvs08r139-94 2947 664 618 781

Table 4 shows the calculated predictor geometric values, which are λmin(Q), λmax(Q),
µmin, µmax, hmin(x0), and hmax(x0). It is observed that there is a group of high values of
λmax(Q), µmax, and hmax(x0). However, no relationship is observed with the values of
nodes visited, nor with CPU time.

The results of Table 4 were obtained through the development of ellipses as explained
in Section 2. It should be noted that the main difficulty in these calculations is found in
the calculation of the analytical center (Expression 7). This is because a nonlinear problem
must be solved, which was completed using Newton’s method, and it is not very efficient.
Only those problems in which the calculation of these values took less than an hour
were included.

Table 4 shows very high hmax(x0) values, which coincides in instances 21 and 22 with
low values of restrictions and variables.

Table 4. Calculated predictor geometric values from MIPLIB library

Number Instance λmax(Q) λmin(Q) µmax µmin hmax(x0) hmin(x0)

1 opm2-z7-s2 3,813,267.004 113.603 70,946,050,355.772 8.62939 3629.4604 0.00159
2 mine 90-10 2,612,605.489 57.883 295,100,968,602.422 6.70572 132,272.5031 0.000756306
3 mine 166-5 3,758,044.729 92.091 141,842,115,832.794 6.78679 293,878.6923 0.000567547
4 opm2-z6-s1 1,775,288.429 88.694 47,211,835,995.616 6.49874 2867.0993 0.002310646
5 opm2-z7-s8 5,697,695.777 113.294 70,896,040,857.244 8.61121 1200.2889 0.001615675
6 reblock67 1,051,736.618 26.380 5,573,004,555.561 2.76883 10,809.5003 0.001093823
7 m100n500k4r 10,548.397 253.667 86.709 1.99999 0.9785 0.021469971
8 iis-100-0-cov 55,742.524 10.122 1947.445 6.85897 4.9443 0.007242645
9 iis-pima-cobv 24,068.284 8.000 5569.004 2.00000 8.8993 0.006447786

10 iis-glass-cov 25,658.219 8.108 6918.311 3.87444 9.8836 0.006246341
11 iis-hc-cov 50,325.597 8.000 21,423.850 2.00000 13.8957 0.004458005
12 glass-sc 31,716.750 8.095 7730.676 3.86798 9.8953 0.00561613
13 iis-bupa-cov 16,840.575 8.000 3007.781 2.00000 6.9048 0.007710287
14 reblock166 19,423,492.776 93.083 150,648,772,421.079 6.78679 147,052.3746 0.000250464
15 macrophage 148.269 8343 80.902 2.19282 0.7500 0.24999999
16 mik-250-20-75-1 1096.500 0.002 7,346,325,551.737 2.00000 4020.9388 0.039778441
17 mik-250-20-75-2 1081.635 0.002 7,205,424,894.960 2.00000 4022.4788 0.039345742
18 mik-250-20-75-3 1048.319 0.002 7,023,485,477.638 2.00000 3987.9096 0.03950111
19 mik-250-20-75-4 1097.668 0.002 7,352,045,046.721 2.00000 3914.2160 0.0394924
20 toll-like 262.448 8.651 145.128 2.36627 0.7500 0.2499990
21 mas76 12,157.691 5.96 × 10−17 33,588,731,506.825 2.00000 923,076,932,681.455 0.099256344
22 mas74 6215.015 1.7496 × 10−15 29,517,476,806.172 1.99999 928,571,434,175.472 0.132292728
23 cod105 25,090.545 12,658.788 3138.000 2.00000 0.9911 0.008888355
24 reblock115 3,002,050.102 19.452 2,736,204,400.753 2.00061 11,185.8540 0.000635524
25 neos5 17.163 13.142 1026.000 18.00000 19.4834 0.296536577
26 pg5-34 1585.108 8.000 3,389,781.036 1.99999 153.8032 0.143846007



Mathematics 2023, 11, 2794 12 of 22

Table 4. Cont.

Number Instance λmax(Q) λmin(Q) µmax µmin hmax(x0) hmin(x0)

27 gen-ip036 1047.146 0.002 7,026,695,879.081 2.00000 3866.8373 0.03958145
28 mik-250-20-75-5 8.999 0.002 11,172.450 2.37624 282.1130 0.344303931
29 rmine6 8.002 2.0829 × 10−6 4,983,686,994.101 1.99999 99,999.3836 0.496593313
30 mik-250-1-100.1 160,625.526 59.917 4,144,778.202 3.02445 1144.7464 0.004304036
31 sp98ic 15,501,447 14.717 2,405,591.684 1.99999 2135.0939 0.039243544
32 neos13 21,435,625,658.174 213.202 39,262,984.240 1.99999 25.1548 1.10633E-05
33 sp7ic 17,032.281 14.417 3,028,596.227 1.99999 3240.2613 0.037956414
34 cv08r139-94 30,771.085 200.813 143.127 1.99999 14.9229 0.016345049

Table 5 shows the results of the MIPLIB library Model 1 (nodes), for resolutions with
different threads. When compared to other experiments with two, four, and eight threads,
the correlation values were similar. When looking at the explanatory variables’ found
values, the x1, x3, and x4 values were similar for all experiments. Table 5 shows that nodes
versus the MIPLIB library with two, four, and eight instances of threads have a statistical
F test value that shows they are statistically significant at a 95% confidence level. The
experiment with 12 nodes is significant with a 90% confidence level. All threads show
a good fit, with correlation coefficient values ranging from a 0.61 maximum value to a
0.541 minimum. Variables λmin(Q) and hmax(x0) are related to the polyhedron ellipsoid
minimum width through Proposition 4. The λmin(Q) values are similar for all threads. This
is the same as with the explanatory variable x5 = hmax(x0) coefficients. The regression
coefficients show negative values for almost all variables, except for x3 = umax. This has
positive coefficient values for all threads. We also observe that all the explanatory variables’
coefficients are negative. This shows an inverse relationship with the B&B number of nodes.
For example, the higher the λmin(Q) value, the greater the number of nodes generated, and
vice versa. Additionally, we see that the correlation between different threads’ coefficient
values is slightly different. The highest value is 0.611 and the lowest is 0.541. We must
note that this last value was seen in the regression with 12 threads, showing a test value of
F = 1.939. This indicates that the experiment is not statistically significant.

Table 5. Model 1 (node) results for resolutions with different threads in the MIPLIB library.

Regression Statistics 2 Thread Nodes 4 Thread Nodes 8 Thread Nodes 12 Thread Nodes

Multiple correlation 0.611 0.602 0.553 0.541
coefficient

test F 2.783 2.662 2.063 1.939
Remarks 34 34 34 34

Variable X1= λmax(Q) −9.986 × 10−6 −9.141 × 10−6 −1.240 × 10−5 −8.797 × 10−6

Variable X2 = λmin(Q) −18.197 −16.941 −23.072 −17.103
Variable X3 = µmax 1.820 × 10−6 1.625 × 10−6 1.553 × 10−6 1.191 × 10−6

Variable X4 = µmin −8.746 × 10−7 −7.899 × 10−7 −9.315 × 10−7 −1.329 × 10−6

Variable X5 = hmax(x0) −10,190.000 −8273.803 −20,718.455 13,965.216
Variable X6 = hmin(x0) 626,257.256 730,807.629 517,075.177 1,069,004.67

Figure 2 shows the CPU time results for different MIPLIB library problems. We used
the Cplex software with 2, 4, 8 and 12 threads. The two-threaded resolution offered the
lowest CPU time. Figure 2 data are shown in Table 2. Figure 3 shows the Cplex software
results of the nodes scanned for the MIPLIB library problems with 2, 4, 8, and 12 threads.
The two-thread resolution offered the fewest visited nodes in most cases. Figure 3 data
are shown in Table 3. In both figures, the great dispersion of values can be observed
between the different problems solved. It can also be seen that the values that give high
numbers correspond to the same resolved instances and that the different threads show
similar results.



Mathematics 2023, 11, 2794 13 of 22

Figure 2. CPU time for MIPLIB library problems.

Figure 3. Nodes scanned for MIPLIB library problems.

Table 6 shows the results of the MIPLIB library Model 2 (CPU times), for resolutions
with different threads. Taking other experiments with two, four, and eight threads, the
correlation values were similar, except for the runs with 12 threads, which showed a value
of R = 0.38. Table 6 shows that nodes versus the MIPLIB library with two, four, and eight
instances of threads had a statistical F-test value demonstrating statistical significance at a
95% confidence level. The experiment with 12 nodes was significant at a 90% confidence
level. All threads show a good fit, with correlation coefficient values ranging from a 0.63
maximum value to a 0.38 minimum. When looking at the explanatory variables’ found
values, the x1, x3, and x4 values are similar for all experiments. The λmin(Q) found values
are similar for all threads. The same is true for all explanatory variables, while the regression
coefficients show negative values for all variables. We also observed that all the explanatory
variables’ coefficients were negative. This showed an inverse relationship with the B&B
number of nodes. For example, the higher the λmin(Q) value, the greater the CPU time,
and vice versa. Additionally, we observed that the correlations between different threads’
coefficient values were slightly different. The highest value was 0.63, and the lowest was
0.38. We must note that this last value was seen in the regression with 12 threads, which
showed a test value of F = 0.804. This indicates that the experiment was not statistically
significant.



Mathematics 2023, 11, 2794 14 of 22

Table 6. Model 2 (CPU time) results for resolutions with different threads in MIPLIB library.

Regression Statistics 2 Thread Time 4 Thread Time 8 Thread Time 12 Thread Time

Multiple correlation 0.58 0.63 0.579 0.38
coefficient

test F 2.474 3.130 2.355 0.804
Remarks 34 34 34 34

Variable X1 = λmax(Q) −1.961 × 10−7 −4.445 × 10−8 −8.248 × 10−8 −1.159 × 10−7

Variable X2 = λmin(Q) −0.34 −0.08 −0.15 −0.20
Variable X3 = µmax −1.913 × 10−9 −4.851 × 10−10 −1.137 × 10−9 −1.357 × 10−9

Variable X4 = µmin −1.837 × 10−8 −5.067 × 10−9 −9.012 × 10−9 −1.318 × 10−8

Variable X5 = hmax(x0) −160.39 −23.83 −59.59 −56.69
Variable X6 = hmin(x0) −11,127.64 −2828.07 −3790.14 −7251.32

The multiple linear regression model for the best coefficient F according to the data in
Tables 5 and 6 is as follows.

Model 1: Number of nodes = 244,916.2219 − 9.986 × 10−6 x1 − 18.197 x2 + 1.820 ×
10−6 x3 − 8.746 × 10−7 x4 − 10,190.00 x5 + 626,257 x6

Model 2: CPU time = 220,408 + −4.445 × 10−8 x1 − 0.08 x2 − 4.851 × 10−10 x3 − 5.067
× 10−9 x4 − 23.83 x5 − 2828.07 x6

4.2. OR-Library Problems with MDMKP Problem Results

We solved a set of 30 problems divided into two sets of 15 problems each. We named
them Ct1 and Ct2, respectively. Table 7 shows the number of nodes of each instance of
the set Ct1 and Ct2 for different threads. Table 8 shows the CPU times in seconds for each
instance of the set ct1 and Ct2 for different threads.

Table 7. Nodes vs. different Cplex threads of the multi-demand multi-dimensional knapsack problem
(MDMKP OR-Library) set Ct1 and set Ct2 (nodes).

Set
Problem Cplex 2 Thread Cplex 4 Thread Cplex 8 Thread Cplex 12 Thread

Nodes 2 Nodes 4 Nodes 8 Nodes 12

Ct1 p1 46 23 31 44
Ct1 p2 13 8 7 23
Ct1 p3 23 14 14 27
Ct1 p4 6 3 2 5
Ct1 p5 35 14 16 20
Ct1 p6 148 51 62 83
Ct1 p7 16 8 9 17
Ct1 p8 81 21 24 44
Ct1 p9 45 25 25 41
Ct1 p10 7 5 4 7
Ct1 p11 6 5 5 9
Ct1 p12 6 4 5 10
Ct1 p13 14 9 12 18
Ct1 p14 10 7 6 225
Ct1 p15 19 13 15 20
Ct2 p1 2165 1315 754 656
Ct2 p2 436 226 182 243
Ct2 p3 35 20 23 11
Ct2 p4 246 107 82 104
Ct2 p5 976 461 427 432
Ct2 p6 5023 2196 2545 5700
Ct2 p7 1368 639 541 440
Ct2 p8 3730 1467 1798 1414



Mathematics 2023, 11, 2794 15 of 22

Table 7. Cont.

Set
Problem Cplex 2 Thread Cplex 4 Thread Cplex 8 Thread Cplex 12 Thread

Nodes 2 Nodes 4 Nodes 8 Nodes 12

Ct2 p9 6001 2914 9229 20,732
Ct2 p10 2641 827 1660 1522
Ct2 p11 1137 559 453 476
Ct2 p12 407 120 133 145
Ct2 p13 33 18 17 27
Ct2 p14 1130 415 411 445
Ct2 p15 3483 3113 3851 645

Table 8. CPU times vs. different Cplex threads of the multi-demand multi-dimensional knapsack
problem (MDMKP OR-Library) sets Ct1 and Ct2 (CPU time in seconds).

Problem
Cplex 2 Thread Cplex 4 Thread Cplex 8 Thread Cplex 12 Thread

CPU Time 2 CPU Time 4 CPU Time 8 CPU Time 12

Ct1 p1 294,370 370,529 354,355 391,377
Ct1 p2 82,096 105,689 83,213 141,773
Ct1 p3 150,846 166,753 155,003 223,589
Ct1 p4 23,424 28,788 1,385,711 28,982
Ct1 p5 177,854 190,111 176,672 171,314
Ct1 p6 1,060,425 901,951 1,096,551 931,373
Ct1 p7 101,832 101,978 109,418 128,464
Ct1 p8 611,902 317,520 321,045 509,262
Ct1 p9 362,827 422,673 380,613 490,323
Ct1 p10 34,761 49,796 41,538 41,412
Ct1 p11 37,643 53,346 58,842 45,170
Ct1 p12 33,891 40,987 68,945 44,145
Ct1 p13 90,914 107,400 131,613 115,225
Ct1 p14 64,117 74,449 58,948 125,946
Ct1 p15 124,365 163,650 183,902 155,928
Ct2 p1 12,090,448 13,819,244 11,527,542 10,447,674
Ct2 p2 2,909,347 3,608,101 3,045,452 3,623,566
Ct2 p3 2,681,96 330,824 423,069 81,786
Ct2 p4 1,610,790 1,656,464 1,385,711 14,631,259
Ct2 p5 6,097,867 7,033,626 6,156,821 6,904,771
Ct2 p6 18,649,806 18,544,436 18,656,819 18,649,806
Ct2 p7 6,323,089 6,616,805 6,210,114 6,160,737
Ct2 p8 16,071,919 15,531,813 16,578,618 16,089,911
Ct2 p9 25,154,953 23,455,342 24,639,302 28,994,168
Ct2 p10 13,818,283 11,907,287 15,849,302 15,051,050
Ct2 p11 6,560,371 7,598,282 7,379,091 6,779,751
Ct2 p12 1,855,148 1,779,310 2,112,043 1,670,868
Ct2 p13 181,362 218,802 218,258 223,567
Ct2 p14 7,086,563 7,259,420 7,398,144 7,571,377
Ct2 p15 13,782,664 14,672,784 13,406,243 9,236,575

The estimation of Models 1 and 2 was performed with the 30 results obtained from the
instances of Ct1 and Ct2. The regression results of Model 1 are shown in Table 9, and the
results of Model 2 are shown in Table 10. The first notable result is that the set regression
coefficients are values higher than 0.86 for Model 1 and 0.57 for Model 2. This is a medium–
high correlation. It can be observed that in Model 1, the values of the correlation coefficient
are high and that the F-test shows critical values lower than 1% for all the threads, which
indicates that the experiment is statistically significant for all threads. Regarding Model
2, the experiments with two and four threads show critical values lower than 1%, while
the results of experiments resolved with 8 and 12 threads present critical values higher



Mathematics 2023, 11, 2794 16 of 22

than 5%, which makes them less reliable. This is curious since it would be expected that
with more threads, the estimate would be more reliable. Finally, the most reliable model
estimating the complexity of solving an integer programming model is Model 1, since the
explained variable is the number of nodes visited by the B&B, while Model 2 uses the CPU
time and this depends on the computer used.

The multiple linear regression model for the best coefficient F according to the data in
Tables 9 and 10 is as follows.

Model 1: Number of nodes = −3.5531 × 1014 − 8516.669 x1 1,099,153.01 x2 + 0.0444 x3
+1.776 x4 − 8197.559 x5 − 200,762.974 x6 .

Model 2: CPU time = − 64,363,757,062 + −1.901 x1 + 269.798 x2 + 9.826 × 10−6 x3 +
32,181,877,396 x4 − 2.0594 x5 + 411.355 x6.

Table 9. Model 1 OR-Library problem results with MDMKP problems. Sets Ct1 and Ct2 (nodes).

Problem
Model 1 Model 1 Model 1 Model 1

Nodes 2 Thread Nodes 4 Tthread Nodes 8 Thread Nodes 12 Thread

Multiple correlation 0.7905 0.7860 0.7996 0.8126
coefficient

Remark 30 30 30 30
Test F 6.38 6.19 6.790 7.45

Critical value of F 0.0004 0.0005 0.0003 0.0001
Intercept −4.20141 × 1014 −4.63514 × 1014 −3.5531 × 1014 −5.12549 × 1014

Variable X1 = λmax(Q) −8365.365 −8091.3780 −8516.669 −12,128.824
Variable X2 = λmax(Q) 4,476,702.826 8,589,483.231 −1,099,153.01 −2,331,837.54
Variable X3 = λmin(Q) 0.0428 0,0415 0,0444 0,0530

Variable X4 = µmax 2.1007 × 1014 2.31757 × 1014 1.77655 × 1014 2.563 × 1014

Variable X5 = µmin −6563.823 −4033.059 −8197.559 −8861.325
Variable X6 = hmax(x0) −692,266.948 −2,125,303.665 −200,762.974 303,964.749

Table 10. Model 2 OR-Library problem results with MDMKP problems. Sets Ct1 and Ct2 (CPU time).

Problem
Model 2 Model 2 Model 2 Model 2

CPU Time 2 Thread CPU Time 4 Thread CPU Time 8 Thread CPU Time 12 Thread

Multiple correlation 0.762 0.628 0.578 0.591
coefficient

Remark 30 30 30 30
Test F 5.31 2.50 1.92 2.06

Critical value of F 0.0014 0.05 0.119 0.097
Intercept −64,363,757,062 −21,401,703,335 −78,486,829,134 −3173 × 1011

Variable X1 = λmax(Q) −1.901 −0.204 −1.661 −7.636
Variable X2 = λmax(Q) 269.798 3365.801 7322.201 3134.783
Variable X3 = λmin(Q) 9.826 × 10−6 2.690 × 10−6 7.498 × 10−6 2.457 × 10−5

Variable X4 = µmax 32,181,877,396 10,700,850,993 39243410216 1.586 × 1011

Variable X5 = µmin −2.0594 −0.0214 −0.3841 −3.0742
Variable X6 = hmax(x0) 411.355 41.793 946.729 1542.990

4.3. Estimated Multiple Linear Regression Model Validation

To confirm the developed models, we first calculated the determination coefficient
values corresponding to the correlation coefficient square R2. Second, we performed an
F-test value analysis of variance and obtained the corresponding critical value

R2 =
cov(y, y1)

sd(y)sd(y1)
(34)

where y is the observed value and y1. The typically used multiple correlation coefficient is
ρ =
√

R2.



Mathematics 2023, 11, 2794 17 of 22

Table 11 summarizes the implemented regression models. Each case shows the regres-
sion coefficient and its corresponding F-test value. Table 11 shows that one model only has
a linear regression coefficient above 0.5. It is Model 2 (CPU time), solved with 12 treads.
Accordingly, the F-test value is low, with a high statistical type I error. Model 1 (nodes)
shows linear regression values above 0.5, with nine of them above 0.6. Therefore, we
conclude that the used explanatory variables are adequate to explain the B&B algorithm’s
number of nodes and CPU time.

Table 11. Multiple correlation coefficients for problems of MIPLIB library.

Regression Statistics 2 Thread Nodes 4 Thread Nodes 8 Thread Nodes 12 Thread Nodes

Model 1 Miplib
Multiple correlation 0.611 0.602 0.553 0.541

coefficient
test F 2.783 2.662 2.063 1.939

Model 2 Miplib
Multiple correlation 0.58 0.63 0.579 0.38

coefficient
test F 2.474 3.130 2.355 0.804

Model 1 MDMKP
Multiple correlation 0.790 0.786 0.799 0.812

coefficient
Test F 6.38 6.19 6.790 7.45

Model 2 MDMKP
Multiple correlation 0.762 0.628 0.578 0.591

coefficient
Remark 30 30 30 30
Test F 5.31 2.50 1.92 2.06

4.4. Reliability and Generality Level

To estimate the experiments’ reliability and show their generality level, we conducted
a reliability analysis, as shown in Table 12. We considered reliability in terms of two values:
the multiple linear correlation coefficient Rho and the F-statistic. The former measures the
estimate quality determined by the explanatory variables from x1 to x6. The latter measures
the performed experiments’ reliability. Both variables complement each other, as the
experiments must be reliable and the estimation must have a high correlation. We provide
Table 12 to show the Rho and F results. The first block shows the 95% and 90% confidence
intervals of the MIPLIB public library problem instances for the Rho coefficient and the
ANOVA test F-value. The Rho and F values are random variables, in an experimental sense,
as they are the results of conducted experiments. We applied multiple linear regressions
between the explained variable nodes and the explanatory variables x1 to x6, and between
the explained variable CPU time and the explanatory variables x1 to x6.



Mathematics 2023, 11, 2794 18 of 22

Table 12. Reliability of the statistical parameter estimation process.

Database 2 Thread 4 Thread 8 Thread 12 Thread Media Standard 95% Confidence 95% Confidence 95% Confidence 90% Confidence 90% Confidence 90% Confidence
MIPLIB Nodes Nodes Nodes Nodes Deviation Interval Interval Interval Interval Interval Interval

Left Limit Right Limit Width (%) Left Limit Right Limit Width (%)

Coefficient ρ 0.611 0.602 0.553 0.541 0.576 0.0348 0.528 0.625 16.8 0.539 0.613 12.8
Statistic F 2.78 2.66 2.06 1.93 2.36 0.422 1.774 2.949 49.7 1.91 2.81 38.1

Database 2 thread 4 thread 8 thread 12 thread Media Standard 95% confidence 95% confidence 95% confidence 90% confidence 90% confidence 90% confidence
MIPLIB CPU Time CPU Time CPU Time CPU Time deviation interval interval interval interval interval interval

left limit right limit width (%) left limit right limit width (%)

Coefficient ρ 0.58 0.63 0.579 0.38 0.542 0.110 0.388 0.696 56.78 0.424 0.66 43.5
Statistic F 2 3.13 2.355 0.804 2.191 0.985 0.821 3.56 125.032 1.14 3.24 95.79

Database 2 thread 4 thread 8 thread 12 thread Media Standard 95% confidence 95% confidence 95% confidence 90% confidence 90% confidence 90% confidence
OR-Library nodes nodes nodes nodes deviation interval interval interval interval interval interval

left limit right limit width (%) left limit right limit width (%)

Coefficient ρ 0.709 0.786 0.799 0.812 0.776 0.046 0.712 0.841 16.6 0.727 0.826 12.7
Statistic F 6.38 6.19 6.79 7.45 6.70 0.557 5.927 7.487 23.1 6.1 7.29 17.7

Database 2 thread 4 thread 8 thread 12 thread Media Standard 95% confidence 95% confidence 95% confidence 90% confidence 90% confidence 90% confidence
OR-Library CPU Time CPU Time CPU Time CPU Time deviation interval interval interval interval interval interval

left limit right limit width (%) left limit right limit width (%)

Coefficient ρ 0.762 0.628 0.578 0.591 0.639 0.084 0.523 0.757 36.5 0.55 0.729 28.0
Statistic F 5.0 2.5 1.92 2.06 2.94 1.594 0.731 5.164 150.367 1.24 4.64 115.2



Mathematics 2023, 11, 2794 19 of 22

We ran a total of 34 instances of the MIPLIB library corresponding to the set covering
problem and other similar problem structures, and 30 instances of the OR-Library solving
the MDMKP problem. We solved each problem set of 34 and 30 instances using RAM types
with different numbers of operating system threads. Each thread generated one result, and
these constituted the sample, whose size was 4. As usual, we assumed that the variables
Rho and F followed an exponential distribution with unknown mean and variance. Thus,
we used Student’s t-distribution to find the critical values needed to construct confidence
intervals for the means of both variables, from the MIPLIB and OR-Library instances’ results.
The results in Table 12 show that the average value for the Rho correlation coefficient for
the explained variable nodes was 0.576 for MKIPLIB instances and 0.7776 for MDMKP
instances. Both values show that the number of explanatory variables has a good capacity
to estimate the number of nodes visited by the B&B algorithm.

The 95% confidence interval for Rho in the MIPLIB library instances, when the ex-
plained variable is the number of nodes, has a width of 16.8% with respect to the mean.
This implies that with 95% probability, the Rho value will be between 0.528 and 0.625. For
MDMKP instances, when the explained variable is the number of nodes, the confidence
interval width is 16.6% of the mean. These values show that the explanatory variables from
x1 to x6 are good predictors for the variable nodes visited by the B&B. The confidence
interval indicates that with 95% probability, the Rho values are between 0.712 and 0.841.

The average value for the Rho correlation coefficient, when the explained variable was
the CPU time, was 0.542 for MIPLIB instances and 0.639 for MDMKP instances. Both values
show a good capability to estimate the CPU time variable. The confidence interval for
this variable is 95%, with a width of 23.1% with respect to the mean for MIPLIB instances,
and 14.9% with respect to the mean for MDKMKP instances. The 90% confidence interval
shows a width of 12.8% with respect to the mean; this is narrower than the previous one
and with a lower confidence level. Table 11 shows that the number of visited nodes is an
explained variable with a better estimation capacity, which confirms the use of the B&B
node tree as a measure of computational effort.

Regarding the F-statistical analysis, Table 12 shows that its variability is low when
the explained variable is the number of nodes. The variation coefficient is 0.17 for MIPLIB
instances and 0.08 for MDKP instances. When the explained variable is the CPU time,
the values of the variation coefficient are 0.44 for MIPLIB and 0.54 for MDMKP instances.
This analysis confirms that the number of nodes estimation, using the variables x1 to x6, is
highly reliable. The CPU time estimation, with the same variables, is moderately reliable.

5. Discussion

We compared this work’s results with other researchers’ findings. We found that the
only comparable published result is that of Hendel et al., published in 2021 [20]. There is a
substantive difference from our work. Hendel et al. presented estimation methods that drew
on the results of B&B algorithm execution, whereas our estimators are applicable before
the execution of B&B. Hendel et al.’s estimation methods implemented four predictors
for the tree size using SCIP integer linear programming software [21]. These predictors
estimated the gap between the number of nodes and the unknown final tree during the
B&B algorithm’s execution. The prediction used one explanatory variable only, which was
the number of leaves of the tree. A leaf is an end node that no longer branches. The used
estimation methods included the tree weight, leaf frequency, Weighted Backtrack Estimator
(WBE), and Sum of Subtree Gaps (SSG). Each of them uses a series with double exponential
smoothing (DES). They used a level value and a trend value. The software, during the B&B
algorithm’s execution, delivered the models’ data feedings. Hendel et al. [20] applied this
to the MIPLIb 2017 library danoint instance. The results showed that the methods were
unsuccessful until the execution was partially completed. After this point, the estimation
improved, with good results after 80% execution. The prediction methods improved with
greater data availability.



Mathematics 2023, 11, 2794 20 of 22

Our linear regression method uses geometric variables to estimate the tree size and the
CPU time. It is comparable to Hendel et al.’s estimates with few iterations. Our method has
60% reliability given by the coefficient of determination. This % is higher than that of the
methods in [20], for estimates up to 66% algorithm execution. In addition, our method to
predict the B&B tree and CPU time to compute the explanatory variables is mathematically
simple. It implies calculating Q matrix eigenvalues and other low-complexity calculations.
Therefore, these complexity measures can be embedded into available software to predict
the resolution time a priori. This is a topic that has great practical importance for available
software efficiency. However, few researchers have examined the area, and there is a
restricted volume of scientific production. We found no more than 10 publications, and
most are outdated.

Finally, this study has some limitations. The first is that the results are valid for the
data obtained with the tested problems. This is a limited sample that allows us to see a
trend. It is not generalizable to a larger context, without the risk of extrapolation errors.
Another limitation is that, for some problems, obtaining the analytical solution presents
computational complications. This is because solutions are obtained via a nonlinear method,
a Newton-type method. For many problems, our algorithm to obtain the analytical center
took longer than ten hours to deliver a solution. The 10-h limitation is important because
this study provides problem complexity indicators, and if the analytical center calculation
takes a long time, it is no longer feasible to use it for these purposes.

6. Conclusions

In this work, we investigated integer programming based on the flatness theorem and
conditioning in integer programming. It was a theoretical and applied work. We developed
the measures and then implemented and tested them as B&B tree predictors. Within
the integer programming context, we developed geometric measurements to estimate
the CPU time and number of nodes visited by the B&B algorithm, based on the concept
of conditioning in integer programming. The results showed high values for multiple
correlation coefficients. The used explanatory variables came from one of the dimensions
proposed for the width of the relaxed polyhedron ellipsoid constructed with the problem’s
constraints. The explanatory variables correspond to expressions associated with a Dikin
ellipse matrix within the polyhedron that replicates the shape of the polyhedron. Here, the
analytical center was the analytical polyhedron center. One limitation of this work is the
analytical center calculation. This is because solving a nonlinear problem requires a large
amount of CPU time. In some problems, results exceed the ten-hour limit. The calculation of
the center of the polyhedron is typical of the interior point methods for linear programming,
such as the Karmakar algorithm and the ellipsoidal method, which use analysis techniques
and nonlinear programming methodology. However, this is a bottleneck when we wish to
obtain B&B effort estimation measures that need to be calculated quickly. Thus, one line
of future work is to study how to speed up the calculation of these indices, so that they
can be incorporated into linear optimization software. To achieve this, other centers of the
polyhedron can be explored, such as the center developed by the method of the central
path. This can be used directly as a feasible center of the Dikin ellipse, or it can be used to
approximate the analytic center, under certain conditions. Its solution no longer requires
solving a nonlinear problem, but a classic simplex.

Author Contributions: Conceptualization, I.D.; methodology, I.D. and J.V.; software, J.V.; validation,
I.D. and J.V.; formal analysis, M.L.; investigation, I.D. and J.V.; writing—original draft preparation,
I.D.; writing—review and editing, M.L.; visualization, M.L.; supervision, I.D.; project administration,
M.L. funding acquisition, I.D. and M.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by DICYT-USACH, Grant No. 062117DC.

Institutional Review Board Statement: Not applicable.



Mathematics 2023, 11, 2794 21 of 22

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors gratefully acknowledge the support of the University of Santiago,
Chile, and the Center of Operations Management and Operations Research CIGOMM.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Karp, R.M. Complexity of computer computation. In Reducibility among Combinatorial Problems; Springer: Berlin/Heidelberg,

Germany, 1972; pp. 85–103.
2. Skiena, S. The Algorithm Design Manual; Springer: New York, NY, USA, 1997; pp. 32–58.
3. Crescenzi, P.; Kann, V.; Halldórsson, M.; Karpinski, M.; Woeginger, G. A compendium of NP optimization problems. Braz. J. Oper.

Prod. Manag. Available online: http://www.nada.kth.se/~viggo/problemlist/compendium.html (accessed on 12 June 2023).
4. Garey, M.; Johnson, D. Computers and Intractability: A Guide to the Theory of NP-Completeness; W.H. Freeman: New York, NY,

USA, 1979.
5. Fréville, A. The multidimensional 0–1 knapsack problem: An overview. Eur. J. Oper. Res. 2004, 155, 1–21. [CrossRef]
6. Derpich, I.; Herrera, C.; Sepulveda, F.; Ubilla, H. Complexity indices for the multidimensional knapsack problem. Cent. Eur. J.

Oper. Res. 2021, 29, 589–609. [CrossRef]
7. Knuth, D. Estimating the efficiency of backtrack programs. Math. Comput. 1975, 29, 122–136. [CrossRef]
8. Purdom, P.W. Tree size by partial backtracking. SIAM J. Comput. 1978, 7, 481–491. [CrossRef]
9. Chen, P.C. Heuristic sampling: A method for predicting the performance of tree searching programs. SIAM J. Comput. 1992, 21,

295–315. [CrossRef]
10. Belov, G.; Esler, S.; Fernando, D.; Le Bodic, P.; Nemhauser, G.L. Estimating the Size of Search Trees by Sampling with Do-

main Knowledge. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17),
Melbourne, Australia, 19–25 August 2017; pp. 473–479.

11. Pierre Le Bodic, P.; Nemhauser, G.L. An Abstract Model for Branching and its Application to Mixed Integer Programming. Math.
Program. 2015, 166, 369–405. [CrossRef]

12. Lelis, L.H.; Otten, L.; Dechter, R. Predicting the size of depth-first branch and bound search trees. In Proceedings of the Twenty-
Third International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013; pp. 594–600.

13. Ozaltın, Y.; Hunsaker, B.; Schaefer, A.J. Predicting the solution time of branch-andbound algorithms for mixed-integer programs.
INFORMS J. Comput. 2011, 23, 392–403. [CrossRef]

14. Alvarez, M.; Louveaux, Q.; Wehenkel, L. A Supervised Machine Learning Approach to Variable Branching in Branch-and-
Bound. Technical Report, Universite de Liege. 2014. Available online: https://orbi.uliege.be/handle/2268/167559 (accessed on
12 June 2023).

15. Benda, F.; Braune, R.; Doerner, K.F.; Hartl, R.F. A machine learning approach for flow shop scheduling problems with alternative
resources, sequence-dependent setup times, and blocking. OR Spectr. 2019, 41, 871–893. [CrossRef]

16. Lin, J.C.; Zhu, J.L.; Wang, H.G.; Zhang, T. Learning to branch with Tree-aware Branching Transformers. Knowl.-Based Syst. 2022,
252, 109455. [CrossRef]

17. Kilby, P.; Slaney, J.; Sylvie Thiebaux, S.; Walsh, T. Estimating Search Tree Size. In Proceedings of the Twenty-First National
Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, Boston, MA,
USA, 16–20 July 2006; pp. 1–7.

18. Fischetti, M.; Monaci, M. Exploiting Erraticism in Search. Oper. Res. 2014, 62, 114–122. [CrossRef]
19. Hendel, G.; Anderson, D.; Le Bodic, P.; Pfetschd, M.E. Estimating the Size of Branch-and-Bound Trees. INFORMS J. Comput. 2021,

34, 934–952. [CrossRef]
20. Bestuzheva, K.; Besançon, M.; Wei-Kun, C.; Chmiela, A.; Donkiewicz, T.; van Doornmalen, J.; Eifler, L.; Gaul, O.; Gamrath, G.;

Gleixner, A.; et al. The SCIP Optimization Suite 8.0. 2021. Available online: https://optimization-online.org/2021/12/8728/
(accessed on 12 June 2023).

21. Renegar, J.; Belloni, A.; Freund, R.M. A geometric analysis of Renegar’s condition number, and its interplay with conic curvature.
Math. Program. 2007, 119, 95–107.

22. Vera, J. On the complexity of linear programming under finite precision arithmetic. Math. Program. 1998, 80, 91–123. [CrossRef]
23. Cai, Z.; Freund, R.M. On two measures of problem instance complexity and their correlation with the performance of SeDuMi on

second-order cone problems. Comput. Optim. Appl. 2006, 34, 299–319. [CrossRef]
24. Vera, J.; Derpich, I. Incorporando condition measures in the context of combinatorial optimization. SIAM J. Optim. 2006, 16,

965–985. [CrossRef]
25. Lenstra, H.W., Jr. Integer programming with a fixed number of variables. Math. Oper. Res. 1983, 8, 538–548. [CrossRef]
26. Koch, T.; Achterberg, T.; Andersen, E.; Bastert, O.; Berthold, T.; Bixby, R.E.; Danna, E.; Gamrath, G.; Gleixner, A.M.; Heinz, S.; et al.

MIPLIB 2010: Mixed Integer Programming Library version 5. Math. Prog. Comp. 2011, 3, 103–163. [CrossRef]

http://www.nada.kth.se/~viggo/problemlist/compendium.html
http://doi.org/10.1016/S0377-2217(03)00274-1
http://dx.doi.org/10.1007/s10100-018-0569-0
http://dx.doi.org/10.1090/S0025-5718-1975-0373371-6
http://dx.doi.org/10.1137/0207038
http://dx.doi.org/10.1137/0221022
http://dx.doi.org/10.1007/s10107-016-1101-8
http://dx.doi.org/10.1287/ijoc.1100.0405
https://orbi.uliege.be/handle/2268/167559
http://dx.doi.org/10.1007/s00291-019-00567-8
http://dx.doi.org/10.1016/j.knosys.2022.109455
http://dx.doi.org/10.1287/opre.2013.1231
http://dx.doi.org/10.1287/ijoc.2021.1103
https://optimization-online.org/2021/12/8728/
http://dx.doi.org/10.1007/BF01582132
http://dx.doi.org/10.1007/s10589-005-3911-0
http://dx.doi.org/10.1137/040609264
http://dx.doi.org/10.1287/moor.8.4.538
http://dx.doi.org/10.1007/s12532-011-0025-9


Mathematics 2023, 11, 2794 22 of 22

27. Gleixner, A.; Hendel, G.; Gamrath, G.; Achterberg, T.; Bastubbe, M.; Berthold, T.; Christophel, P.; Jarck, K.; Koch, T.;
Linderoth, J.; et al. Miplib 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library. Math. Program. Comput.
2017, 13, 443–490. [CrossRef]

28. Beasley, J.E. OR-Library: Distributing test problems by electronic mail. J. Oper. Res. Soc. 1990, 41, 1069–1072. [CrossRef]
29. Khintcine, A. A quantitative formulation of Kronecker’theory pf approximation. Izv. Ross. Akad. Nauk. Seriya Mat. 1948, 12,

113–122. (In Russian)
30. Freund, R.M.; Vera, J.R. Some characterizations and properties of the “distance to ill-posedness” and the condition measure of a

conic linear system. Math. Program. 1999, 86, 225–260. [CrossRef]
31. Jhon, F. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays; Intersciences: New York, NY, USA,

1948; pp. 187–204.
32. Schrijver, A. Chapter 14: The ellipsoid method for polyhedra more generally. In Theory of Linear and Integer Programming; Wiley

Interscience Series; John Wiley & Sons: Hoboken, NJ, USA, 1986; pp. 172–189.
33. Nesterov, Y.; Nemirosky, A. Acceleration and parallelization of the path-following interior point method for a linearly constrainde

convex quadratic problem. Siam J. Optim. 1991, 1, 548–564. [CrossRef]
34. Elhedhli, S.; Naom-Sawaya, J. Improved branching disjunctions for branch-and-bound: An analytic center approach. Eur. J. Oper.

Res. 2015, 247, 37–45. [CrossRef]
35. Micciancio, D. The shortest vector in a lattice is hard to approximate to within some constants. SIAM J. Comput. 2001, 30, 2008–2035.

[CrossRef]
36. Vazirani, V. Approximation Algorithms; Springer-Verlag: Berlin, Germany, 2001; ISBN 3-540-65367-8.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s12532-020-00194-3
http://dx.doi.org/10.1057/jors.1990.166
http://dx.doi.org/10.1007/s10107990063a
http://dx.doi.org/10.1137/0801033
http://dx.doi.org/10.1016/j.ejor.2015.05.066
http://dx.doi.org/10.1137/S0097539700373039

	Introduction
	 B&B Tree Counting Literature Review 
	Our Contribution to the Problem of Estimating the B&B Tree

	Methods and Materials
	Experimental Design
	Used Test Problems 
	 The Set Covering Problem
	The Set Packing Problem
	The Multi-Dimensional Knapsack Problem
	The Multi-Demand Multi-Dimensional Knapsack Problem


	Results 
	MIPLIB Library Test Problem Results
	OR-Library Problems with MDMKP Problem Results
	Estimated Multiple Linear Regression Model Validation
	Reliability and Generality Level

	Discussion
	Conclusions
	References

