

 mathematics-11-02794

mathematics-11-02794

Mathematics 2023, 11(13), 2794; doi:10.3390/math11132794

Article

The Set Covering and Other Problems: An Empiric Complexity Analysis Using the Minimum Ellipsoidal Width

Ivan Derpich †[image: Orcid], Juan Valencia † and Mario Lopez *

Industrial Engineering Department, Universidad de Santiago, Ave. Victor Jara 3769, Santiago 9170124, Chile

*

Correspondence: mario.lopez@usach.cl

†

These authors contributed equally to this work.

Academic Editors: Cláudio Alves and Telmo Pinto

Received: 26 April 2023 / Revised: 2 June 2023 / Accepted: 13 June 2023 / Published: 21 June 2023

Abstract

:

This research aims to explain the intrinsic difficulty of Karp’s list of twenty-one problems through the use of empirical complexity measures based on the ellipsoidal width of the polyhedron generated by the constraints of the relaxed linear programming problem. The variables used as complexity measures are the number of nodes visited by the B & B and the CPU time spent solving the problems. The measurements used as explanatory variables correspond to the Dikin ellipse eigenvalues within the polyhedron. Other variables correspond to the constraint clearance with respect to the analytical center used as the center of the ellipse. The results of these variables in terms of the number of nodes and CPU time are particularly satisfactory. They show strong correlations, above 60%, in most cases.

Keywords:

integer programming; branch and bound; combinatorial optimization; set covering problem

MSC:

90C10

1. Introduction

The NP-completeness of Karp’s 21 problems list dates back to 1972 [1]. It is a list of classical problems that meet computational complexity characteristics. Some of the list’s problems solved in this paper included the set covering problem, the set packaging problem, the knapsack multi-demand problem, and some general integer programming problems. There were statistically significant relationships between the branching and bound tree number of nodes and the resolution time. Explanatory variables included geometric measurements corresponding to an inner Dikin ellipse that replicates the shape of the linear polyhedron. The test problems used are classics in combinatorics, computer science, and computational complexity theory.

The set covering problem, also known as SCP, is an NP-complete class problem. Solutions to these problems usually consist of finding a solution set to cover, totally or partially, a set of needs at the lowest possible cost. In many cases, the distance or the response time between customers and service delivery points is critical to customer satisfaction. For example, if a building catches fire, the fire station response time is vital; the longer the delay, the greater the building damage. In this case, the SCP model ensures that at least one fire station is at a close enough distance in order for fire engines to reach the building within a certain time. Set packing is also a classic problem. It consists of packaging sets of disjoint k subsets. The problem is visibly an NP problem because, given k subsets, subsets are disjoint 2 to 2 in polynomial time [2,3]. The optimization problem consists of finding the maximum number of sets, from 2 to 2 disjoints in a list. It is a maximization problem formulated as a packaging integer programming problem, and its dual linear problem is the set cover problem [4]. The multi-dimensional knapsack (MKP) problem involves selecting a set of items to carry in a knapsack subject to one or more restrictions. These may be the knapsack weight or volume. The objective function of this problem seeks to maximize a linear function in 0–1 variables subject to knapsack constraints. Finally, the multi-dimensional and multi-demand knapsack problem is the multi-dimensional knapsack problem to which added compliance restrictions present some demand conditions [5]. The CPU time is key when solving an MIP/BIP problem using the branch and bound (B & B) algorithm. It depends on the search tree size associated with the algorithm. B & B finds the solution by recursively dividing the search space. The space is a tree where the root node is associated with the integer solution space. The brother nodes are a solution space partition of the parent node. At each node, the subspace is an MIP/BIP and its linear programming (LP) relaxation is solved to supply a linear solution. If the LP is not workable or better than the primary solution (the best integer value found), the procedure prunes the node. A previous article proposed complexity indices to estimate the B & B tree size, which applies to the multi-dimensional backpack problem [6].

1.1. B & B Tree Counting Literature Review

Knuth [7] proposed the first method to estimate the search tree size of the branch and bound (B & B) algorithm. This method works by repeatedly sampling the search tree sequence and estimating a measure of the node number to disaggregate. This calculates the B & B tree by repeatedly following random paths from the root. As the search may prove to be extensive, Purdom [8] improved the method by following more than one path from a node. Tree size was estimated by performing a partial backtracking search. This modification exponentially improves results with the tree height. Purdom called this method Partial Backtracking. Chen [9] improved Knuth’s proposed method using heuristic sampling to estimate its efficiency. This updated version produces significantly higher efficiency estimates for tree search strategies commonly used. These are depth first, breadth first, best first, and iterative deepening. Belov et al. [10] combined Knuth’s sampling procedure with the abstract B & B tree developed by Le Bodic and Nemhauser [11]. Knuth’s original method uses the distribution of node knowledge in a B & B tree by reducing the variance in tree size estimates, while Le Bodic and Nemhauser provide a theoretical B & B tree model. Belov et al. combined these two methods to obtain a significant estimation accuracy increase. According to Belov et al. and the conducted experiments, the error decreased by more than half in the a priori estimation. The abstract tree developed by Le Bodic and Nemhauser [11] is a formula based on the concept of gain by branching into any node. They use an a priori estimate of the gain obtained by branching left or right into any node. They also use what they call gap, which is the gain value that allows for obtaining the optimal integer solution via branching. Their use of the abstract tree seeks to find the best variable to branch, i.e., to obtain a tree of minimum size. Other estimation methods are the Weighted Backtrack Estimator [12], Profile Estimation [13], and the Sum of Subtree Gaps [14]. Recently, Refs. [15,16,17] developed methods based on machine learning in the context of integer programming. Fischetti in [18] proposed a classifier to predict specific points online. Finally, Hendel et al. [19] developed a new version of the old method of estimating the B & B tree. They integrated Le Bodic and Nemhauser’s [11] theoretical tree and new measures such as "leaf frequency". A leaf in the B & B tree is a node that does not dis-aggregate, and this may be because it delivers an integer solution, which is unfeasible or needs pruning. They then use this and other measures of algorithm progress using machine learning’s random forest model to estimate the size of the B & B tree. Next, they integrate this technique into the SCIP constrained integer programming software [20]. The application of these methods occurs throughout the algorithm, since they require a few iterations to start with the estimate, and there are iterations for recalculations. Its accuracy also grows as the algorithm progresses, and so does the availability of information.

1.2. Our Contribution to the Problem of Estimating the B&B Tree

Our estimation of the B & B tree research line, including the methods developed in this work, follows the conditioning concept in integer programming [21,22,23]. Vera and Derpich [24] proposed dimensions for the polyhedron width, based on m (number of constraints) and n (number of variables). The dimension used is to estimate the number of upper bounds of iterations of the B & B algorithm and the Lenstra algorithm [25]. Vera and Derpich also proposed two measures concerning the polyhedron ellipsoidal width, which are the maximum slack and a term called the “distance to ill-posedness of the integer problem”, which Vera documented in [22]. The number of iterations of the B & B algorithm’s proposed dimensions [25] corresponds to worst-case dimensions. They are similar when compared with those proposed by Le Bodic and Nemhauser [11], since both give values far from the real values obtained. Vera and Derpich’s [22] proposed dimensions basis includes concepts that reflect the shape and spatial orientation of the polyhedron. Earlier approaches do not capture these factors. Therefore, these dimensions also predict the B & B tree node number and CPU time. These are the conceptual basis of this work. The indices developed in this work use a Dikin ellipse inside the polyhedron. They show a good correlation with the B & B algorithm CPU time and the number of nodes visited. The Dikin ellipse allows for the estimation of the polyhedron ellipsoidal width, which iterates n times to estimate the B & B tree. This enables applications to new, related geometric indices, starting with the constraints of the linear programming problem generated by relaxing the integer variables. The proposed indices’ basis is the concept of polyhedron flatness. This means that if a polyhedron is thin in some direction, the B & B algorithm might run faster. In this article, we seek to test how much this idea influences the B & B tree size, characterized by the number of nodes visited and the CPU time. The underlying conjecture for the proposed experimental design is that a narrower polyhedron will be faster to cross. Therefore, the B & B tree will be smaller and vice versa, i.e., in a narrower polyhedron, the B & B tree will be larger. These new factors are related to the dimensions of the matrices associated with the polyhedron of the relaxed problem, as well as the maximum and minimum slacks with respect to the center of the ellipse. To test the relationship between these measures and the B & B tree’s number of nodes, we designed an experimental study and found a strong linear correlation. The empirical study included set covering, set packing, and other general problems of integer programming. Data came from the public library MIPLIB [26,27,28]. We also assessed the multi-demand multi-dimensional knapsack (MDMKP) problem. Data were taken from OR-Library [28].

Following this introduction, and because they support the proposed complexity indices, Section 2 develops the concepts related to the polyhedron ellipsoidal width. Section 3 presents the problems under study in mathematical formulations, which are set covering, set packing, and multi-demand multi-dimensional backpack. Section 4 presents the experimental design, detailing the test problems used and the results obtained. Section 5 presents a discussion in which the work is compared with others that are similar in some way, and, finally, Section 6 summarizes the main findings and future work.

2. Methods and Materials

Polyhedron Ellipsoidal Width

Let K be a convex set in which R n ; we define the integer width of K as follows:

 w z (K) = w (v , K)

(1)

 w (v , K) = { v T x : x ∈ K } − { v T x : x ∈ K }

(2)

If we restrict the vectors v to the Euclidean space set of unit vectors, with a unitary norm, we obtain the total width according to the coordinate axes { x 1 , x 2 , … , x n } . The integer width is a very interesting geometric measure. It is related to the existence of at least one integer point. If there is at least one integer point, this width cannot be too small. This is an important result because [29] stated that w Z (K) ≤ f (n) if K does not contain an integer point. Lenstra considered f (n) to be of the order of c o n 2 , where c 0 is a constant. The problem approach that we study in this paper is as follows.

 max : { c T x : A x ≤ b , x ≥ 0 , x ∈ Z n }

(3)

We assume that the polyhedron given by A x ≤ b is bounded and denotes the problem data with the letter d, so that d = (A , b) ∈ R m x n + m . This is the problem-specific instance. We denote by P (d) the { x : A x ≤ b } polyhedron, and by α 1 ,…, α m , { x : A x ≤ b } the row vectors of A. Next, we analyze an application of Lenstra’s flatness theorem [30]. We obtain a dimension that depends on geometry rather than dimensional factors. As in the classical flatness theorem analysis, the basis of the estimate lies in rounding the polyhedron using inscribed and circumscribed ellipses. Ellipses are intended to interpret the polyhedron shape with certainty. Therefore, let us build a pair of ellipses with a common center x 0 .

 E = { x ∈ R n : (x − x 0) T Q (x − x 0) ≤ 1 }

(4)

and

 E ′ = { x ∈ R n : (x − y) T Q (x − y) ≤ γ 2 }

(5)

so that

 E ⊂ P (d) ⊂ E ′

(6)

where Q is a definite positive matrix. The matrices have different possibilities, depending on the value of γ . John proposes [31] an ellipse E ’ with minimal volume by making γ = n However, computing x 0 becomes a hard problem. We use an approach based on the classic setup of interior point methods in convex linear optimization [32]. Suppose that we know a self-concordant barrier function Φ , on a convex body, with parameter v as in Nesterov and Nemirosky [33]. Then, let

 x 0 = a r g m i n { Φ (x) : x ∈ i n t P (d) }

(7)

Let Q = ∇ 2 Φ (x 0) and E be a unit radius inner ellipse, known as a Dikin ellipse. Thus, if we take γ = m + 1 , for example, we use the traditional logarithmic barrier function

 Φ (x) = − ∑ i = 1 n l o g (b i − α i t x) ,

with v = m . The point x 0 is the K = P (d) analytical center and the matrix Q is

 Q = A T D (x 0) − 2 A

(8)

with

 D (x) = d i a g (b 1 − α 1 T x , b 2 − α 2 T x , … , b m − α m T x)

(9)

where d i a g () denotes a diagonal matrix constructed with the corresponding elements. The fact that the matrix Q naturally connects with the polyhedron’s geometric properties justifies the ellipsis construction choice. The following is the ellipses’ geometrical result.

Proposition 1.

Let Q be a positively defined symmetric real matrix by defining a pair of ellipses as in (4). Then,

 W z (P (d)) ≤ 2 (m + 1) m i n (u t Q − 1 u) : u ϵ Z n , u ≠ 0

(10)

Demonstration.

The term m i n (u t Q − 1 u) is ellipse E’s radius, according to the direction u.

2 m i n (u t Q − 1 u) is the ellipse E’s width, according to vector u.

Multiplying by (m + 1) , we obtain the expanded ellipse E ′ .

Then, 2 m i n (u t Q − 1 u) is ellipse E ′ ’s width, according to the vector u.

The value 2 m i n (u t Q − 1 u) is greater than the polyhedron P (d) ’s width, according to vector u ■ .

Proposition 2.

Let v 1 , … , v n be the positive definite matrix Q orthonormal eigenvectors, and λ m i n be the smallest eigenvalue of Q. Then, for any u ∈ R n ,

 u T Q − 1 u ≤ (1 λ m i n) ∑ i = 1 n v i T u 2

(11)

Demonstration.

Since Q is symmetric and defined as positive, the result comes from the fact that

 Q − 1 = ∑ i = 1 n 1 λ i v i v i T

It follows that

 u T Q − 1 u = ∑ i = 1 n 1 λ i (u T v i) 2

Then, taking the minimum eigenvalue, we have

 u T Q − 1 u ≤ ∑ i = 1 n 1 λ m i n v i T u 2 ■

Because we use it in our analysis, we describe the result of Vera [22], which relates the matrix Q eigenvalues to the matrix A T A eigenvalues and other data.

Proposition 3.

Let Q = A T D (x 0) − 2 A with D (x) = d i a g (b 1 − α 1 T x , … , b n − α m T) , b i − α i T > 0 , i = 1 , … , m . Let λ m i n and λ m a x be the smallest and largest Q eigenvalues, respectively. Let μ m i n and μ m a x be the smallest and largest A T A eigenvalues, respectively. Additionally, let h m a x be the highest and lowest D (x) values. Then, it fulfills

 λ m i n ≥ μ m i n (h m a x (x 0)) 2

(12)

 λ m a x ≥ μ m a x (h m i n (x 0)) 2

(13)

Demonstration [22,24].

Proposition 4.

Let λ i and v i be the matrix Q eigenvalues and eigenvectors, respectively, i = 1 , … , n Let u be a possible solution. Then, we have the following:

 w (u , P (d)) ≤ 2 (m + 1) ∥ v m a x ∥ 2 h m a x (x 0) u m i n

(14)

Demonstration.

From Proposition 1’s demonstration, we have

 W z (P (d)) ≤ 2 (m + 1) m i n (u t Q − 1 u) : u ϵ Z n , u ≠ 0

(15)

From Proposition 2, we have

 u T Q − 1 u ≤ (1 λ m i n) ∑ i = 1 n v i T u 2

(16)

Taking an upper bound with a norm-2 higher eigenvector, we have

 ∑ i = 1 n (v i T u) 2 ≤ ∑ i = 1 n (v m a x T u) 2

(17)

Assuming that ∥ u ∥ ∞ ≤ 1 , then

 ∑ i = 1 n (v i T u) 2 ≤ ∑ i = 1 n (v m a x T u) 2 ≤ ∥ v m a x ∥ 2 2

(18)

Additionally, from Proposition 3, we have

 1 λ m i n ≤ (h m a x (x 0)) 2 u m i n

(19)

 w (u , P (d)) ≤ 2 (m + 1) (1 λ m i n) ∑ i = 1 n (v i T u) 2 ≤ 2 (m + 1) h m a x (x 0) u m i n ∥ v m a x ∥ 2 ■

(20)

In a previous paper, Ref. [34] built a disjunction to branch variables in the B & B , based on the associated linear polyhedron ellipsoidal. This simultaneously branches various variables, as if it was a super ruler that uses ellipsoidal width u T Q − 1 u . This rule proved to be more efficient than the known strong branching rule. The latter often leads to a smaller search tree, although it requires much more time to select branching variables. Figure 1 shows the ellipses used, in an exponential rounding approach, where Q is a positive definite matrix. This is a shortest vector problem version. Micciancio [35] considers it a difficult problem. We use Proposition 4 as a dimension only. Therefore, we do not solve it optimally. However, we use an upper bound of the optimal value, which captures some aspects of the original problem that reproduce the intrinsic difficulty of a particular instance. Based on Proposition 4, we propose the next dimension related to polyhedron P (d) ’s geometry.

3. Experimental Design

This section describes the experimental design and shows the mathematical structure of the test problem considered, which is part of Karp’s list. The previous section found the variables related to geometric aspects. On this basis, a linear search established relationships between these variables. Additionally, two measures were related to the B & B tree, which were the number of explored nodes and the algorithm’s CPU time. Thus, the relationship searching work is fully experimental, and the results relate to the test problems only. They are not generalizable to other cases without re-running a similar experiment. The statistical model employed is a multiple regression model that uses the ANOVA test, using the F statistic to validate the overall model significance. The explained variables are the following:

	
The solved instance CPU time, using the B & B algorithm.

	
The number of nodes scanned by the B & B algorithm.

The explanatory variables studied were x i , i = 1 , 2 , 3 , 4 , 5 , 6 as follows:

	
 λ m a x (Q) is the maximum eigenvalue of the matrix Q = A T H (x o) − 2 A ;

	
 λ m i n (Q) is the minimum eigenvalue of the matrix Q = A T H (x o) − 2 A ;

	
 μ m a x is the maximum eigenvalue of the matrix A T A ;

	
 μ m i n is the minimum eigenvalue of the matrix A T A ;

	
 h m a x (x 0) = m a x i { b i − α i T x 0 } is the maximum slack to the center x 0 ;

	
 h m i n (x 0) = m i n i { b i − α i T x 0 } is the minimum slack to the center x 0 .

We constructed two multiple regression models, named Model 1 and Model 2. The first uses the CPU time as the explained variable. The second model uses the number of nodes as the explained variable. The models are as follows:

Model 1: Number of nodes = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 + β 4 x 4 + β 5 x 5 + β 6 x 6

Model 2: CPU time = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 + β 4 x 4 + β 5 x 5 + β 6 x 6

3.1. Used Test Problems

3.1.1. The Set Covering Problem

This problem seeks to find the minimum number of variables with which to cover all sets at least once. [35,36] provided a formal definition. Let us look at this problem through an example. Suppose that we must cover with antennas a set of geographical areas in a city. Then, we define x j as a binary variable, i.e., 1 if an antenna is located in the area and 0 otherwise. Installing an antenna in area j has the cost c j ≥ 0 and c j ∈ R n . There are n geographical areas. Then, j = 1 , … , n . Formally, the set covering problem is expressed as follows:

 m i n z = ∑ j = 1 n c j x j

(21)

subject to

 ∑ j = 1 n x j ≥ 1 , ∀ j

(22)

 x j = { 1 i f a n a n t e n n a i s i n t h e a r e a j 0 o t h e r w i s e

(23)

 M j : areas served by an antenna located in area J.

3.1.2. The Set Packing Problem

Varizani [36] formulated the maximum set packing integer linear program as follows:

 m a x = ∑ s ∈ S x S

(24)

subject to

 ∑ s ∈ S x S ≤ 1 ∀ e ∈ U

(25)

 x S ∈ { 0 , 1 } s ∈ S

(26)

where U is the cover set.

3.1.3. The Multi-Dimensional Knapsack Problem

All coefficients are non-negative. More precisely, we can assume, without loss of generality, c j ≥ 0 , b i ≥ 0 and ∑ j = 1 n a i j ≤ b i , ∀ i ∈ M Furthermore, any MKP with at least one of the parameters a i j equal to 0 may be replaced by an equivalent MKP with positive parameters, i.e., both problems have the same feasible solutions [29].

 z = m a x ∑ j = 1 n c j x j

(27)

subject to

 ∑ j = 1 n a i j x j ≤ b i ∀ i ∈ M = { 1 , … , m } ,

(28)

 x j ∈ { 0 , 1 } ∀ j ∈ N = { 1 , … , n } ,

(29)

3.1.4. The Multi-Demand Multi-Dimensional Knapsack Problem

This problem comes from OR-Library and Beasley documented it in 1990. There are nine data files: MDMKPC T1,…, MDMKPC T9. Each file has fifteen instances. In total, there are 90 test problems, which are the test problems of [29]. The MDMKP problem to solve is

 z = m a x ∑ j = 1 n c j x j

(30)

subject to

 ∑ j = 1 n a i j x j ≤ b i ∀ i = 1 , … , m

(31)

 ∑ j = 1 n a i j x j ≤ b i ∀ i = m + 1 , m + 2 , … , m + q

(32)

 x j ∈ { 0 , 1 } ∀ j ∈ N = { 1 , … , n } ,

(33)

MDMKP instances result from appropriately modifying the MKP instances resolved in each combination cost type (either positive or mixed), and q number of constraints = (q = 1, q = m / 2 and q = m , respectively). Number of test problems (K = 15), 6 cost coefficients c j , j = 1 , … , n . The first 3 correspond to the positive cost case for q = 1 , q = m / 2 and q = m ≥ constraints, respectively. The last 3 correspond to the mixed cost case for q = 1 , q = m / 2 and q = m ≥ constraints, respectively [29].

We took the test problems from two public libraries, MIPLIB and OR-Library. Table 1 shows problems from the MIPLIB library. There are binary and MIP programs, as well as other types of problems. The considered problems are knapsack, set covering, set packing, and other problems. The test problems from OR-Library correspond to the multi-dimensional knapsack problem and the multi-demand and multi-dimensional knapsack problem.

4. Results

Table 1 shows the problems solved using the MIPLIB library. These were inequality-type constraint problems. They included set covering, set packing, knapsack multi-dimensional, knapsack multi-dimensional and multi-demand, general integer, binary, and integer. It should be noted that some resolution times were lengthy.

4.1. MIPLIB Library Test Problem Results

Table 2 and Table 3 show the results of the nodes and CPU times obtained by solving the problems optimally with different threads for instances of the MIPLIB library. The most time-consuming problem was mas74, which took 25,447 s to solve with two threads.

High CPU times coincide with the number of highly scanned nodes, which is a sign of the consistency of the results. However, the average CPU time per node scanned is 0.017 s, with a standard deviation of 0.0631. This gives a coefficient of variation of 3.7, which indicates that these results are highly dispersed. The average number of restrictions of the instances is 5850.82 and the average number of variables is 1521.11, while the standard deviation is 8390.56 and 2711.22, respectively. This gives coefficients of variation of 1.43 and 1.78, respectively, for constraints and variables. Comparing these dispersions with the CPU time/node results, it can be concluded that the instances are less dispersed than the resolution results.

Table 4 shows the calculated predictor geometric values, which are λ m i n (Q) , λ m a x (Q) , μ m i n , μ m a x , h m i n (x 0) , and h m a x (x 0) . It is observed that there is a group of high values of λ m a x (Q) , μ m a x , and h m a x (x 0) . However, no relationship is observed with the values of nodes visited, nor with CPU time.

The results of Table 4 were obtained through the development of ellipses as explained in Section 2. It should be noted that the main difficulty in these calculations is found in the calculation of the analytical center (Expression 7). This is because a nonlinear problem must be solved, which was completed using Newton’s method, and it is not very efficient. Only those problems in which the calculation of these values took less than an hour were included.

Table 4 shows very high h m a x (x 0) values, which coincides in instances 21 and 22 with low values of restrictions and variables.

Table 5 shows the results of the MIPLIB library Model 1 (nodes), for resolutions with different threads. When compared to other experiments with two, four, and eight threads, the correlation values were similar. When looking at the explanatory variables’ found values, the x 1 , x 3 , and x 4 values were similar for all experiments. Table 5 shows that nodes versus the MIPLIB library with two, four, and eight instances of threads have a statistical F test value that shows they are statistically significant at a 95% confidence level. The experiment with 12 nodes is significant with a 90% confidence level. All threads show a good fit, with correlation coefficient values ranging from a 0.61 maximum value to a 0.541 minimum. Variables λ m i n (Q) and h m a x (x 0) are related to the polyhedron ellipsoid minimum width through Proposition 4. The λ m i n (Q) values are similar for all threads. This is the same as with the explanatory variable x 5 = h m a x (x 0) coefficients. The regression coefficients show negative values for almost all variables, except for x 3 = u m a x . This has positive coefficient values for all threads. We also observe that all the explanatory variables’ coefficients are negative. This shows an inverse relationship with the B & B number of nodes. For example, the higher the λ m i n (Q) value, the greater the number of nodes generated, and vice versa. Additionally, we see that the correlation between different threads’ coefficient values is slightly different. The highest value is 0.611 and the lowest is 0.541. We must note that this last value was seen in the regression with 12 threads, showing a test value of F = 1.939 . This indicates that the experiment is not statistically significant.

Figure 2 shows the CPU time results for different MIPLIB library problems. We used the Cplex software with 2, 4, 8 and 12 threads. The two-threaded resolution offered the lowest CPU time. Figure 2 data are shown in Table 2. Figure 3 shows the Cplex software results of the nodes scanned for the MIPLIB library problems with 2, 4, 8, and 12 threads. The two-thread resolution offered the fewest visited nodes in most cases. Figure 3 data are shown in Table 3. In both figures, the great dispersion of values can be observed between the different problems solved. It can also be seen that the values that give high numbers correspond to the same resolved instances and that the different threads show similar results.

Table 6 shows the results of the MIPLIB library Model 2 (CPU times), for resolutions with different threads. Taking other experiments with two, four, and eight threads, the correlation values were similar, except for the runs with 12 threads, which showed a value of R = 0.38. Table 6 shows that nodes versus the MIPLIB library with two, four, and eight instances of threads had a statistical F-test value demonstrating statistical significance at a 95% confidence level. The experiment with 12 nodes was significant at a 90% confidence level. All threads show a good fit, with correlation coefficient values ranging from a 0.63 maximum value to a 0.38 minimum. When looking at the explanatory variables’ found values, the x1, x3, and x4 values are similar for all experiments. The λ m i n (Q) found values are similar for all threads. The same is true for all explanatory variables, while the regression coefficients show negative values for all variables. We also observed that all the explanatory variables’ coefficients were negative. This showed an inverse relationship with the B & B number of nodes. For example, the higher the λ m i n (Q) value, the greater the CPU time, and vice versa. Additionally, we observed that the correlations between different threads’ coefficient values were slightly different. The highest value was 0.63, and the lowest was 0.38. We must note that this last value was seen in the regression with 12 threads, which showed a test value of F = 0.804. This indicates that the experiment was not statistically significant.

The multiple linear regression model for the best coefficient F according to the data in Table 5 and Table 6 is as follows.

Model 1: Number of nodes = 244,916.2219 − 9.986 × 10 − 6 x 1 − 18.197 x 2 + 1.820 × 10 − 6 x 3 − 8.746 × 10 − 7 x 4 − 10,190.00 x 5 + 626,257 x 6

Model 2: CPU time = 220,408 + −4.445 × 10 − 8 x 1 − 0.08 x 2 − 4.851 × 10 − 10 x 3 − 5.067 × 10 − 9 x 4 − 23.83 x 5 − 2828.07 x 6

4.2. OR-Library Problems with MDMKP Problem Results

We solved a set of 30 problems divided into two sets of 15 problems each. We named them C t 1 and C t 2 , respectively. Table 7 shows the number of nodes of each instance of the set C t 1 and C t 2 for different threads. Table 8 shows the CPU times in seconds for each instance of the set c t 1 and C t 2 for different threads.

The estimation of Models 1 and 2 was performed with the 30 results obtained from the instances of Ct1 and Ct2. The regression results of Model 1 are shown in Table 9, and the results of Model 2 are shown in Table 10. The first notable result is that the set regression coefficients are values higher than 0.86 for Model 1 and 0.57 for Model 2. This is a medium–high correlation. It can be observed that in Model 1, the values of the correlation coefficient are high and that the F-test shows critical values lower than 1% for all the threads, which indicates that the experiment is statistically significant for all threads. Regarding Model 2, the experiments with two and four threads show critical values lower than 1%, while the results of experiments resolved with 8 and 12 threads present critical values higher than 5%, which makes them less reliable. This is curious since it would be expected that with more threads, the estimate would be more reliable. Finally, the most reliable model estimating the complexity of solving an integer programming model is Model 1, since the explained variable is the number of nodes visited by the B & B , while Model 2 uses the CPU time and this depends on the computer used.

The multiple linear regression model for the best coefficient F according to the data in Table 9 and Table 10 is as follows.

Model 1: Number of nodes = −3.5531 × 10 14 − 8516.669 x 1 1,099,153.01 x 2 + 0.0444 x 3 +1.776 x 4 − 8197.559 x 5 − 200,762.974 x 6 .

Model 2: CPU time = − 64,363,757,062 + −1.901 x 1 + 269.798 x 2 + 9.826 × 10 − 6 x 3 + 32,181,877,396 x 4 − 2.0594 x 5 + 411.355 x 6 .

4.3. Estimated Multiple Linear Regression Model Validation

To confirm the developed models, we first calculated the determination coefficient values corresponding to the correlation coefficient square R 2 . Second, we performed an F-test value analysis of variance and obtained the corresponding critical value

 R 2 = c o v (y , y 1) s d (y) s d (y 1)

(34)

where y is the observed value and y 1 . The typically used multiple correlation coefficient is ρ = R 2 .

Table 11 summarizes the implemented regression models. Each case shows the regression coefficient and its corresponding F-test value. Table 11 shows that one model only has a linear regression coefficient above 0.5. It is Model 2 (CPU time), solved with 12 treads. Accordingly, the F-test value is low, with a high statistical type I error. Model 1 (nodes) shows linear regression values above 0.5, with nine of them above 0.6. Therefore, we conclude that the used explanatory variables are adequate to explain the B & B algorithm’s number of nodes and CPU time.

4.4. Reliability and Generality Level

To estimate the experiments’ reliability and show their generality level, we conducted a reliability analysis, as shown in Table 12. We considered reliability in terms of two values: the multiple linear correlation coefficient Rho and the F-statistic. The former measures the estimate quality determined by the explanatory variables from x 1 to x 6 . The latter measures the performed experiments’ reliability. Both variables complement each other, as the experiments must be reliable and the estimation must have a high correlation. We provide Table 12 to show the Rho and F results. The first block shows the 95% and 90% confidence intervals of the MIPLIB public library problem instances for the Rho coefficient and the ANOVA test F-value. The Rho and F values are random variables, in an experimental sense, as they are the results of conducted experiments. We applied multiple linear regressions between the explained variable nodes and the explanatory variables x 1 to x 6 , and between the explained variable CPU time and the explanatory variables x 1 to x 6 .

We ran a total of 34 instances of the MIPLIB library corresponding to the set covering problem and other similar problem structures, and 30 instances of the OR-Library solving the MDMKP problem. We solved each problem set of 34 and 30 instances using RAM types with different numbers of operating system threads. Each thread generated one result, and these constituted the sample, whose size was 4. As usual, we assumed that the variables Rho and F followed an exponential distribution with unknown mean and variance. Thus, we used Student’s t-distribution to find the critical values needed to construct confidence intervals for the means of both variables, from the MIPLIB and OR-Library instances’ results. The results in Table 12 show that the average value for the Rho correlation coefficient for the explained variable nodes was 0.576 for MKIPLIB instances and 0.7776 for MDMKP instances. Both values show that the number of explanatory variables has a good capacity to estimate the number of nodes visited by the B & B algorithm.

The 95% confidence interval for Rho in the MIPLIB library instances, when the explained variable is the number of nodes, has a width of 16.8% with respect to the mean. This implies that with 95% probability, the Rho value will be between 0.528 and 0.625. For MDMKP instances, when the explained variable is the number of nodes, the confidence interval width is 16.6% of the mean. These values show that the explanatory variables from x 1 to x 6 are good predictors for the variable nodes visited by the B & B . The confidence interval indicates that with 95% probability, the Rho values are between 0.712 and 0.841.

The average value for the Rho correlation coefficient, when the explained variable was the CPU time, was 0.542 for MIPLIB instances and 0.639 for MDMKP instances. Both values show a good capability to estimate the CPU time variable. The confidence interval for this variable is 95%, with a width of 23.1% with respect to the mean for MIPLIB instances, and 14.9% with respect to the mean for MDKMKP instances. The 90% confidence interval shows a width of 12.8% with respect to the mean; this is narrower than the previous one and with a lower confidence level. Table 11 shows that the number of visited nodes is an explained variable with a better estimation capacity, which confirms the use of the B&B node tree as a measure of computational effort.

Regarding the F-statistical analysis, Table 12 shows that its variability is low when the explained variable is the number of nodes. The variation coefficient is 0.17 for MIPLIB instances and 0.08 for MDKP instances. When the explained variable is the CPU time, the values of the variation coefficient are 0.44 for MIPLIB and 0.54 for MDMKP instances. This analysis confirms that the number of nodes estimation, using the variables x 1 to x 6 , is highly reliable. The CPU time estimation, with the same variables, is moderately reliable.

5. Discussion

We compared this work’s results with other researchers’ findings. We found that the only comparable published result is that of Hendel et al., published in 2021 [20]. There is a substantive difference from our work. Hendel et al. presented estimation methods that drew on the results of B & B algorithm execution, whereas our estimators are applicable before the execution of B & B . Hendel et al.’s estimation methods implemented four predictors for the tree size using SCIP integer linear programming software [21]. These predictors estimated the gap between the number of nodes and the unknown final tree during the B & B algorithm’s execution. The prediction used one explanatory variable only, which was the number of leaves of the tree. A leaf is an end node that no longer branches. The used estimation methods included the tree weight, leaf frequency, Weighted Backtrack Estimator (WBE), and Sum of Subtree Gaps (SSG). Each of them uses a series with double exponential smoothing (DES). They used a level value and a trend value. The software, during the B & B algorithm’s execution, delivered the models’ data feedings. Hendel et al. [20] applied this to the MIPLIb 2017 library danoint instance. The results showed that the methods were unsuccessful until the execution was partially completed. After this point, the estimation improved, with good results after 80% execution. The prediction methods improved with greater data availability.

Our linear regression method uses geometric variables to estimate the tree size and the CPU time. It is comparable to Hendel et al.’s estimates with few iterations. Our method has 60% reliability given by the coefficient of determination. This % is higher than that of the methods in [20], for estimates up to 66% algorithm execution. In addition, our method to predict the B & B tree and CPU time to compute the explanatory variables is mathematically simple. It implies calculating Q matrix eigenvalues and other low-complexity calculations. Therefore, these complexity measures can be embedded into available software to predict the resolution time a priori. This is a topic that has great practical importance for available software efficiency. However, few researchers have examined the area, and there is a restricted volume of scientific production. We found no more than 10 publications, and most are outdated.

Finally, this study has some limitations. The first is that the results are valid for the data obtained with the tested problems. This is a limited sample that allows us to see a trend. It is not generalizable to a larger context, without the risk of extrapolation errors. Another limitation is that, for some problems, obtaining the analytical solution presents computational complications. This is because solutions are obtained via a nonlinear method, a Newton-type method. For many problems, our algorithm to obtain the analytical center took longer than ten hours to deliver a solution. The 10-h limitation is important because this study provides problem complexity indicators, and if the analytical center calculation takes a long time, it is no longer feasible to use it for these purposes.

6. Conclusions

In this work, we investigated integer programming based on the flatness theorem and conditioning in integer programming. It was a theoretical and applied work. We developed the measures and then implemented and tested them as B & B tree predictors. Within the integer programming context, we developed geometric measurements to estimate the CPU time and number of nodes visited by the B & B algorithm, based on the concept of conditioning in integer programming. The results showed high values for multiple correlation coefficients. The used explanatory variables came from one of the dimensions proposed for the width of the relaxed polyhedron ellipsoid constructed with the problem’s constraints. The explanatory variables correspond to expressions associated with a Dikin ellipse matrix within the polyhedron that replicates the shape of the polyhedron. Here, the analytical center was the analytical polyhedron center. One limitation of this work is the analytical center calculation. This is because solving a nonlinear problem requires a large amount of CPU time. In some problems, results exceed the ten-hour limit. The calculation of the center of the polyhedron is typical of the interior point methods for linear programming, such as the Karmakar algorithm and the ellipsoidal method, which use analysis techniques and nonlinear programming methodology. However, this is a bottleneck when we wish to obtain B & B effort estimation measures that need to be calculated quickly. Thus, one line of future work is to study how to speed up the calculation of these indices, so that they can be incorporated into linear optimization software. To achieve this, other centers of the polyhedron can be explored, such as the center developed by the method of the central path. This can be used directly as a feasible center of the Dikin ellipse, or it can be used to approximate the analytic center, under certain conditions. Its solution no longer requires solving a nonlinear problem, but a classic simplex.

Author Contributions

Conceptualization, I.D.; methodology, I.D. and J.V.; software, J.V.; validation, I.D. and J.V.; formal analysis, M.L.; investigation, I.D. and J.V.; writing—original draft preparation, I.D.; writing—review and editing, M.L.; visualization, M.L.; supervision, I.D.; project administration, M.L. funding acquisition, I.D. and M.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by DICYT-USACH, Grant No. 062117DC.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors gratefully acknowledge the support of the University of Santiago, Chile, and the Center of Operations Management and Operations Research CIGOMM.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Karp, R.M. Complexity of computer computation. In Reducibility among Combinatorial Problems; Springer: Berlin/Heidelberg, Germany, 1972; pp. 85–103. [Google Scholar]

	

Skiena, S. The Algorithm Design Manual; Springer: New York, NY, USA, 1997; pp. 32–58. [Google Scholar]

	

Crescenzi, P.; Kann, V.; Halldórsson, M.; Karpinski, M.; Woeginger, G. A compendium of NP optimization problems. Braz. J. Oper. Prod. Manag. Available online: http://www.nada.kth.se/~viggo/problemlist/compendium.html (accessed on 12 June 2023).

	

Garey, M.; Johnson, D. Computers and Intractability: A Guide to the Theory of NP-Completeness; W.H. Freeman: New York, NY, USA, 1979. [Google Scholar]

	

Fréville, A. The multidimensional 0–1 knapsack problem: An overview. Eur. J. Oper. Res. 2004, 155, 1–21. [Google Scholar] [CrossRef]

	

Derpich, I.; Herrera, C.; Sepulveda, F.; Ubilla, H. Complexity indices for the multidimensional knapsack problem. Cent. Eur. J. Oper. Res. 2021, 29, 589–609. [Google Scholar] [CrossRef]

	

Knuth, D. Estimating the efficiency of backtrack programs. Math. Comput. 1975, 29, 122–136. [Google Scholar] [CrossRef]

	

Purdom, P.W. Tree size by partial backtracking. SIAM J. Comput. 1978, 7, 481–491. [Google Scholar] [CrossRef]

	

Chen, P.C. Heuristic sampling: A method for predicting the performance of tree searching programs. SIAM J. Comput. 1992, 21, 295–315. [Google Scholar] [CrossRef]

	

Belov, G.; Esler, S.; Fernando, D.; Le Bodic, P.; Nemhauser, G.L. Estimating the Size of Search Trees by Sampling with Domain Knowledge. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17), Melbourne, Australia, 19–25 August 2017; pp. 473–479. [Google Scholar]

	

Pierre Le Bodic, P.; Nemhauser, G.L. An Abstract Model for Branching and its Application to Mixed Integer Programming. Math. Program. 2015, 166, 369–405. [Google Scholar] [CrossRef]

	

Lelis, L.H.; Otten, L.; Dechter, R. Predicting the size of depth-first branch and bound search trees. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013; pp. 594–600. [Google Scholar]

	

Ozaltın, Y.; Hunsaker, B.; Schaefer, A.J. Predicting the solution time of branch-andbound algorithms for mixed-integer programs. INFORMS J. Comput. 2011, 23, 392–403. [Google Scholar] [CrossRef]

	

Alvarez, M.; Louveaux, Q.; Wehenkel, L. A Supervised Machine Learning Approach to Variable Branching in Branch-and-Bound. Technical Report, Universite de Liege. 2014. Available online: https://orbi.uliege.be/handle/2268/167559 (accessed on 12 June 2023).

	

Benda, F.; Braune, R.; Doerner, K.F.; Hartl, R.F. A machine learning approach for flow shop scheduling problems with alternative resources, sequence-dependent setup times, and blocking. OR Spectr. 2019, 41, 871–893. [Google Scholar] [CrossRef]

	

Lin, J.C.; Zhu, J.L.; Wang, H.G.; Zhang, T. Learning to branch with Tree-aware Branching Transformers. Knowl.-Based Syst. 2022, 252, 109455. [Google Scholar] [CrossRef]

	

Kilby, P.; Slaney, J.; Sylvie Thiebaux, S.; Walsh, T. Estimating Search Tree Size. In Proceedings of the Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, Boston, MA, USA, 16–20 July 2006; pp. 1–7. [Google Scholar]

	

Fischetti, M.; Monaci, M. Exploiting Erraticism in Search. Oper. Res. 2014, 62, 114–122. [Google Scholar] [CrossRef]

	

Hendel, G.; Anderson, D.; Le Bodic, P.; Pfetschd, M.E. Estimating the Size of Branch-and-Bound Trees. INFORMS J. Comput. 2021, 34, 934–952. [Google Scholar] [CrossRef]

	

Bestuzheva, K.; Besançon, M.; Wei-Kun, C.; Chmiela, A.; Donkiewicz, T.; van Doornmalen, J.; Eifler, L.; Gaul, O.; Gamrath, G.; Gleixner, A.; et al. The SCIP Optimization Suite 8.0. 2021. Available online: https://optimization-online.org/2021/12/8728/ (accessed on 12 June 2023).

	

Renegar, J.; Belloni, A.; Freund, R.M. A geometric analysis of Renegar’s condition number, and its interplay with conic curvature. Math. Program. 2007, 119, 95–107. [Google Scholar]

	

Vera, J. On the complexity of linear programming under finite precision arithmetic. Math. Program. 1998, 80, 91–123. [Google Scholar] [CrossRef]

	

Cai, Z.; Freund, R.M. On two measures of problem instance complexity and their correlation with the performance of SeDuMi on second-order cone problems. Comput. Optim. Appl. 2006, 34, 299–319. [Google Scholar] [CrossRef]

	

Vera, J.; Derpich, I. Incorporando condition measures in the context of combinatorial optimization. SIAM J. Optim. 2006, 16, 965–985. [Google Scholar] [CrossRef]

	

Lenstra, H.W., Jr. Integer programming with a fixed number of variables. Math. Oper. Res. 1983, 8, 538–548. [Google Scholar] [CrossRef]

	

Koch, T.; Achterberg, T.; Andersen, E.; Bastert, O.; Berthold, T.; Bixby, R.E.; Danna, E.; Gamrath, G.; Gleixner, A.M.; Heinz, S.; et al. MIPLIB 2010: Mixed Integer Programming Library version 5. Math. Prog. Comp. 2011, 3, 103–163. [Google Scholar] [CrossRef]

	

Gleixner, A.; Hendel, G.; Gamrath, G.; Achterberg, T.; Bastubbe, M.; Berthold, T.; Christophel, P.; Jarck, K.; Koch, T.; Linderoth, J.; et al. Miplib 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library. Math. Program. Comput. 2017, 13, 443–490. [Google Scholar] [CrossRef]

	

Beasley, J.E. OR-Library: Distributing test problems by electronic mail. J. Oper. Res. Soc. 1990, 41, 1069–1072. [Google Scholar] [CrossRef]

	

Khintcine, A. A quantitative formulation of Kronecker’theory pf approximation. Izv. Ross. Akad. Nauk. Seriya Mat. 1948, 12, 113–122. (In Russian) [Google Scholar]

	

Freund, R.M.; Vera, J.R. Some characterizations and properties of the “distance to ill-posedness” and the condition measure of a conic linear system. Math. Program. 1999, 86, 225–260. [Google Scholar] [CrossRef]

	

Jhon, F. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays; Intersciences: New York, NY, USA, 1948; pp. 187–204. [Google Scholar]

	

Schrijver, A. Chapter 14: The ellipsoid method for polyhedra more generally. In Theory of Linear and Integer Programming; Wiley Interscience Series; John Wiley & Sons: Hoboken, NJ, USA, 1986; pp. 172–189. [Google Scholar]

	

Nesterov, Y.; Nemirosky, A. Acceleration and parallelization of the path-following interior point method for a linearly constrainde convex quadratic problem. Siam J. Optim. 1991, 1, 548–564. [Google Scholar] [CrossRef]

	

Elhedhli, S.; Naom-Sawaya, J. Improved branching disjunctions for branch-and-bound: An analytic center approach. Eur. J. Oper. Res. 2015, 247, 37–45. [Google Scholar] [CrossRef]

	

Micciancio, D. The shortest vector in a lattice is hard to approximate to within some constants. SIAM J. Comput. 2001, 30, 2008–2035. [Google Scholar] [CrossRef]

	

Vazirani, V. Approximation Algorithms; Springer-Verlag: Berlin, Germany, 2001; ISBN 3-540-65367-8. [Google Scholar]

[image: Mathematics 11 02794 g001 550]

Figure 1. Ellipsoidal rounding using a pair of Dikin ellipses.

Figure 1. Ellipsoidal rounding using a pair of Dikin ellipses.

[image: Mathematics 11 02794 g001]

[image: Mathematics 11 02794 g002 550]

Figure 2. CPU time for MIPLIB library problems.

Figure 2. CPU time for MIPLIB library problems.

[image: Mathematics 11 02794 g002]

[image: Mathematics 11 02794 g003 550]

Figure 3. Nodes scanned for MIPLIB library problems.

Figure 3. Nodes scanned for MIPLIB library problems.

[image: Mathematics 11 02794 g003]

[image: Table]

Table 1. List of problems studied from MIPLIB library.

Table 1. List of problems studied from MIPLIB library.

	Number
	Instance
	Constraints
	Variables
	Nonzeroes
	Integers
	Binaries
	Constraint

Classification
	Version

MIPLIB

	1
	opm2-z7-s2
	31,798
	2023
	79,762
	0
	2023
	Knapsack
	2010

	2
	mine 90-10
	6270
	900
	15407
	0
	900
	Knapsack
	2010

	3
	mine 166-5
	8429
	830
	19412
	0
	830
	Knapsack
	2010

	4
	opm2-z6-s1
	15,533
	1350
	41,844
	0
	1350
	Knapsack
	2017

	5
	opm2-z7-s8
	31,798
	2023
	79,756
	0
	2023
	Knapsack
	2017

	6
	reblock67
	2523
	670
	7495
	0
	670
	Knapsack
	2010

	7
	m100n500k4r
	100
	500
	2000
	0
	500
	Set covering
	2010

	8
	iis-100-0-cov
	3831
	100
	22,986
	0
	100
	Set covering
	2010

	9
	iis-pima-cobv
	7201
	768
	71,941
	0
	768
	Set covering
	2010

	10
	iis-glass-cov
	5375
	214
	63,918
	0
	214
	Set covering
	2017

	11
	iis-hc-cov
	9727
	297
	142,971
	0
	297
	Set covering
	2010

	12
	glass-sc
	6119
	214
	63,918
	0
	214
	Set covering
	2017

	13
	iis-bupa-cov
	4803
	345
	38,392
	0
	345
	Set covering
	2017

	14
	reblock166
	17,024
	1660
	39,442
	0
	1660
	knapsack
	2010

	15
	macrophage
	3164
	2260
	9492
	0
	2260
	Mip
	2010

	16
	mik-250-20-75-1
	195
	270
	9270
	175
	75
	Mip
	2017

	17
	mik-250-20-75-2
	195
	270
	9270
	175
	75
	Mip
	2017

	18
	mik-250-20-75-3
	195
	270
	9270
	175
	75
	Mip
	2017

	19
	mik-250-20-75-4
	195
	270
	9270
	175
	75
	Mip
	2017

	20
	toll-like
	4408
	2883
	13,224
	0
	2883
	Knapsack
	2017

	21
	mas76
	12
	151
	1640
	0
	150
	Knapsack
	2017

	22
	mas74
	13
	151
	1706
	0
	150
	Set covering
	2017

	23
	cod105
	1024
	1024
	57,344
	0
	1024
	Knapsack
	2017

	24
	reblock115
	4735
	1150
	13,724
	0
	1150
	Mip
	2017

	25
	neos5
	63
	63
	2016
	0
	53
	MIB
	2017

	26
	pg5_34
	225
	2600
	7700
	0
	100
	Mip
	2017

	27
	gen-ip036
	46
	29
	1303
	29
	0
	Mip
	2017

	28
	mik-250-20-75-5
	195
	270
	9270
	175
	750
	Mip
	2017

	29
	rmine6
	8429
	830
	19,412
	0
	830
	Kna
	2017

	30
	mik-250-1-100.1
	195
	251
	-
	150
	100
	Set covering
	2017

	31
	sp98ic
	825
	10,894
	316,317
	0
	10,894
	Mip
	2017

	32
	neos13
	20,852
	1827
	253,842
	0
	1815
	Set covering
	2017

	33
	sp7ic
	1033
	12,497
	316,629
	0
	12,497
	Set covering
	2017

	34
	cv08r139-94
	2398
	1864
	6456
	0
	1864
	Set covering
	2017

[image: Table]

Table 2. Nodes explored vs. different threads of Cplex (nodes) of MIPLIB library.

Table 2. Nodes explored vs. different threads of Cplex (nodes) of MIPLIB library.

	N°
	Problem
	Cplex 2 Thread

Nodes 2
	Cplex 4 Thread

Nodes 4
	Cplex 8 Thread

Nodes 8
	Cplex 12 Thread

Nodes 12

	1
	opm2-z7-s1
	941
	1120
	1672
	2178

	2
	mine 90-10
	28,157
	26,957
	29,068
	76,974

	3
	mine 166-5
	837
	1051
	1142
	449

	4
	opm2-z6-s7
	749
	1418
	1046
	890

	5
	opm2-z7-s8
	3382
	3130
	2933
	3881

	6
	reblock67
	107,994
	91,053
	79,944
	125,561

	7
	m100n500k4r1
	152,665
	46,190
	69,232
	85,296

	8
	iis-100-0-cov
	223,353
	217,678
	148,831
	148,153

	9
	iis-pima-cov
	22,172
	31,780
	42,218
	20,296

	10
	iis-glass-cov
	79,065
	142,796
	80,250
	67,054

	11
	iis-hc-cov
	160,515
	149,142
	134,323
	177,704

	12
	glass-sc
	499,757
	507,667
	561,998
	501,703

	13
	iis-bupa-cov
	353,578
	377,314
	295,739
	382,852

	14
	reblock166
	70,248
	80,192
	48,870
	72,225

	15
	macrophage
	101
	50
	49
	76

	16
	mik-250-20-75-1
	31,408
	15,160
	10,350
	11,222

	17
	mik-250-20-75-2
	4185
	4336
	6462
	7590

	18
	mik-250-20-75-3
	5570
	12,734
	14,604
	18,770

	19
	mik-250-20-75-4
	145,575
	56,777
	85,056
	59,346

	20
	toll-like
	25,252
	114,548
	290,787
	149,336

	21
	mas76
	180,932
	232,596
	327,231
	2,440,166

	22
	mas74
	3,717,795
	3,296,023
	3,167,109
	2,440,166

	23
	cod 105
	83
	49
	47
	47

	24
	reblock 155
	1,418,057
	1,518,810
	2,315,210
	1,544,191

	25
	neos 5
	288,450
	306,724
	167,241
	932,326

	26
	pg5 _ 34
	2534
	1738
	3891
	4182

	27
	mik-250-20-75-5
	6030
	14,242
	15,572
	9705

	28
	gen-ip036
	1,668,103
	1,715,837
	1,646,320
	2,105,963

	29
	mik-250-1-100.1
	49,763
	69,329
	30,172
	36,646

	30
	rmine 6
	137843
	150,624
	187,319
	223,924

	31
	sp98ic
	27,739
	47,291
	46,401
	46,401

	32
	neos 13
	6221
	3926
	11,199
	9622

	33
	sp97ic
	823,181
	580,500
	1,001,882
	1,001,882

	34
	cvs08r139-94
	374,311
	200,833
	231,599
	248,878

[image: Table]

Table 3. CPU time explored vs. different threads of Cplex (seconds) of MIPLIB library.

Table 3. CPU time explored vs. different threads of Cplex (seconds) of MIPLIB library.

	N°
	Problem
	Cplex 2 Thread

CPU Time 2
	Cplex 4 Thread

CPU Time 4
	Cplex 8 Thread

CPU Time 8
	Cplex 12 Thread

CPU Time 12

	1
	opm2-z7-s1
	42
	42
	68
	88

	2
	mine 90-10
	68
	30
	25
	61

	3
	mine 166-5
	3
	2
	2
	5

	4
	opm2-z6-s7
	11
	12
	16
	13

	5
	opm2-z7-s8
	94
	53
	65
	78

	6
	reblock67
	156
	67
	48
	80

	7
	m100n500k4r1
	68
	12
	11
	18

	8
	iis-100-0-cov
	1329
	444
	305
	327

	9
	iis-pima-cov
	420
	222
	399
	236

	10
	iis-glass-cov
	1413
	675
	974
	660

	11
	iis-hc-cov
	3369
	1879
	1837
	2226

	12
	glass-sc
	5758
	5983
	12,613
	18,354

	13
	iis-bupa-cov
	3807
	3202
	5354
	14,624

	14
	reblock166
	175
	99
	58
	101

	15
	macrophage
	3
	3
	5
	9

	16
	mik-250-20-75-1
	7
	2
	2
	6

	17
	mik-250-20-75-2
	2
	2
	2
	6

	18
	mik-250-20-75-3
	2
	2
	1
	6

	19
	mik-250-20-75-4
	25
	6
	7
	10

	20
	toll-like
	662
	439
	3922
	749

	21
	mas76
	28
	22
	37
	37

	22
	mas74
	25,447
	8395
	19,801
	19,142

	23
	cod 105
	24
	18
	23
	27

	24
	reblock 155
	13,023
	3219
	6575
	3647

	25
	neos 5
	45
	18
	10
	68

	26
	pg5 _ 34
	12
	6
	8
	13

	27
	mik-250-20-75-5
	2
	2
	2
	6

	28
	gen-ip036
	213
	216
	189
	430

	29
	mik-250-1-100.1
	9
	7
	3
	8

	30
	rmine 6
	315
	166
	175
	223

	31
	sp98ic
	280
	121
	126
	132

	32
	neos 13
	76
	76
	92
	95

	33
	sp97ic
	11,082
	2090
	4132
	7607

	34
	cvs08r139-94
	2947
	664
	618
	781

[image: Table]

Table 4. Calculated predictor geometric values from MIPLIB library.

Table 4. Calculated predictor geometric values from MIPLIB library.

	Number
	Instance
	 λ max (Q)
	 λ min (Q)
	 μ max
	 μ min
	 h max (x 0)
	 h min (x 0)

	1
	opm2-z7-s2
	3,813,267.004
	113.603
	70,946,050,355.772
	8.62939
	3629.4604
	0.00159

	2
	mine 90-10
	2,612,605.489
	57.883
	295,100,968,602.422
	6.70572
	132,272.5031
	0.000756306

	3
	mine 166-5
	3,758,044.729
	92.091
	141,842,115,832.794
	6.78679
	293,878.6923
	0.000567547

	4
	opm2-z6-s1
	1,775,288.429
	88.694
	47,211,835,995.616
	6.49874
	2867.0993
	0.002310646

	5
	opm2-z7-s8
	5,697,695.777
	113.294
	70,896,040,857.244
	8.61121
	1200.2889
	0.001615675

	6
	reblock67
	1,051,736.618
	26.380
	5,573,004,555.561
	2.76883
	10,809.5003
	0.001093823

	7
	m100n500k4r
	10,548.397
	253.667
	86.709
	1.99999
	0.9785
	0.021469971

	8
	iis-100-0-cov
	55,742.524
	10.122
	1947.445
	6.85897
	4.9443
	0.007242645

	9
	iis-pima-cobv
	24,068.284
	8.000
	5569.004
	2.00000
	8.8993
	0.006447786

	10
	iis-glass-cov
	25,658.219
	8.108
	6918.311
	3.87444
	9.8836
	0.006246341

	11
	iis-hc-cov
	50,325.597
	8.000
	21,423.850
	2.00000
	13.8957
	0.004458005

	12
	glass-sc
	31,716.750
	8.095
	7730.676
	3.86798
	9.8953
	0.00561613

	13
	iis-bupa-cov
	16,840.575
	8.000
	3007.781
	2.00000
	6.9048
	0.007710287

	14
	reblock166
	19,423,492.776
	93.083
	150,648,772,421.079
	6.78679
	147,052.3746
	0.000250464

	15
	macrophage
	148.269
	8343
	80.902
	2.19282
	0.7500
	0.24999999

	16
	mik-250-20-75-1
	1096.500
	0.002
	7,346,325,551.737
	2.00000
	4020.9388
	0.039778441

	17
	mik-250-20-75-2
	1081.635
	0.002
	7,205,424,894.960
	2.00000
	4022.4788
	0.039345742

	18
	mik-250-20-75-3
	1048.319
	0.002
	7,023,485,477.638
	2.00000
	3987.9096
	0.03950111

	19
	mik-250-20-75-4
	1097.668
	0.002
	7,352,045,046.721
	2.00000
	3914.2160
	0.0394924

	20
	toll-like
	262.448
	8.651
	145.128
	2.36627
	0.7500
	0.2499990

	21
	mas76
	12,157.691
	5.96 × 10 − 17
	33,588,731,506.825
	2.00000
	923,076,932,681.455
	0.099256344

	22
	mas74
	6215.015
	1.7496 × 10 − 15
	29,517,476,806.172
	1.99999
	928,571,434,175.472
	0.132292728

	23
	cod105
	25,090.545
	12,658.788
	3138.000
	2.00000
	0.9911
	0.008888355

	24
	reblock115
	3,002,050.102
	19.452
	2,736,204,400.753
	2.00061
	11,185.8540
	0.000635524

	25
	neos5
	17.163
	13.142
	1026.000
	18.00000
	19.4834
	0.296536577

	26
	pg5-34
	1585.108
	8.000
	3,389,781.036
	1.99999
	153.8032
	0.143846007

	27
	gen-ip036
	1047.146
	0.002
	7,026,695,879.081
	2.00000
	3866.8373
	0.03958145

	28
	mik-250-20-75-5
	8.999
	0.002
	11,172.450
	2.37624
	282.1130
	0.344303931

	29
	rmine6
	8.002
	2.0829 × 10 − 6
	4,983,686,994.101
	1.99999
	99,999.3836
	0.496593313

	30
	mik-250-1-100.1
	160,625.526
	59.917
	4,144,778.202
	3.02445
	1144.7464
	0.004304036

	31
	sp98ic
	15,501,447
	14.717
	2,405,591.684
	1.99999
	2135.0939
	0.039243544

	32
	neos13
	21,435,625,658.174
	213.202
	39,262,984.240
	1.99999
	25.1548
	1.10633E-05

	33
	sp7ic
	17,032.281
	14.417
	3,028,596.227
	1.99999
	3240.2613
	0.037956414

	34
	cv08r139-94
	30,771.085
	200.813
	143.127
	1.99999
	14.9229
	0.016345049

[image: Table]

Table 5. Model 1 (node) results for resolutions with different threads in the MIPLIB library.

Table 5. Model 1 (node) results for resolutions with different threads in the MIPLIB library.

	Regression Statistics
	2 Thread Nodes
	4 Thread Nodes
	8 Thread Nodes
	12 Thread Nodes

	Multiple correlation coefficient
	0.611
	0.602
	0.553
	0.541

	test F
	2.783
	2.662
	2.063
	1.939

	Remarks
	34
	34
	34
	34

	Variable X 1 = λ m a x (Q)
	−9.986 × 10 − 6
	−9.141 × 10 − 6
	−1.240 × 10 − 5
	−8.797 × 10 − 6

	Variable X 2 = λ m i n (Q)
	−18.197
	−16.941
	−23.072
	−17.103

	Variable X 3 = μ m a x
	1.820 × 10 − 6
	1.625 × 10 − 6
	1.553 × 10 − 6
	1.191 × 10 − 6

	Variable X 4 = μ m i n
	−8.746 × 10 − 7
	−7.899 × 10 − 7
	−9.315 × 10 − 7
	−1.329 × 10 − 6

	Variable X 5 = h m a x (x 0)
	−10,190.000
	−8273.803
	−20,718.455
	13,965.216

	Variable X 6 = h m i n (x 0)
	626,257.256
	730,807.629
	517,075.177
	1,069,004.67

[image: Table]

Table 6. Model 2 (CPU time) results for resolutions with different threads in MIPLIB library.

Table 6. Model 2 (CPU time) results for resolutions with different threads in MIPLIB library.

	Regression Statistics
	2 Thread Time
	4 Thread Time
	8 Thread Time
	12 Thread Time

	Multiple correlation coefficient
	0.58
	0.63
	0.579
	0.38

	test F
	2.474
	3.130
	2.355
	0.804

	Remarks
	34
	34
	34
	34

	Variable X 1 = λ m a x (Q)
	−1.961 × 10 − 7
	−4.445 × 10 − 8
	−8.248 × 10 − 8
	−1.159 × 10 − 7

	Variable X 2 = λ m i n (Q)
	−0.34
	−0.08
	−0.15
	−0.20

	Variable X 3 = μ m a x
	−1.913 × 10 − 9
	−4.851 × 10 − 10
	−1.137 × 10 − 9
	−1.357 × 10 − 9

	Variable X 4 = μ m i n
	−1.837 × 10 − 8
	−5.067 × 10 − 9
	−9.012 × 10 − 9
	−1.318 × 10 − 8

	Variable X 5 = h m a x (x 0)
	−160.39
	−23.83
	−59.59
	−56.69

	Variable X 6 = h m i n (x 0)
	−11,127.64
	−2828.07
	−3790.14
	−7251.32

[image: Table]

Table 7. Nodes vs. different Cplex threads of the multi-demand multi-dimensional knapsack problem (MDMKP OR-Library) set Ct1 and set Ct2 (nodes).

Table 7. Nodes vs. different Cplex threads of the multi-demand multi-dimensional knapsack problem (MDMKP OR-Library) set Ct1 and set Ct2 (nodes).

	
Set

	
Problem

	
Cplex 2 Thread

	
Cplex 4 Thread

	
Cplex 8 Thread

	
Cplex 12 Thread

	

	
Nodes 2

	
Nodes 4

	
Nodes 8

	
Nodes 12

	
Ct1

	
p1

	
46

	
23

	
31

	
44

	
Ct1

	
p2

	
13

	
8

	
7

	
23

	
Ct1

	
p3

	
23

	
14

	
14

	
27

	
Ct1

	
p4

	
6

	
3

	
2

	
5

	
Ct1

	
p5

	
35

	
14

	
16

	
20

	
Ct1

	
p6

	
148

	
51

	
62

	
83

	
Ct1

	
p7

	
16

	
8

	
9

	
17

	
Ct1

	
p8

	
81

	
21

	
24

	
44

	
Ct1

	
p9

	
45

	
25

	
25

	
41

	
Ct1

	
p10

	
7

	
5

	
4

	
7

	
Ct1

	
p11

	
6

	
5

	
5

	
9

	
Ct1

	
p12

	
6

	
4

	
5

	
10

	
Ct1

	
p13

	
14

	
9

	
12

	
18

	
Ct1

	
p14

	
10

	
7

	
6

	
225

	
Ct1

	
p15

	
19

	
13

	
15

	
20

	
Ct2

	
p1

	
2165

	
1315

	
754

	
656

	
Ct2

	
p2

	
436

	
226

	
182

	
243

	
Ct2

	
p3

	
35

	
20

	
23

	
11

	
Ct2

	
p4

	
246

	
107

	
82

	
104

	
Ct2

	
p5

	
976

	
461

	
427

	
432

	
Ct2

	
p6

	
5023

	
2196

	
2545

	
5700

	
Ct2

	
p7

	
1368

	
639

	
541

	
440

	
Ct2

	
p8

	
3730

	
1467

	
1798

	
1414

	
Ct2

	
p9

	
6001

	
2914

	
9229

	
20,732

	
Ct2

	
p10

	
2641

	
827

	
1660

	
1522

	
Ct2

	
p11

	
1137

	
559

	
453

	
476

	
Ct2

	
p12

	
407

	
120

	
133

	
145

	
Ct2

	
p13

	
33

	
18

	
17

	
27

	
Ct2

	
p14

	
1130

	
415

	
411

	
445

	
Ct2

	
p15

	
3483

	
3113

	
3851

	
645

[image: Table]

Table 8. CPU times vs. different Cplex threads of the multi-demand multi-dimensional knapsack problem (MDMKP OR-Library) sets Ct1 and Ct2 (CPU time in seconds).

Table 8. CPU times vs. different Cplex threads of the multi-demand multi-dimensional knapsack problem (MDMKP OR-Library) sets Ct1 and Ct2 (CPU time in seconds).

	
Problem

	
Cplex 2 Thread

	
Cplex 4 Thread

	
Cplex 8 Thread

	
Cplex 12 Thread

	

	
CPU Time 2

	
CPU Time 4

	
CPU Time 8

	
CPU Time 12

	

	
Ct1

	
p1

	
294,370

	
370,529

	
354,355

	
391,377

	
Ct1

	
p2

	
82,096

	
105,689

	
83,213

	
141,773

	
Ct1

	
p3

	
150,846

	
166,753

	
155,003

	
223,589

	
Ct1

	
p4

	
23,424

	
28,788

	
1,385,711

	
28,982

	
Ct1

	
p5

	
177,854

	
190,111

	
176,672

	
171,314

	
Ct1

	
p6

	
1,060,425

	
901,951

	
1,096,551

	
931,373

	
Ct1

	
p7

	
101,832

	
101,978

	
109,418

	
128,464

	
Ct1

	
p8

	
611,902

	
317,520

	
321,045

	
509,262

	
Ct1

	
p9

	
362,827

	
422,673

	
380,613

	
490,323

	
Ct1

	
p10

	
34,761

	
49,796

	
41,538

	
41,412

	
Ct1

	
p11

	
37,643

	
53,346

	
58,842

	
45,170

	
Ct1

	
p12

	
33,891

	
40,987

	
68,945

	
44,145

	
Ct1

	
p13

	
90,914

	
107,400

	
131,613

	
115,225

	
Ct1

	
p14

	
64,117

	
74,449

	
58,948

	
125,946

	
Ct1

	
p15

	
124,365

	
163,650

	
183,902

	
155,928

	
Ct2

	
p1

	
12,090,448

	
13,819,244

	
11,527,542

	
10,447,674

	
Ct2

	
p2

	
2,909,347

	
3,608,101

	
3,045,452

	
3,623,566

	
Ct2

	
p3

	
2,681,96

	
330,824

	
423,069

	
81,786

	
Ct2

	
p4

	
1,610,790

	
1,656,464

	
1,385,711

	
14,631,259

	
Ct2

	
p5

	
6,097,867

	
7,033,626

	
6,156,821

	
6,904,771

	
Ct2

	
p6

	
18,649,806

	
18,544,436

	
18,656,819

	
18,649,806

	
Ct2

	
p7

	
6,323,089

	
6,616,805

	
6,210,114

	
6,160,737

	
Ct2

	
p8

	
16,071,919

	
15,531,813

	
16,578,618

	
16,089,911

	
Ct2

	
p9

	
25,154,953

	
23,455,342

	
24,639,302

	
28,994,168

	
Ct2

	
p10

	
13,818,283

	
11,907,287

	
15,849,302

	
15,051,050

	
Ct2

	
p11

	
6,560,371

	
7,598,282

	
7,379,091

	
6,779,751

	
Ct2

	
p12

	
1,855,148

	
1,779,310

	
2,112,043

	
1,670,868

	
Ct2

	
p13

	
181,362

	
218,802

	
218,258

	
223,567

	
Ct2

	
p14

	
7,086,563

	
7,259,420

	
7,398,144

	
7,571,377

	
Ct2

	
p15

	
13,782,664

	
14,672,784

	
13,406,243

	
9,236,575

[image: Table]

Table 9. Model 1 OR-Library problem results with MDMKP problems. Sets Ct1 and Ct2 (nodes).

Table 9. Model 1 OR-Library problem results with MDMKP problems. Sets Ct1 and Ct2 (nodes).

	
Problem

	
Model 1

	
Model 1

	
Model 1

	
Model 1

	
Nodes 2 Thread

	
Nodes 4 Tthread

	
Nodes 8 Thread

	
Nodes 12 Thread

	
Multiple correlation coefficient

	
0.7905

	
0.7860

	
0.7996

	
0.8126

	
Remark

	
30

	
30

	
30

	
30

	
Test F

	
6.38

	
6.19

	
6.790

	
7.45

	
Critical value of F

	
0.0004

	
0.0005

	
0.0003

	
0.0001

	
Intercept

	
−4.20141 × 10 14

	
−4.63514 × 10 14

	
−3.5531 × 10 14

	
−5.12549 × 10 14

	
Variable X 1 = λ m a x (Q)

	
−8365.365

	
−8091.3780

	
−8516.669

	
−12,128.824

	
Variable X 2 = λ m a x (Q)

	
4,476,702.826

	
8,589,483.231

	
−1,099,153.01

	
−2,331,837.54

	
Variable X 3 = λ m i n (Q)

	
0.0428

	
0,0415

	
0,0444

	
0,0530

	
Variable X 4 = μ m a x

	
2.1007 × 10 14

	
2.31757 × 10 14

	
1.77655 × 10 14

	
2.563 × 10 14

	
Variable X 5 = μ m i n

	
−6563.823

	
−4033.059

	
−8197.559

	
−8861.325

	
Variable X 6 = h m a x (x 0)

	
−692,266.948

	
−2,125,303.665

	
−200,762.974

	
303,964.749

[image: Table]

Table 10. Model 2 OR-Library problem results with MDMKP problems. Sets Ct1 and Ct2 (CPU time).

Table 10. Model 2 OR-Library problem results with MDMKP problems. Sets Ct1 and Ct2 (CPU time).

	
Problem

	
Model 2

	
Model 2

	
Model 2

	
Model 2

	
CPU Time 2 Thread

	
CPU Time 4 Thread

	
CPU Time 8 Thread

	
CPU Time 12 Thread

	
Multiple correlation coefficient

	
0.762

	
0.628

	
0.578

	
0.591

	
Remark

	
30

	
30

	
30

	
30

	
Test F

	
5.31

	
2.50

	
1.92

	
2.06

	
Critical value of F

	
0.0014

	
0.05

	
0.119

	
0.097

	
Intercept

	
−64,363,757,062

	
−21,401,703,335

	
−78,486,829,134

	
−3173 × 10 11

	
Variable X 1 = λ m a x (Q)

	
−1.901

	
−0.204

	
−1.661

	
−7.636

	
Variable X 2 = λ m a x (Q)

	
269.798

	
3365.801

	
7322.201

	
3134.783

	
Variable X 3 = λ m i n (Q)

	
9.826 × 10 − 6

	
2.690 × 10 − 6

	
7.498 × 10 − 6

	
2.457 × 10 − 5

	
Variable X 4 = μ m a x

	
32,181,877,396

	
10,700,850,993

	
39243410216

	
1.586 × 10 11

	
Variable X 5 = μ m i n

	
−2.0594

	
−0.0214

	
−0.3841

	
−3.0742

	
Variable X 6 = h m a x (x 0)

	
411.355

	
41.793

	
946.729

	
1542.990

[image: Table]

Table 11. Multiple correlation coefficients for problems of MIPLIB library.

Table 11. Multiple correlation coefficients for problems of MIPLIB library.

	Regression Statistics
	2 Thread Nodes
	4 Thread Nodes
	8 Thread Nodes
	12 Thread Nodes

	Model 1 Miplib
	
	
	
	

	Multiple correlation
	0.611
	0.602
	0.553
	0.541

	coefficient
	
	
	
	

	test F
	2.783
	2.662
	2.063
	1.939

	Model 2 Miplib
	
	
	
	

	Multiple correlation
	0.58
	0.63
	0.579
	0.38

	coefficient
	
	
	
	

	test F
	2.474
	3.130
	2.355
	0.804

	Model 1 MDMKP
	
	
	
	

	Multiple correlation
	0.790
	0.786
	0.799
	0.812

	coefficient
	
	
	
	

	Test F
	6.38
	6.19
	6.790
	7.45

	Model 2 MDMKP
	
	
	
	

	Multiple correlation
	0.762
	0.628
	0.578
	0.591

	coefficient
	
	
	
	

	Remark
	30
	30
	30
	30

	Test F
	5.31
	2.50
	1.92
	2.06

[image: Table]

Table 12. Reliability of the statistical parameter estimation process.

Table 12. Reliability of the statistical parameter estimation process.

	
Database

	
2 Thread

	
4 Thread

	
8 Thread

	
12 Thread

	
Media

	
Standard

	
95% Confidence

	
95% Confidence

	
95% Confidence

	
90% Confidence

	
90% Confidence

	
90% Confidence

	
MIPLIB

	
Nodes

	
Nodes

	
Nodes

	
Nodes

	

	
Deviation

	
Interval

	
Interval

	
Interval

	
Interval

	
Interval

	
Interval

	

	

	

	

	

	

	

	
Left Limit

	
Right Limit

	
Width (%)

	
Left Limit

	
Right Limit

	
Width (%)

	
Coefficient ρ

	
0.611

	
0.602

	
0.553

	
0.541

	
0.576

	
0.0348

	
0.528

	
0.625

	
16.8

	
0.539

	
0.613

	
12.8

	
Statistic F

	
2.78

	
2.66

	
2.06

	
1.93

	
2.36

	
0.422

	
1.774

	
2.949

	
49.7

	
1.91

	
2.81

	
38.1

	
Database

	
2 thread

	
4 thread

	
8 thread

	
12 thread

	
Media

	
Standard

	
95% confidence

	
95% confidence

	
95% confidence

	
90% confidence

	
90% confidence

	
90% confidence

	
MIPLIB

	
CPU Time

	
CPU Time

	
CPU Time

	
CPU Time

	

	
deviation

	
interval

	
interval

	
interval

	
interval

	
interval

	
interval

	

	

	

	

	

	

	

	
left limit

	
right limit

	
width (%)

	
left limit

	
right limit

	
width (%)

	
Coefficient ρ

	
0.58

	
0.63

	
0.579

	
0.38

	
0.542

	
0.110

	
0.388

	
0.696

	
56.78

	
0.424

	
0.66

	
43.5

	
Statistic F

	
2

	
3.13

	
2.355

	
0.804

	
2.191

	
0.985

	
0.821

	
3.56

	
125.032

	
1.14

	
3.24

	
95.79

	
Database

	
2 thread

	
4 thread

	
8 thread

	
12 thread

	
Media

	
Standard

	
95% confidence

	
95% confidence

	
95% confidence

	
90% confidence

	
90% confidence

	
90% confidence

	
OR-Library

	
nodes

	
nodes

	
nodes

	
nodes

	

	
deviation

	
interval

	
interval

	
interval

	
interval

	
interval

	
interval

	

	

	

	

	

	

	

	
left limit

	
right limit

	
width (%)

	
left limit

	
right limit

	
width (%)

	
Coefficient ρ

	
0.709

	
0.786

	
0.799

	
0.812

	
0.776

	
0.046

	
0.712

	
0.841

	
16.6

	
0.727

	
0.826

	
12.7

	
Statistic F

	
6.38

	
6.19

	
6.79

	
7.45

	
6.70

	
0.557

	
5.927

	
7.487

	
23.1

	
6.1

	
7.29

	
17.7

	
Database

	
2 thread

	
4 thread

	
8 thread

	
12 thread

	
Media

	
Standard

	
95% confidence

	
95% confidence

	
95% confidence

	
90% confidence

	
90% confidence

	
90% confidence

	
OR-Library

	
CPU Time

	
CPU Time

	
CPU Time

	
CPU Time

	

	
deviation

	
interval

	
interval

	
interval

	
interval

	
interval

	
interval

	

	

	

	

	

	

	

	
left limit

	
right limit

	
width (%)

	
left limit

	
right limit

	
width (%)

	
Coefficient ρ

	
0.762

	
0.628

	
0.578

	
0.591

	
0.639

	
0.084

	
0.523

	
0.757

	
36.5

	
0.55

	
0.729

	
28.0

	
Statistic F

	
5.0

	
2.5

	
1.92

	
2.06

	
2.94

	
1.594

	
0.731

	
5.164

	
150.367

	
1.24

	
4.64

	
115.2

	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file4.png
30,000
25,000
20,000
15,000
10,000

5,000

Figure 2 CPU Time of MIPLIB library problems
(seconds)

1234567 8 910111213141516171819202122232425262728293031323334

e THrea0] ww=Thread4 e==—=Thread8 ee=Thread 12

nav.xhtml

 mathematics-11-02794

 		
 mathematics-11-02794

media/file0.png

media/file2.png
Optimal Solution
Of LP relaxation

-

Dikin’s Ellipsoid

Feasible Polyhedron

media/file5.jpg
Figure 3 Nodes scaned for MIPLIB library problems

4000000
3500000
3,000000
2500000
2000000
1500000
1000000

500000

145678 910111213141516171819202122 232625262728 293031 23334

——Tvesd) —mThvesds ——Thvesds ——Thesd12

media/file6.png
4,000,000
3,500,000
3,000,000
2,500,000
2,000,000
1,500,000
1,000,000

500,000

0

Figure 3 Nodes scaned for MIPLIB library problems

_JAA_AH

14567 8910111213141516171819202122 2324252627 28293031 323334

e THread 2 ess==Thread4 e=———=Thread8 es===Thread 12

media/file3.jpg
Figure 2 CPU Time of MIPLIBibrary problems
(seconds)
30,000

25,000
20,000
15,000
10000

5000

[
12345678 9101112131415161718192021222324252627 282930313233 34

——Thvead) =mmTiveadd =——Thiead8 e Thread12

media/file1.jpg
Optimal Solution
Of LP relaxation

Oiki's llpsoid

Feasible Polyhedron

