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Abstract: The coefficient problem is an essential topic in the theory of univalent functions theory. In
the present paper, we consider a new subclass SQ of analytic functions with f ′(z) subordinated to
1/(1− z)2 in the open unit disk. This class was introduced and studied by Răducanu. Our main aim
is to give the sharp upper bounds of the second Hankel determinantH2,3( f ) and the third Hankel
determinantH3,1( f ) for f ∈ SQ . This may help to understand more properties of functions in this
class and inspire further investigations on higher Hankel determinants for this or other popular
sub-classes of univalent functions.
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1. Introduction and Definitions

We first give some basic concepts of analytic functions that are necessary for better
understanding our further discussions in this article. Let A denote the normalized analytic
functions defined in the open unit disc D = {z ∈ C : |z| < 1} with the series expansion of
the form

f (z) = z +
∞

∑
k=2

bkzk, z ∈ D. (1)

We say f is univalent, if for z1, z1 ∈ D, z1 6= z2 implies that f (z1) 6= f (z2). Assuming
that S ⊆ A is the collection of the univalent functions in D. P is often used to denote the
Carathéodory functions, which are analytic in D with positive real part and normalized by

p(z) = 1 +
∞

∑
n=1

pnzn, z ∈ D. (2)

In the past years, various classes of univalent functions are intensively studied. The
representative examples are the star-like functions S∗, convex functions C and bounded
turning functionsR. They are defined, respectively, by
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S∗ :=
{
< z f ′(z)

f (z)
> 0, z ∈ D

}
, (3)

C :=
{
<
(

1 +
z f ′′(z)
f ′(z)

)
> 0, z ∈ D

}
, (4)

R :=
{
<
(

f ′(z)
)
> 0, z ∈ D

}
. (5)

The relationship between the class C and S∗ is that f (z) ∈ C if and only if z f ′(z) ∈ S∗,
see [1]. We emphasize that the class R is not a subset of S∗. Additionally, R does not
contain S∗, see [2].

It is said that g1 is subordinate to g2 in D if there is an analytic function ω with
ω(0) = 0 and |ω(z)| < 1 such that g1(z) = g2(ω(z)). We denote that g1 is subordinate to
g2 by the notation g1 ≺ g2 and the function ω is said to be a Schwarz function. In geometry,
g1 ≺ g2 in D means that g1(D) ⊂ g2(D). In case g2 is univalent in D, the subordination
g1 ≺ g2 is equivalent to

g1(0) = g2(0) and g1(D) ⊂ g2(D). (6)

Let ϕ be a univalent function with ϕ′(0) > 0 and <ϕ > 0. Suppose also that ϕ(D) is
star-like with respect to the point ϕ(0) = 1 and symmetric along the real line axis. Using
the function ϕ and subordination, one can define a general class S∗(ϕ) by setting

S∗(ϕ) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ ϕ(z), z ∈ D

}
. (7)

This class was introduced by Ma and Minda [3]. Taking ϕ(z) = 1+z
1−z , S∗(ϕ) is the class of

star-like functions S∗. It was extensively investigated by many researchers through some
particular choices of ϕ , see for example [4–11].

For f ∈ S , the Hankel determinantHm,n( f ) defined by

Hm,n( f ) :=

∣∣∣∣∣∣∣∣∣
bn bn+1 . . . bn+m−1
bn+1 bn+2 . . . bn+m
...

... . . .
...

bn+m−1 bn+m . . . bn+2m−2

∣∣∣∣∣∣∣∣∣ (8)

was introduced and studied by Pommerenke [12,13] early in 1966, where m, n ∈ N and
b1 = 1. It was shown to be an effective tool in the study of power series with integral
coefficients and singularities, also in pure mathematics and applied mathematics, see for
instance [14–22].

To obtain the sharp upper bound of the third Hankel determinant

H3,1( f ) = 2b2b3b4 − b3
3 − b2

4 + b3b5 − b2
2b5 (9)

is not an easy thing. We note that the sharp bound of |H3,1( f )| for star-like functions was
just proved by Kowalczyk et al. [23] in 2022. The exact bound is 4

9 . Before it was solved,
there are many works investigated this problem, see [24,25] and the references. For other
advances in finding the bounds of the third Hankel determinant for sub-classes of univalent
functions or p-valent functions, we refer to [26–35].

From the definition, we know

H2,3( f ) = b3b5 − b2
4. (10)

Although it seems more simple to calculate the sharp upper bounds of |H2,3( f )|, the results
on |H2,3( f )| for star-like functions and convex functions are still not proved as we know.
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In [36], Răducanu introduced a new class of analytic functions SQ satisfying the
condition

<
√

f ′(z) >
1
2

, z ∈ D, (11)

or in terms of subordination

f ′(z) ≺ 1

(1− z)2 , z ∈ D. (12)

For the functions in the class SQ, the upper bounds of some initial coefficients, the second
Hankel determinantH2,2( f ), and the Zalcman functional were investigated.

In the present paper, we aim to give the sharp upper bounds of the second Hankel
determinantH2,3( f ) and the third Hankel determinantH3,1( f ) for functions in this class.

2. A set of Lemmas

To prove our main results, we need the following lemmas. The first lemma is often
used to connect the coefficients of the proposed function class and the Carathéodory
functions.

Lemma 1 (see [37]). Let p ∈ P be of the form (2). Then,

2p2 =p2
1 + ξ

(
4− p2

1

)
, (13)

4p3 =p3
1 + 2

(
4− p2

1

)
p1ξ − p1

(
4− p2

1

)
ξ2 + 2

(
4− p2

1

)(
1− |ξ|2

)
δ, (14)

8p4 =p4
1 +

(
4− p2

1

)
ξ
[

p2
1

(
ξ2 − 3ξ + 3

)
+ 4ξ

]
− 4
(

4− p2
1

)(
1− |ξ|2

)
[

p1(ξ − 1)δ + ξδ2 −
(

1− |δ|2
)

ρ
]

(15)

for some ξ, δ, ρ ∈ D := {z ∈ C : |z| ≤ 1}.

We will use the following results to prove that the maximum value of our obtained
three variables function is achieved on one face of its defined domain.

Lemma 2. For all (p, q) ∈ [0, 2)×
[

1
2 , 1
]
, we have

(2 + p)2(2− p)q2 + (2 + p)
(

3p2 + 74p− 64
)

q + 6p3 − 78p2 + 120 ≥ 0. (16)

Proof. Let

F1(p, q) := (2 + p)2(2− p)q2 + (2 + p)
(

3p2 + 74p− 64
)

q + 6p3 − 78p2 + 120. (17)

It is noted that

F1(p, q) ≥ 2(2 + p)(2− p)q2 + (2 + p)
(

3p2 + 74p− 64
)

q + 6p3 − 78p2 + 120

= (2 + p)
[
2(2− p)q2 +

(
3p2 + 74p− 64

)
q
]
+ 6p3 − 78p2 + 120

=: (2 + p)F2(p, q) + 6p3 − 78p2 + 120,

where
F2(p, q) = 2(2− p)q2 +

(
3p2 + 74p− 64

)
q. (18)
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Let p̃0 =
√

1561−37
3 ≈ 0.8365 be the only positive root of the equation 3p2 + 74p− 64 = 0 lies

on the interval [0, 2). If p ≥ p̃0, we obtain 3p2 + 74p− 64 ≥ 0 and thus F2(p, q) ≥ F2

(
p, 1

2

)
.

Then,

F1(p, q) ≥ 15
2

p3 − 77
2

p2 + 42p + 58 =: v(p), p ∈ [ p̃0, 2). (19)

Since v′(p) = 45
2 p2 − 77p + 42 = 0 has no positive roots lie on [ p̃0, 2), we find that

v(p) ≥ v(2) = 48 > 0. Hence, we find that F1(p, q) ≥ 0 on [ p̃, 2)×
[

1
2 , 1
]
.

Fix p ∈ [0, p̃), let us take F2 as a quadratic polynomial with respect to q. Then, the
symmetric axis of F2 is defined by

q0 =
64− 74p− 3p2

4(2− p)
> 0. (20)

Let p̃1 =
√

1393−5
3 ≈ 0.7743 be the only positive root of the equation 3p2 + 70p− 56 = 0. If

p ≤ p̃1, we have q0 ≥ 1. Then, F2(p, q) ≥ F2(p, 1), which induces to

F1(p, q) ≥ (2 + p)F2(p, 1) + 6p3 − 78p2 + 120 = 3p
(

28 + 3p2
)
≥ 0. (21)

If p ∈ ( p̃1, p̃0), from 1
2 ≤ q ≤ 1 it is found that

F1(p, q) ≥ (2 + p)2(2− p) · 1
4
+ (2 + p)

(
3p2 + 74p− 64

)
· 1 + 6p3 − 78p2 + 120

=
35
4

p3 +
3
2

p2 + 85p− 6 ≥ 85p− 6 > 0.

Hence, F1(p, q) ≥ 0 for all (p, q) ∈ [0, p̃0)×
[

1
2 , 1
]
. Now, we can conclude that F1(p, q) ≥ 0

on [0, 2)×
[

1
2 , 1
]
. The assertion in Lemma 2 thus follows.

Lemma 3. For all (p, q) ∈ [0, 2)×
[

1
2 , 1
]
, we have

(1 + p)
(

4− p2
)

q2 +
(

3p3 + 40p2 + 84p− 64
)

q + 6p3 − 39p2 + 60 ≥ 0. (22)

Proof. Let

F3(p, q) := (1 + p)
(

4− p2
)

q2 +
(

3p3 + 40p2 + 84p− 64
)

q + 6p3 − 39p2 + 60. (23)

By the basic fact that −q2 + 40q− 39 ≥ − 75
4 and 4q2 − 64q + 60 ≥ 0, we have

F3(p, q) ≥
(

4− p2
)

q2 +
(

40p2 + 84q− 64
)

q− 39p2 + 60

=
(
−q2 + 40q− 39

)
p2 + (84q)p + 4q2 − 64q + 60

≥ −75
4

p2 + 42p ≥ 0.

Then, we obtain the inequality in Lemma 3.

3. Main Results

The sharp upper bounds of the second Hankel determinant |H2,2( f )| for f ∈ SQ was
obtained in [36], we further consider the sharp upper bounds of |H2,3( f )| for functions in
this class.
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Theorem 1. Suppose that f ∈ SQ. Then,

|H2,3( f )| ≤ 2
5

. (24)

The bound is sharp with the extremal function given by

f1(z) =
1
2

arctan(z) +
z

2(1− z2)
= z +

2
3

z3 +
3
5

z5 +
4
7

z7 + · · · , z ∈ D. (25)

Proof. Let f ∈ SQ. Using subordination principal, a Schwarz function ω exists so that

f ′(z) =
1

(1−ω(z))2 , z ∈ D. (26)

Suppose that

χ(z) =
1 + ω(z)
1−ω(z)

= 1 + p1z + p2z2 + p3z3 + p4z4 + · · · , z ∈ D, (27)

we note that χ ∈ P and

ω(z) =
χ(z)− 1
χ(z) + 1

=
p1z + p2z2 + p3z3 + p4z4 + · · ·

2 + p1z + p2z2 + p3z3 + p4z4 + · · · , z ∈ D. (28)

Using (1), we obtain

f ′(z) = 1 + 2b2z + 3b3z2 + 4b4z3 + 5b4z4 + · · · , z ∈ D. (29)

Using (28), it is observed that

1

(1−ω(z))2 =1 + p1z +
(

p2 +
1
4

p2
1

)
z2 +

(
p3 +

1
2

p1 p2

)
z3 (30)

+

(
p4 +

1
2

p1 p3 +
1
4

p2
2

)
z4 + · · · , z ∈ D.

Comparing the coefficients of (29) and (30), we have

b2 =
1
2

p1, (31)

b3 =
1
3

(
p2 +

1
4

p2
1

)
, (32)

b4 =
1
4

(
p3 +

1
2

p1 p2

)
, (33)

b5 =
1
5

(
p4 +

1
2

p1 p3 +
1
4

p2
2

)
. (34)

Let f ∈ SQ and fβ(z) = e−iβ f
(
eiβz

)
, β ∈ R. Then,

<
√

f ′β(z) = <
√

f ′
(
eiβz

)
>

1
2

, z ∈ D. (35)

Thus, fβ ∈ SQ. As

H2,3
(

fβ

)
= e6iβ

(
b3b5 − b2

4

)
= e6iβH2,3( f ), (36)
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we know
∣∣H2,3

(
fβ

)∣∣ = |H2,3( f )| for every β ∈ R. This makes it possible to assume that
when estimating |H2,3( f )|, one selected coefficient of f is a non-negative real number,
see [38]. Assume b2 is real and p1 := p ∈ [0, 2]. Substituting (31)–(34) into (10), we have

H2,3( f ) =
1

960

(
8p3 p3 + 16p3

2 − 28pp2 p3 + 64p2 p4 + 16p2 p4 − 60p2
3 − 11p2 p2

2

)
. (37)

Let α = 4− p2. By applying Lemma 1 and inserting the formulae of p2, p3 and p4 into (37),
we obtain

H2,3( f ) =
1

960

{
16ξ3α2 + 2ξ3α3 + 24p2ξ2α− 9p4ξ2α + p4ξα + 6p4ξ3α

− 27
4

p2ξ2α2 +
13
2

p2ξ3α2 +
1
4

p2ξ4α2 − 15α2
(

1− |ξ|2
)2

δ2

+ 6p3α(1− |ξ|2)δ− 16|ξ|2α2
(

1− |ξ|2
)

δ2 − pξ2α2
(

1− |ξ|2
)

δ

− 21pξα2
(

1− |ξ|2
)

δ− 24p3ξα
(

1− |ξ|2
)

δ− 24p2ξα
(

1− |ξ|2
)

δ2

+24p2α
(

1− |ξ|2
)(

1− |δ|2
)

ρ + 16ξα2
(

1− |ξ|2
)(

1− |δ|2
)

ρ
}

,

where ξ, δ, ρ satisfying |ξ| ≤ 1, |δ| ≤ 1 and |ρ| ≤ 1. After rearrangements, we can put
H2,3( f ) in the form of

H2,3( f ) =
1

960

[
u1(p, ξ) + u2(p, ξ)δ + u3(p, ξ)δ2 + Φ(p, ξ, δ)ρ

]
, (38)

where

u1(p, ξ) =
1
4

(
4− p2

)
ξ
[

p2
(

4− p2
)

ξ3 + 6
(

p4 − 4p2 + 64
)

ξ2

−3p2
(

4 + 3p2
)

ξ + 4p4
]
,

u2(p, ξ) =(4− p2)
(

1− |ξ|2
)

p
[
−
(

4− p2
)

ξ2 −
(

3p2 + 84
)

ξ + 6p2
]
,

u3(p, ξ) =(4− p2)
(

1− |ξ|2
)[(

4− p2
)(
−|ξ|2 − 15

)
− 24p2ξ

]
,

Φ(p, ξ, δ) =8(4− p2)
(

1− |ξ|2
)
(1− |δ|2)

[
2
(

4− p2
)

ξ + 3p2
]
.

Let |ξ| =: q and |δ| =: y. By |ρ| ≤ 1, it follows that

|H2,3( f )| ≤ 1
960

[
|u1(p, ξ)|+ |u2(p, ξ)|y + |u3(p, ξ)|y2 + |Φ(p, ξ, δ)|

]
≤ 1

960
[Γ(p, q, y)], (39)

where
Γ(p, q, y) = σ1(p, q) + σ2(p, q)y + σ3(p, q)y2 + σ4(p, q)

(
1− y2

)
, (40)

with

σ1(p, q) =
1
4
(4− p2)q

[
p2
(

4− p2
)

q3 + 6
(

p4 − 4p2 + 64
)

q2

+3p2
(

4 + 3p2
)

q + 4p4
]
,

σ2(p, q) =(4− p2)
(

1− q2
)

p
[
(4− p2)q2 +

(
84 + 3p2

)
q + 6p2

]
,

σ3(p, q) =(4− p2)
(

1− q2
)[(

4− p2
)(

q2 + 15
)
+ 24p2q

]
,

σ4(p, q) =8(4− p2)
(

1− q2
)[

2
(

4− p2
)

q + 3p2
]
.
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The inequality (39) was obtained from the fact that
∣∣uj(p, ξ)

∣∣ ≤ σj(p, q) for j = 1, 2, 3 and

|Φ(p, ξ, δ)| ≤ σ4(p, q)
(

1− |δ|2
)

. Here, |u1(p, ξ)| ≤ σ1(p, q) follows from 4− p2 ≥ 0 and

p4 − 4p2 + 64 ≥ 0 on [0, 2].
Now, the main work is turning to find the maximum value of Γ in the closed cuboid

Ω := [0, 2]× [0, 1]× [0, 1]. In virtue of Γ(0, 1, 1) = 384, we have max(p,q,y)∈ΩΓ(p, q, y) ≥ 384.
In the following, it is shown that max(p,q,y)∈Ω Γ(p, q, y) = 384.

Setting p = 2, Γ(2, q, y) ≡ 0. When q = 1, we have

Γ(p, 1, y) = −9
2

p6 + 20p4 − 104p2 + 384 =: r1(p). (41)

According to the observation of − 9
2 p6 + 20p4 − 104p2 ≤ 0 for p ∈ [0, 2], it is found that r1

has a maximum value 384 achieved at p = 0. Then, without loss of generality, we may
choose p < 2 and q < 1 to illustrate that the maximum value of Γ is less than or equal
to 384.

Take (p, q, y) ∈ [0, 2)× [0, 1)× (0, 1). By differentiating partially of Γ with respect to y,
we know

∂Γ
∂y

= σ2(p, q) + 2[σ3(p, q)− σ4(p, q)]y. (42)

Let ∂Γ
∂y = 0. Then, the critical point ỹ0 is given by

ỹ0 =

(
4− p2)pq2 +

(
84 + 3p2)pq + 6p3

2(1− q)[(4− p2)q + 39p2 − 60]
. (43)

Since we have ỹ0 ∈ (0, 1), the following two inequalities must be satisfied simultaneously:

(2 + p)2(2− p)q2 + (2 + p)
(

3p2 + 74p− 64
)

q + 6p3 − 78p2 + 120 < 0 (44)

and

p2 >
4(15− q)

39− q
. (45)

Now we have to obtain the solutions fulfilling inequalities (44) and (45) to guarantee the
existence of critical points with ỹ0 ∈ (0, 1). From Lemma 2, it is noted that the inequality

(44) is impossible to hold for q ∈
[

1
2 , 1
)

. For any critical points ( p̂, q̂, ŷ), we know q̂ < 1
2

provided that ŷ ∈ (0, 1).
If we take $(t) = 4(5−t)

39−t , it is seen that $ is decreasing over [0, 1] in view of $′(t) < 0 in

[0, 1]. From (45), it follows that p̂2 ≥ $
(

1
2

)
= 36

77 . Now we consider (p, q, y) ∈
[√

36
77 , 2

)
×[

0, 1
2

)
× (0, 1). From 1− q2 ≤ 1 and q < 1

2 , we know

σ1(p, q) ≤ σ1

(
p,

1
2

)
=: τ1(p) (46)

and

σj(p, q) ≤ 4
3

σj

(
p,

1
2

)
=: τj(p), j = 2, 3, 4. (47)

Then, it is not hard to find that

Γ(p, q, y) ≤ τ1(p) + τ2(p)y + τ3(p)y2 + τ4(p)
(

1− y2
)
=: Ξ(p, y). (48)
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Because of ∂Ξ
∂y = τ2(p) + 2[τ3(p)− τ4(p)]y, it is easy to check that

∂Ξ
∂y
| y=1 = τ2(p) + 2[τ3(p)− τ4(p)] =

1
4
(4− p2)r2(p), (49)

where r2(p) := 29p3 − 154p2 + 172p + 232. As r2(p) ≥ 0 on
[√

36
77 , 2

)
, we find that

∂Ξ
∂y | y=1 ≥ 0. Combining the fact that ∂Ξ

∂y | y=0 = τ2(p) ≥ 0 and ∂Ξ
∂y is linear and continuous

with respect to y, we conclude that

∂Ξ
∂y
≥ min

{
min

∂Ξ
∂y
| y=0, min

∂Ξ
∂y
| y=1

}
≥ 0, y ∈ (0, 1). (50)

This leads to Ξ(p, y) ≤ Ξ(p, 1) = τ1(p) + τ2(p) + τ3(p) =: r3(p). It is an easy task to check
that

r3(p) = −79
64

p6 − 29
4

p5 +
65
8

p4 − 14p3 − 343
4

p2 + 172p + 292. (51)

For 0 ≤ p ≤ 2, we have

r3(p) ≤ 65
8

p4 − 14p3 − 343
4

p2 + 172p + 292

≤ 65
4

p3 − 14p3 − 343
4

p2 + 172p + 292

=
9
4

p3 − 343
4

p2 + 172p + 292

≤ 9
2

p2 − 343
4

p2 + 172p + 292

= −325
4

p2 + 172p + 292 ≤ 384.

Thus, Γ(p, q, y) < 384 on
[√

36
77 , 2

)
×
[
0, 1

2

)
× (0, 1), which further gives that Γ( p̂, q̂, ŷ) <

384. Therefore, it is left to discuss the boundary points ∂Ω to find the maximum value of Γ.
If we set y = 0 and y = 1, it is seen that

Γ(p, q, 0) = σ1(p, q) + σ4(p, q) (52)

and
Γ(p, q, 1) = σ1(p, q) + σ2(p, q) + σ3(p, q). (53)

Then, we have

Γ(p, q, 1)− Γ(p, q, 0) = σ2(p, q) + σ3(p, q)− σ4(p, q)

=
(

4− p2
)(

1− q2
)

Λ(p, q),

where

Λ(p, q) = (1 + p)
(

4− p2
)

q2 +
(

3p3 + 40p2 + 84p− 64
)

q + 6p3 − 39p2 + 60. (54)

From Lemma 3, we see Λ(p, q) ≥ 0 on [0, 2)×
[

1
2 , 1
)

, which induces to

Γ(p, q, 0) ≤ Γ(p, q, 1), (p, q) ∈ [0, 2)×
[

1
2

, 1
)

. (55)
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When q < 1
2 , then from (46) and (47), we obtain

Γ(p, q, 0) ≤ τ1(p) + τ4(p) =: η(p). (56)

Using some basic calculations, it is found that

η(p) = −79
64

p6 − 89
8

p4 +
81
4

p2 + 176, (57)

which has a maximum value of about 184.4481 attained at p ≈ 0.8960. Then, we can say that

Γ(p, q, 0) < 384, [0, 2)×
[

0,
1
2

)
. (58)

Based on both (55) and (58), it remains to find the maximum value of Γ on the face y = 1
of Ω.

When y = 1, we have

Γ(p, q, 1) = (4− p2)
[
v4(p)q4 + v3(p)q3 + v2(p)q2 + v1(p)q + v0(p)

]
=: Q(p, q), (59)

where

v4(p) =
1
4

(
4− p2

)(
p2 − 4p− 4

)
,

v3(p) =
3
2

p4 − 3p3 − 30p2 − 84p + 96,

v2(p) =
9
4

p4 − 7p3 + 17p2 + 4p− 56,

v1(p) = p
(

p3 + 3p2 + 24p + 84
)

,

v0(p) = 6p3 − 15p2 + 60.

The last work is to calculate the maximum value of Q on [0, 2]× [0, 1]. On the vertices (0, 0),
(2, 0), (0, 1) and (2, 1), we have Q(2, 0) = Q(2, 1) = 0, Q(0, 0) = 240 and Q(0, 1) = 384.

If we take the sides of [0, 2]× [0, 1], we have

Q(0, q) = −16q4 + 384q3 − 224q2 + 240 =: s(q). (60)

As s′(q) = −64q3 + 1152q2 − 448q = 0 has only one positive root q̂0 = 9−
√

74 ≈ 0.3977,
we know the maximum value of s is 384 attained at q = 1. When p = 2, then Q(2, q) ≡ 0
on [0, 1].

For the case of (0, 2) × (0, 1), we determine the critical points of Q by solving the
system of equations

∂Q
∂q

= (4− p2)
[
v1(p) + 2v2(p)q + 3v3(p)q2 + 4v4(p)q3

]
= 0 (61)

and

∂Q
∂p

=(4− p2)
[
v′0(p) + v′1(p)q + v′2(p)q2 + v′3(p)q3 + v′4(p)q4

]
− 2p

[
v0(p) + v1(p)q + v2(p)q2 + v3(p)q3 + v4(p)q4

]
= 0,
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it is got that there are no critical points lie in (0, 2)× (0, 1). According to all the above
discussions, we say Q(p, q) ≤ 384 on [0, 2]× [0, 1]. That is, Γ(p, q, y) ≤ 384 for all (p, q) ∈
[0, 2]× [0, 1]× [0, 1], which gives the conclusion that

|H2,3( f )| ≤ 384
960

=
2
5

. (62)

For the sharpness, it is noted that for the function f1 defined in (25), we have

f ′1(z) =
1

(1− z2)
2 , z ∈ D. (63)

Thus, f1 ∈ SQ according to the definition where the Schwarz function can be chosen
as ω(z) = z2. Additionally, H2,3( f1) = 2

3 ·
3
5 = 2

5 . The proof of Theorem 1 is then
completed.

The third Hankel determinant was widely studied for various interesting sub-classes
of univalent functions. In the following, we give the sharp bounds of |H3,1( f )| for our
considered function class.

Theorem 2. Suppose that f ∈ SQ. Then,

|H3,1( f )| ≤ 1
4

. (64)

The bound is sharp with the extremal function given by

f2(z) =
∫ z

0

1

(1− t3)
2 dt = z +

1
2

z4 +
3
7

z7 +
2
5

z10 + · · · , z ∈ D. (65)

Proof. From the definition, the third Hankel determinant is determined by

H3,1( f ) = 2b2b3b4 − b2
4 − b2

2b5 − b3
3 + b3b5. (66)

Taking f ∈ SQ and fβ(z) = e−iβ f
(
eiβz

)
, β ∈ R, we have fβ ∈ SQ and

H3,1
(

fβ

)
= e6iβH3,1( f ). (67)

That is to say,
∣∣H3,1

(
fβ

)∣∣ = |H3,1( f )| for every β ∈ R. It allows us to choose b2 of f to be
real when estimating |H3,1( f )|. From (31) we may assume p1 = p ∈ [0, 2]. Substituting
(31)–(34) into (66), the result is given by

H3,1( f ) =
1

8640

(
36p3 p3 − 5p6 − 176p3

2 + 30p4 p2 + 468pp2 p3

+576p2 p4 − 288p2 p4 − 540p2
3 − 87p2 p2

2

)
. (68)

Let α = 4− p2. An application of Lemma 1 shows that

H3,1( f ) =
1

8640

{
−22ξ3α3 + 144ξ3α2 +

9
4

p2ξ2α2 − 63
2

p2ξ3α2 +
9
4

p2ξ4α2

− 135α2
(

1− |ξ|2
)2

δ2 − 9pξ2α2
(

1− |ξ|2
)

δ− 9pξα2
(

1− |ξ|2
)

δ

−144|ξ|2α2
(

1− |ξ|2
)

δ2 + 144α2ξ
(

1− |ξ|2
)(

1− |δ|2
)

ρ
}

,
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where ξ, δ, ρ ∈ D. From the above expression, we can writeH3,1( f ) in the following form:

H3,1( f ) =
1

8640

[
ν1(p, ξ) + ν2(p, ξ)δ + ν3(p, ξ)δ2 + Φ̃(p, ξ, δ)ρ

]
, (69)

where

ν1(p, ξ) =
1
4

(
4− p2

)2
ξ2
[
9p2ξ2 + 2

(
112− 19p2

)
ξ + 9p2

]
ν2(p, ξ) = −9

(
4− p2

)2(
1− |ξ|2

)
pξ((1 + ξ),

ν3(p, ξ) = −9
(

4− p2
)2(

1− |ξ|2
)(
|ξ|2 + 15

)
,

Φ̃(p, ξ, δ) = 144
(

4− p2
)2(

1− |ξ|2
)(

1− |δ|2
)

ξ.

Set |ξ| =: q and |δ| := y. From |ρ| ≤ 1, it induces that

|H3,1( f )| ≤ 1
8640

[
|ν1(p, ξ)|+ |ν2(p, ξ)|y + |ν3(p, ξ)|y2 +

∣∣∣Φ̃(p, ξ, δ)
∣∣∣]

≤ 1
8640

[Θ(p, q, y)], (70)

where
Θ(p, q, y) = ζ1(p, q) + ζ2(p, q)y + ζ3(p, q)y2 + ζ4(p, q)

(
1− y2

)
, (71)

with

ζ1(p, q) =
1
4

(
4− p2

)2[
9p2q4 + 2

(
112− 19p2

)
q3 + 9p2q2

]
,

ζ2(p, q) = 9
(

4− p2
)2(

1− q2
)

pq(1 + q),

ζ3(p, q) = 9
(

4− p2
)2(

1− q2
)(

q2 + 15
)

,

ζ4(p, q) = 144
(

4− p2
)2(

1− q2
)

q.

Here, we use the inequality |v1(p, ξ)| ≤ ζ1(p, q), which holds on the condition that 112p4−
19p2 ≥ 0 for all p ∈ [0, 2].

Now, the problem reduces to find the maximum value of Θ in the same domain Ω. In
view of

ζ3(p, q)− ζ4(p, q) = 9
(

4− p2
)2(

1− q2
)(

q2 − 16q + 15
)
≥ 0 (72)

on [0, 2]× [0, 1], we observe that

∂Θ
∂y

= ζ2(p, q) + 2[ζ3(p, q)− ζ4(p, q)]y ≥ 0. (73)

This gives the fact that Θ(p, q, y) ≤ Θ(p, q, 1). Then, it still needs to find the maximum
value of Θ on the face y = 1 of Ω.

When we choose y = 1, it is found that

Θ(p, q, 1) =
(

4− p2
)2
[

9
4

(
p2 − 4p− 4

)
q4 −

(
19p2 + 18p− 112

)
q3

+9
(

p2 + 4p− 56
)

q2 + 9pq + 135
]

= : K1(p, q).
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From p2 − 4p− 4 ≤ 0 on [0, 2], it is found that

K1(p, q) ≤
(

4− p2
)2[
−
(

19p2 + 18p− 112
)

q3 + 9
(

p2 + 4p− 56
)

q2

+9pq + 135]

= : K2(p, q).

From the fact that −19p2 − 18p− 112 ≥ 0 on [0, 2] and q3 ≤ q2, it further leads to

K2(p, q) ≤
(

4− p2
)2[
−
(

19p2 + 18p− 112
)

q2 + 9
(

p2 + 4p− 56
)

q2

+9pq + 135]

=
(

4− p2
)2[
−
(

10p2 − 18p + 392
)

q2 + 9pq + 135
]

= : K3(p, q).

By fixing p in K3, one can obtain the quadratic polynomial with respect to q, the coefficient
of q2 is −

(
4− p2)2(10p2 − 18p + 392

)
≤ 0 and the symmetric axis is defined by

q0 =
9p

2(10p2 − 18p + 392)
. (74)

It is easy to check that q0 ∈ [0, 1) and 10p2 − 18p + 396 ≥ 360. Thus, we obtain

K3(p, q) ≤
(

4− p2
)2
[

135 +
81p2

4
· 1
(10p2 − 18p + 392)

]
≤
(

4− p2
)2
(

135 +
9p2

160

)
=: l(p).

It is not hard to see that l has a maximum value 2160 achieved at p = 0. This shows
K1(p, q) ≤ 2160 on [0, 2] × [0, 1], which provides the fact that Θ(p, q, y) ≤ 2160 for all
(p, q, y) ∈ [0, 2]× [0, 1]× [0, 1]. Hence, we have

|H3,1( f )| ≤ 2160
8640

=
1
4

. (75)

The bound is sharp with the equality obtained by the function f2 defined in (65). Clearly,

f ′2(z) =
1

(1− z3)
2 , z ∈ D. (76)

Taking ω(z) = z3, it is known that f ′2(z) ≺ 1
(1−z)2 and thus f2 ∈ SQ. It is verified that

H3,1( f2) = − 1
4 . The proof of Theorem 2 is thus completed.

4. Conclusions

The coefficient problem is basic and essential in the theory of univalent functions. In
this paper, we calculate the sharp bounds of the second and third Hankel determinant for a
new class SQ of analytic functions introduced by Răducanu. For functions in this class, it
satisfies that f ′(z) subordinated to 1/(1− z)2 in the open unit disk D. We may expect that
functions in SQ are univalent. However, it is not proven yet. It is an interesting topic to
investigate the univalence or the non-univalence and higher order Hankel determinants
for functions in this class.
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25. Zaprawa, P.; Obradović, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Rev. Real Acad. De Ciencias

Exactas Físicas y Nat. Ser. A Mat. 2021, 115, 49. [CrossRef]
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