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Abstract: In this paper, we develop a generalized moment method with a continuous weight function
for the Smoluchowski coagulation equation in its continuous form to study the mass conservation
property of this equation. We first establish some basic inequalities for the generalized moment
and prove the mass conservation property under a sufficient condition on the kernel and an initial
condition, utilizing these inequalities. Additionally, we provide some concrete examples of coagu-
lation kernels that exhibit mass conservation properties and show that these kernels exhibit either
polynomial or exponential growth along specific particular curves.
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1. Introduction

Coagulation is widespread in nature. There are various types of coagulation phenom-
ena happening on different scales: microscopic, mesoscopic, and microscopic. Researchers
have also observed coagulation events at the nanoscopic level [1]. For irreversible binary
coagulation, a well-known equation is the Smoluchowski coagulation equation. Different
phenomena can be explained by this equation. This equation is not only used in different
fields of science and engineering but also other fields such as phase separation in liquid
mixtures [2]; polymerization [3]; raindrop or snowflake formation in clouds [4,5]; the for-
mation of metal from metal powder [6]; the characterization of proteins in drug design [7];
the coalescence of ancestral lineages in the genealogy of populations [8]; the clumping of
antigens and antibodies in blood agglutination [9]; the formation of large-scale structure
such as planets, stars, and galaxies in the expanding universe [10]; and even in economics
for predicting future financial behavior in bank mergers [11].

Concerning the mathematical model of coagulation, initially, in 1916, Smoluchowski
presented the discrete coagulation model [12]. Subsequently, a continuous form of the
coagulation model was proposed by Müller [13]. Nowadays, the following continuous
coagulation model has been studied in a variety of scientific fields:

∂u
∂t

(x, t) =
1
2

∫ x

0
K(x− y, y)u(y, t)u(x− y, t) dy−

∫ ∞

0
K(x, y)u(x, t)u(y, t) dy, (1)

for x ∈ R+ := [0, ∞) and t ∈ [0, T]. In this paper, we refer to (1) as the Smoluchowski
Coagulation Equation (SCE) and consider its initial value problem with the initial condition:

u(x, 0) = u0(x) for x ∈ R+.
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We consider x ∈ R+ as the size (volume or mass) of a particle. The size distribution
u(x, t) represents the continuous distribution of the number of particles with size x ∈ R+

at time t ∈ [0, T]. Through a pairwise merging of particles of sizes x and y, a bigger particle
of size x + y is created. The rate of this coagulation is determined by the coagulation kernel
function K(x, y) ≥ 0 in the SCE, which is proportional to the probability of a particle with
mass y merging into another particle with mass x. Different physical problems require
different forms of the coagulation kernel. We refer the reader to [14,15] for examples of
such kernels that appear in various fields.

In mathematical and numerical analyses of the SCE, various methods have been
developed. Analytical methods, such as the moment method [16], desingularized Laplace
transformation method [17], and self-similar solution approach [18], have been applied to
solve the SCE. Several numerical methods have also been successfully implemented, e.g.,
the Monte Carlo simulation [19], finite element method [20], finite volume method [21],
and Pade approximation method [22].

It is well-known that the SCE can be written in the following flux form [21,23,24]

∂

∂t
{xu(x, t)}+ ∂

∂x
J[u](x, t) = 0, (2)

where the flux J[u] is defined by

J[u](x, t) :=
∫ x

0

∫ ∞

x−y
yK(y, z)u(y, t)u(z, t) dzdy. (3)

In particular, we set J[u](0, t) = 0. We provide a more precise statement for (2) in
Section 2 and a physical derivation of J[u](x, t) in Appendix A. One of the most effective
tools in the analysis of the SCE is the moment method. We simply define the k-th moment
of u(x, t) by

Mk(t) :=
∫ ∞

0
xku(x, t) dx ; k does not have to be an integer.

The zeroth moment, M0(t), represents the total number of particles, whereas the first
moment, M1(t), represents the total mass of the coagulation system. Since the SCE is
written in the form of a conservation law (2), it is expected that the total mass M1(t) is
conserved. In some cases, such as when K(x, y) = constant or K(x, y) = x + y, the mass
is conserved (see also Corollary 2). However, for certain kernels, the mass conservation
property is known to break, such as when K(x, y) = xy [25,26] (see also Proposition 4). The
mass conservation, i.e., M1(t) = M1(0), holds for t ∈ [0, t∗] until a finite time t∗ > 0, but it
fails if t > t∗, as M1(t) < M1(t∗) [26,27]. Mathematically, this phenomenon is referred to
as gelation, drawing an analogy to the physical gelation in a sol-gel phase transition.

In their study on the mathematical analysis of the mass conservation property, Es-
cobedo et al. [28,29] considered a class of kernels of the form

K(x, y) = xµyν + xνyµ with − 1 ≤ µ ≤ ν ≤ 1, µ + ν ∈ [0, 1], (4)

and proved its mass conservation property, building upon several pioneering works, e.g.,
Norris [30]. Regarding the mathematical analysis of gelation, Laurençot [27] and also
Escobedo et al. [26] provided a proof that gelation occurs for (4) when µ + ν > 1. For
the sake of convenience, we have included a proof of gelation for the case K(x, y) ≥ axy,
a > 0 in the appendix. For further details, we refer the reader to the above papers and the
references cited therein.

The aim of this paper is to establish a generalized moment method using a truncated
moment identity and provide a sufficient condition for a broader class of kernels where
mass is conserved.
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The outline of this paper is as follows. Section 2 describes the flux form (conservation
law) of the SCE. Section 3 discusses the generalized moment and truncated moment identity.
Section 4 illustrates the mass conservation property for a special class of kernels using the
generalized moment method. Section 5 provides some examples of new valid kernels for
which mass is conserved, as well as some numerical examples. Finally, Section 6 presents
the conclusions. Appendix A presents the physical derivation of flux and Appendix B
provides a simple proof of the gelation. Appendices C and D provide a supplementary
lemma and definitions of convexity and superadditivity, respectively.

2. Flux Form of Smoluchowski Coagulation Equation

Throughout this paper, we make the following assumptions regarding the coagulation
kernel K(x, y):

(a1) K ∈ C0(R+ ×R+),

(a2) K(x, y) ≥ 0 for (x, y) ∈ R+ ×R+,

(a3) K(x, y) = K(y, x) for (x, y) ∈ R+ ×R+.

In the following sections, we consider a classical solution of the SCE, which is defined
as follows.

Definition 1 (Classical solution). A function u is called a classical solution of the SCE on [0, T]
if it satisfies the following conditions:

(b1) u ∈ C0(R+ × [0, T]),

(b2)
∂u
∂t
∈ C0(R+ × [0, T]),

(b3) u(x, t) ≥ 0 for (x, t) ∈ R+ × [0, T],

(b4)
∫ ∞

0
K(x, y)u(y, t) dy < ∞, and it is continuous for (x, t) ∈ R+ × [0, T],

(b5) (1) holds for (x, t) ∈ R+ × [0, T].

Furthermore, u is called a classical solution of the SCE on [0, ∞) if it is a classical solution of
the SCE on [0, T] for any T > 0.

Lemma 1. If u satisfies (b1), (b3), and (b4) in Definition 1, then J[u](x, t) is well-defined and
J[u] ∈ C0(R+ × [0, T]), ∂

∂x J[u] ∈ C0(R+ × [0, T]), and the following equality holds:

∂

∂x
J[u](x, t) =

∫ ∞

0
xK(x, y)u(x, t)u(y, t) dy− 1

2

∫ x

0
xK(x− y, y)u(x− y, t)u(y, t) dy.

Proof. Setting h(y, z, t) := yK(y, z)u(y, t)u(z, t), we have

J[u](x, t) =
∫ x

0

∫ ∞

x−y
h(y, z, t) dzdy = J1[u](x, t)− J2[u](x, t),

where

J1[u](x, t) :=
∫ x

0

∫ ∞

0
h(y, z, t) dzdy, and J2[u](x, t) :=

∫ x

0

∫ x−y

0
h(y, z, t) dzdy.

Since

J1[u](x, t) =
∫ x

0
yu(y, t)

(∫ ∞

0
K(y, z)u(z, t) dz

)
dy,

and [(y, t) 7→
∫ ∞

0 K(y, z)u(z, t) dz] ∈ C0(R+ × [0, T]), J1[u] is well-defined and

∂

∂x
J1[u](x, t) =

∫ ∞

0
h(x, z, t) dz =

∫ ∞

0
xK(x, z)u(x, t)u(z, t) dz,
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holds.

On the other hand, J2[u](x, t) is well-defined and satisfies

J2[u](x, t) =
∫ x

0
F(x, y, t) dy,

where

F(x, y, t) :=
∫ x−y

0
h(y, z, t) dz =

∫ x

y
h(y, r− y, t) dr for (x, y, t) ∈ D × [0, T],

and D := {(x, y); 0 ≤ y ≤ x}. We note that F ∈ C0(D × [0, T]), ∂F
∂x ∈ C0(D × [0, T]), and

∂F
∂x (x, y, t) = h(y, x − y, t). For some fixed t ∈ [0, T], by applying Lemma 4, we obtain
∂

∂x J2[u](·, ·, t) ∈ C0(D), and

∂

∂x
J2[u](x, t) = F(x, x, t) +

∫ x

0

∂F
∂x

(x, y, t) dy =
∫ x

0
h(y, x− y, t) dy,

holds for (x, y) ∈ D. Then, setting I := ∂
∂x J2[u](x, t), we have

I =
∫ x

0
h(y, x− y, t) dy =

∫ x

0
yK(y, x− y)u(y, t)u(x− y, t) dy. (5)

By changing the integral variable z = x− y, we also have

I =
∫ x

0
h(x− z, z, t) dz =

∫ x

0
(x− z)K(x− z, z)u(x− z, t)u(z, t) dz (6)

Then, by replacing z with y in (6) and adding (5), we obtain

2I =
∫ x

0
xK(x− y, y)u(x− y, t)u(y, t) dy.

This implies that

∂

∂x
J2[u](x, t) = I =

1
2

∫ x

0
xK(x− y, y)u(x− y, t)u(y, t) dy.

Therefore, we obtain J[u] ∈ C0(R+ × [0, T]) and ∂
∂x J[u] ∈ C0(R+ × [0, T]), and finally

∂

∂x
J[u](x, t) =

∂

∂x
J1[u](x, t)− ∂

∂x
J2[u](x, t)

=
∫ ∞

0
xK(x, y)u(x, t)u(y, t) dy− 1

2

∫ x

0
xK(x− y, y)u(x− y, t)u(y, t) dy.

This lemma immediately implies the following proposition. We skip its proof.

Proposition 1. A function u is a classical solution of the SCE on [0, T] if and only if u satisfies
(b1)–(b4) in Definition 1, and the following conservation law (flux form) holds:

∂

∂t
{xu(x, t)}+ ∂

∂x
J[u](x, t) = 0 for (x, t) ∈ R+ × [0, T]. (7)

3. Generalized Moment Method

In some works, the k-th moment is effectively used in the analysis of the SCE [16].
Here, we introduce a generalized moment by choosing a more general weight function
b(x).
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Definition 2. Suppose that u ∈ C0(R+ × [0, T]) and u(x, t) ≥ 0. Then, we define the following
moments of the function u. For k ∈ N∪ {0} and r ≥ 0, we define

mk(r, t) :=
∫ r

0
xku(x, t) dx ∈ [0, ∞),

Mk(t) :=
∫ ∞

0
xku(x, t) dx = lim

r→∞
mk(r, t) ∈ [0, ∞].

We consider Mk(t) as a k-th moment and mk(r, t) as a truncated k-th moment.
For b ∈ C0(R+) and r ≥ 0, we define

mb(r, t) :=
∫ r

0
b(x)u(x, t)dx ∈ R,

Mb(t) :=
∫ ∞

0
b(x)u(x, t) dx = lim

r→∞
mb(r, t), if the limit exists.

If b(x) ≥ 0, then mb(r, t) ∈ [0, ∞) and Mb(t) ∈ [0, ∞]. We call Mb(t) a generalized b-moment
and mb(r, t) a truncated b-moment. When b(x) = xk, Mk(t) = Mb(t) and mk(r, t) = mb(r, t).

If u is a classical solution of the SCE on [0, T], it is known that it satisfies the generalized
moment identity [31]

d
dt

Ma(t) =
1
2

∫ ∞

0

∫ ∞

0

(
a(x + y)− a(x)− a(y)

)
K(x, y)u(x, t)u(y, t)dydx, (8)

for any weight function a ∈ C∞
0 (R+). A function u that satisfies (8) is called a weak solution

in some works, but we do not consider the concept of the weak solution in this paper.
The following formula is a truncated version of (8) and plays a key role in the proof of

our main theorem (Theorem 2).

Theorem 1 (Truncated moment identity). If u is a classical solution of the SCE on [0, T], then
for any b ∈ C0(R+) and r > 0, the following equality holds:

∂

∂t
mb(r, t) =

1
2

∫ r

0

∫ r−x

0

(
b(x + y)− b(x)− b(y)

)
K(x, y)u(x, t)u(y, t) dydx

−
∫ r

0

∫ ∞

r−x
b(x)K(x, y)u(x, t)u(y, t) dydx. (9)

Proof. From the SCE (1), we have

∂

∂t
mb(r, t) = I1(r, t)− I2(r, t),

where

I1(r, t) :=
1
2

∫ r

0

∫ x

0
b(x)K(x− y, y)u(x− y, t)u(y, t) dydx,

I2(r, t) :=
∫ r

0

∫ ∞

0
b(x)K(x, y)u(x, t)u(y, t) dydx.

By using Fubini’s theorem, I1(r, t) becomes

I1(r, t) =
1
2

∫ r

0

∫ r

y
b(x)K(x− y, y)u(x− y, t)u(y, t) dxdy

=
1
2

∫ r

0

∫ r−y

0
b(x + y)K(x, y)u(x, t)u(y, t) dxdy, (10)

where we replace the variable x− y with x.
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For I2(r, t), we have

I2(r, t) =
∫ r

0

∫ r−x

0
b(x)K(x, y)u(x, t)u(y, t) dydx +

∫ r

0

∫ ∞

r−x
b(x)K(x, y)u(x, t)u(y, t) dydx.

From the symmetry of K(x, y), it follows that∫ r

0

∫ r−x

0
b(x)K(x, y)u(x, t)u(y, t) dydx =

∫ r

0

∫ r−x

0
b(y)K(x, y)u(x, t)u(y, t) dydx.

Using this equality, we obtain

I2(r, t) =
1
2

∫ r

0

∫ r−x

0

(
b(x) + b(y)

)
K(x, y)u(x, t)u(y, t) dydx

+
∫ r

0

∫ ∞

r−x
b(x)K(x, y)u(x, t)u(y, t) dydx. (11)

Finally, from (10) and (11), we conclude the assertion in (9).

Corollary 1. Let u be a classical solution of the SCE on [0, T]. If b ∈ C0(R+) and b(x) ≥ 0, then

∂

∂t
mb(r, t) ≤ 1

2

∫ r

0

∫ r−x

0

(
b(x + y)− b(x)− b(y)

)
K(x, y)u(x, t)u(y, t) dydx.

Proof. This immediately follows from (9) since b(x) ≥ 0.

Proposition 2. We suppose that u is a classical solution of the SCE on [0, T] and k = 0 or k = 1.
If Mk(0) < ∞, then Mk(t) ≤ Mk(0) holds for t ∈ [0, T].

Proof. By choosing b(x) = xk in Corollary 1, we have

if k = 0:
∂

∂t
m0(r, t) ≤ −1

2

∫ r

0

∫ r−x

0
K(x, y)u(x, t)u(y, t)dydx ≤ 0,

if k = 1:
∂

∂t
m1(r, t) ≤ 0.

In both cases, we have

mk(r, t) = mk(r, 0) +
∫ t

0

∂mk
∂t

(r, s)ds ≤ mk(r, 0) ≤ Mk(0).

Then, taking r → ∞, we obtain Mk(t) ≤ Mk(0).

4. Mass Conservation Theorem

In this section, we state our main theorem, which gives a sufficient condition on the
coagulation kernel K(x, y) and the weight function b(x) for the mass conservation property.
We suppose that K(x, y) satisfies the properties (a1)–(a3) and

b ∈ C(R+) and b(x) ≥ 0. (12)

Furthermore, we assume that there exist some constants C1, C2 > 0, and the following
conditions hold for all x, y ∈ R+:

(c1) (x + y)K(x, y) ≤ C1
(
b(x) + x + 1

)(
b(y) + y + 1

)
,

(c2)
(
b(x + y)− b(x)− b(y)

)
K(x, y) ≤ C2

((
b(y) + y + 1

)
(x + 1) +

(
b(x) + x + 1

)
(y + 1)

)
.
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For example, if the coagulation kernel is sublinear, i.e., there exists C > 0 such that
K(x, y) ≤ C(x + y + 1) for x, y ∈ R+, then conditions (c1) and (c2) hold for b(x) = x2.

When a weight function b(x) is given as in (12), the following proposition provides an
example of a coagulation kernel that satisfies conditions (c1) and (c2).

Proposition 3. Under the condition in (12), we suppose that c ≥ 0 and

b(x + y)− b(x)− b(y) + c ≥ 0 for all x, y ∈ R+, (13)

and suppose that the kernel

K(x, y) =
b(x) + b(y)

b(x + y)− b(x)− b(y) + x + y + c

is continuous on R+ ×R+. Then, it satisfies assumptions (a1)–(a3) and (c1) and (c2). In particular,
if b as given in (12) is convex and c > b(0), then (a1)–(a3) and (c1) and (c2) are satisfied.

Proof. From (13), conditions (c1) and (c2) are derived as follows:

(x + y)K(x, y) =
(x + y)

(
b(x) + b(y)

)
b(x + y)− b(x)− b(y) + x + y + c

≤
(x + y)

(
b(x) + b(y)

)
x + y

= b(x) + b(y) ≤ (b(x) + x + 1)(b(y) + y + 1),

(
b(x + y)− b(x)− b(y)

)
K(x, y) =

(
b(x + y)− b(x)− b(y)

)(
b(x) + b(y)

)
b(x + y)− b(x)− b(y) + x + y + c

≤
(
b(x + y)− b(x)− b(y) + x + y + c

)(
b(x) + b(y)

)
b(x + y)− b(x)− b(y) + x + y + c

= b(x) + b(y) ≤
(
b(y) + y + 1

)
(x + 1) +

(
b(x) + x + 1

)
(y + 1).

If b is convex and c > b(0), then

b(x + y)− b(x)− b(y) + c > 0 for all x, y ∈ R+,

holds from Proposition 5 in Appendix D and K ∈ C0(R+ ×R+).

Lemma 2. We suppose that u is a classical solution of the SCE on [0, T], and that (12) and (c2)
hold. If M1(0) < ∞ and Mb(0) < ∞, there exists B > 0 such that Mb(t) ≤ B for t ∈ [0, T].

Proof. From Corollary 1 and (c2), taking into account Proposition 2, we have

∂

∂t
mb(r, t) ≤ 1

2

∫ r

0

∫ r

0

(
b(x + y)− b(x)− b(y)

)
K(x, y)u(x, t)u(y, t) dxdy

≤ C2

2

∫ r

0

∫ r

0

{
(b(y) + y + 1)(x + 1) + (b(x) + x + 1)(y + 1)

}
u(x, t)u(y, t) dxdy

= C2

∫ r

0

∫ r

0

((
b(y) + y + 1

)
(x + 1)

)
u(x, t)u(y, t) dxdy

= C2

∫ r

0
(x + 1)u(x, t)dx

∫ r

0

(
b(y) + y + 1

)
u(y, t)dy

= C2
(
m1(r, t) + m0(r, t)

)(
mb(r, t) + m1(r, t) + m0(r, t)

)
≤ C2

(
M1(0) + M0(0)

)(
mb(r, t) + M1(0) + M0(0)

)
= C2 Amb(r, t) + C2 A2,
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where we set A := M1(0) + M0(0). By solving the differential inequality, we obtain

mb(r, t) ≤ mb(r, 0)eC2 At + A(eC2 At − 1) ≤ Mb(0)eC2 At + A(eC2 At − 1) ≤ B,

where B := (A + Mb(0))eC2 AT . By taking r → ∞, we conclude that Mb(t) ≤ B.

Lemma 3. We suppose that u is a classical solution of the SCE on [0, T], and that (12) and (c1)
and (c2) hold. If M1(0) < ∞ and Mb(0) < ∞, it holds that

lim
r→∞

∫ t

0
J[u](r, s) ds = 0 for t ∈ [0, T].

Proof. For r > 0, we define

E0(r) :=
{
(x, y) ∈ R2; 0 ≤ x ≤ r, r− x ≤ y

}
,

E1(r) :=
{
(x, y) ∈ R2; x ≥ 0, y ≥ r

2

}
,

E′1(r) :=
{
(x, y) ∈ R2; y ≥ 0, x ≥ r

2

}
.

Since E0(r) ⊂ (E1(r) ∪ E′1(r)), we have

J[u](r, t) =
∫∫

E0(r)
xK(x, y)u(x, t)u(y, t) dxdy

≤
∫∫

E1(r)
(x + y)K(x, y)u(x, t)u(y, t) dxdy +

∫∫
E′1(r)

(x + y)K(x, y)u(x, t)u(y, t) dxdy

= 2
∫∫

E1(r)
(x + y)K(x, y)u(x, t)u(y, t) dxdy

≤ 2C1

∫∫
E1(r)

(
b(x) + x + 1

)(
b(y) + y + 1

)
u(x, t)u(y, t) dxdy

= 2C1

∫ ∞

0

(
b(x) + x + 1

)
u(x, t) dx

∫ ∞

r/2

(
b(y) + y + 1

)
u(y, t) dy

= 2C1

{
Mb(t) + M1(t) + M0(t)

} ∫ ∞

r/2

(
b(y) + y + 1

)
u(y, t) dy

≤ 2C1
(

B + M1(0) + M0(0)
) ∫ ∞

r/2

(
b(y) + y + 1

)
u(y, t) dy, (14)

where the last inequality holds from Proposition 2 and Lemma 2.
Since ∫ ∞

r/2

(
b(y) + y + 1

)
u(y, t) dy

=
(

Mb(t)−mb
( r

2
, t
))

+
(

M1(t)−m1

( r
2

, t
))

+
(

M0(t)−m0

( r
2

, t
))

,

and the three terms on the right-hand side tend to zero as r → ∞, we obtain

lim
r→∞

J[u](r, t) = 0 for t ∈ [0, T].

From (14), we also have

J[u](r, t) ≤ 2C1
(

B + M1(0) + M0(0)
)2 for r ∈ R+ and t ∈ [0, T].

By Lebesgue’s dominated convergence theorem [32], we obtain

lim
r→∞

∫ t

0
J[u](r, s)ds =

∫ t

0

(
lim
r→∞

J[u](r, s)
)

ds = 0.
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This completes the proof of Lemma 3.

Lemma 3 guarantees that no mass flux can escape to infinity. Hence, we can prove the
following mass conservation theorem using Lemma 3.

Theorem 2 (Mass conservation). We suppose that u is a classical solution of the SCE on
[0, T], and that (12) and (c1) and (c2) hold. If M1(0) < ∞ and Mb(0) < ∞, then it holds
that M1(t) = M1(0) and Mb(t) ≤ B for t ∈ [0, T], where B is a constant defined in Lemma 2.

Proof. The assertion Mb(t) ≤ B has already been shown in Lemma 2. The other assertion
M1(t) = M1(0) is shown as follows. For r > 0 and t ∈ [0, T], integrating (7) with respect to
x over [0, r], we obtain

∂

∂t
m1(r, t) =

∫ r

0
x

∂

∂t
u(x, t) dx = −

∫ r

0

∂

∂x
J[u](x, t) dx = −J[u](r, t).

So, we have

m1(r, t) = m1(r, 0)−
∫ t

0
J[u](r, s)ds.

Taking r → ∞ and applying Lemma 3, we obtain

M1(t) = M1(0) for t ∈ [0, T].

Hence, the proof is complete.

As an application of this theorem, we can prove the following corollary, which is a
special case of the results presented in [28,29].

Corollary 2. We suppose that K satisfies (a1)–(a3) and there exists C > 0 such that

K(x, y) ≤ C(x + y + 1) for x, y ∈ R+. (15)

If u is a classical solution for the SCE on [0, T] and M2(0) < ∞, then M1(t) = M1(0) and
M2(t) < ∞ for t ∈ [0, T].

Proof. It is clear that (c1) and (c2) hold with b(x) = x2 because b(x + y)− b(x)− b(y) =
2xy. Then, the assertion follows from Theorem 2.

5. Examples of Mass-Conserving Kernels

As an application of Theorem 2 and Proposition 3, we provide several examples of
kernels for which the mass conservation property holds but is not sublinear.

5.1. Polynomial Growth Kernel I

Setting b(x) = xp (p ∈ N, p ≥ 3) and c ≥ 0, we apply Proposition 3. Then, we have

KI(x, y) =
xp + yp

(x + y)p − xp − yp + x + y + c
=

xp + yp

∑
p−1
n=1 (

p
n)xp−nyn + x + y + c

, (16)

where (p
n) is a binomial coefficient. We note that this kernel is continuous on R+ × R+,

even when c = 0 (see (17)). Since it satisfies (c1) and (c2), if Mp(0) < ∞, then the mass is
conserved. However, for y = x−(p−2), it satisfies

KI

(
x, x−(p−2)

)
=

xp + x−p(p−2)

(p + 1)x + O(1)
=

1
p + 1

xp−1 + O(xp−2) as x → ∞.
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This means that the kernel KI(x, y) has a polynomial growth of the order of xp−1 along
the curve y = x−(p−2). This is an example of a mass-conserving kernel that does not have
sublinear growth.

5.2. Polynomial Growth Kernel II

As in the previous example, we can construct another more simple mass-conserving
kernel with polynomial growth. Again, we set b(x) = xp (p ∈ N, p ≥ 3) and define

KI I(x, y) =
xp + yp

xy(x + y)p−2 + x + y
.

We note that K ∈ C0(R+ ×R+) holds since xp+yp

x+y is continuous in R+ ×R+. Further-
more, using the inequality

3
(

p− 2
n− 1

)
≤
(

p
n

)
≤ p

(
p− 2
n− 1

)
for 1 ≤ n ≤ p− 1,

we have

3xy(x + y)p−2 ≤ (x + y)p − xp − yp ≤ pxy(x + y)p−2. (17)

Then, we obtain

KI I(x, y) ≤ xp + yp

1
p{(x + y)p − xp − yp}+ x + y

≤ 1
p

KI(x, y)|c=0.

Since KI(x, y) satisfies conditions (c1) and (c2), KI I(x, y) follows the same conditions.
For y = x−(p−2), it satisfies

KI I(x, x−(p−2)) =
xp + x−p(p−2)

2x + O(1)
=

1
2

xp−1 + O(xp−2) as x → ∞.

In particular, when p = 3, it becomes

KI I(x, y)|p=3 =
x2 − xy + y2

xy + 1
,

which exhibits a quadratic growth along the curve y = x−1:

KI I(x, x−1)|p=3 =
1
2

x2 + O(x) as x → ∞.

We show a graph and a contour plot of KI I(x, y)|p=3 in Figure 1.

5.3. Exponential Growth Kernel

We set b(x) = ex and c = 2 and apply Proposition 3. Then, we have

KI I I(x, y) =
ex + ey

ex+y − ex − ey + x + y + 2
=

ex + ey

(ex − 1)(ey − 1) + x + y + 1
,

where we chose c = 2 because KI I I is continuous at (x, y) = (0, 0) only if c > 1. Since
KI I I ∈ C0(R+ ×R+), if Mb(0) < ∞ it means that∫ ∞

0
exu(x, 0) dx < ∞,

so the mass is conserved.
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Along the curve y = log(1 + e−αx) (α ≥ 1), it satisfies

KI I I(x, log(1 + e−αx)) =
ex + 1 + e−αx

(ex + 1)(1 + e−αx − 1) + x + log(1 + e−αx) + 1

=
ex + 1 + e−αx

e(1−α)x(1 + e−x) + x + log(1 + e−αx) + 1

=
ex + O(1)
x + O(1)

=
ex

x
+ O

(
1
x

)
as x → ∞.

This is an example of an exponentially growing and mass-conserving kernel. We
provide a graph and a contour plot of KI I I(x, y) in Figure 2.

(a) Graph (b) Contour plot

Figure 1. KI I(x, y)|p=3 =
x2−xy+y2

xy+1 .

(a) Graph
(b) Contour plot

Figure 2. KI I I(x, y) = ex+ey

(ex−1)(ey−1)+x+y+1 .

5.4. Discussion

In the introduction, we discussed the conservation of mass and gel phenomena for
various types of kernels. Here, using the numerical simulation, we compare our new
kernels that satisfy (c1) and (c2) with some previously known kernels. For the numerical
simulation, we employ the finite volume method proposed by Filbet and Laurençot [21].
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In Figure 3, we can see the time evolution of the solution profile u(x, t) with an initial
condition u0(x) = e−x for previously known kernels K(x, y) = x + y and K(x, y) = xy, as
well as our chosen kernels KI I(x, y)|p=3 and KI I I(x, y). In these numerical computations,
we truncate x ∈ R+ to the interval [0, R] with R = 200.0 and divide [0, R] as 0 = x0 <
x1 < ... < xn = R, where xi = R(i/n)2 and n = 500. However, we only show the interval
x ∈ [0, 10] in the figures. For time, we compute t ∈ [0, T] with T = 1.0 and ∆t = 0.01. The
color bars on the right side of the figures represent the corresponding time t.

In Figure 4, the time evolution of the total mass M1(t) is plotted. As expected, mass
conservation holds for the kernel K(x, y) = x + y (Corollary 2), whereas it is not conserved
for K(x, y) = xy (Proposition 4). We also observe that mass is conserved for our chosen
kernels: KI I(x, y)|p=3 and KI I I(x, y). For the mass-conserving kernel, the plot shows a
straight line throughout the time interval, whereas for the non-conserving kernel, the
straight line breaks, indicating the occurrence of the gel phenomenon.
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6. Conclusions

In this paper, we proposed the generalized moment method based on the truncated
moment identity (Theorem 1). Using this generalized moment, in Section 4, we studied a
sufficient condition of the mass conservation property for the coagulation kernel K(x, y)
and the initial condition (Theorem 2). As a result of our main theorem, we provided
several examples of new kernels, along with some numerical illustrations, where mass
conservation was achieved.

In most previous works, the focus has been on studying mass conservation and
gelation phenomena for homogeneous kernels, i.e., K(λx, λy) = λαK(x, y), or under the as-
sumption that K(x, y) admits an inequality with a homogeneous kernel. Roughly speaking,
if α ≤ 1, mass is conserved, and if α > 1, gelation occurs [15,26,28,29].

On the other hand, the mass-conserving kernels discussed in Section 5 are not homo-
geneous and cannot be bounded from above by a linear-order growth function, i.e., (15)
does not hold for any C > 0. Furthermore, we also demonstrated that the kernels KI(x, y)
and KI I(x, y) exhibit polynomial growth, whereas KI I I(x, y) exhibits exponential growth
along specific curves such as x → ∞.

In addition, our main result, Theorem 2, strongly suggests that the occurrence of mass
conservation or gelation depends not only on the growth properties of the coagulation
kernel but also on the boundedness of the initial generalized moment Mb(0). In this sense,
it would be interesting to further investigate gelation phenomena using the generalized
moment method.
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Appendix A. Derivation of Flux

A mass flux density (often simply called a mass flux) J(x0, t) ∈ R for x0 > 0 is defined
as the rate of mass flow in the size domain R+ across x = x0 from the side [0, x0) to the
other side (x0, ∞), which must satisfy

d
dt

∫ x0

0
yu(y, t) dy = J(0, t)− J(x0, t) = −J(x0, t), (A1)

d
dt

∫ ∞

x0

yu(y, t) dy = J(x0, t)− lim
r→∞

J(r, t), (A2)

where we set J(0, t) = 0 since we consider only coagulation. Specifically, from (A1),
we obtain the conservation law (2). Furthermore, from (A2), the mass conservation
M1(t) = M1(0) is expected if limr→∞ J(r, t) = 0. This is the key idea of the proof of
Theorem 2.

In this section, we derive the mass flux from the viewpoint of the elementary physical
process. For the mass distribution u(x, t) ≥ 0, the mass distribution is represented by
xu(x, t). We fix x0 > 0 and take any particle of mass y ∈ (0, x0) and another particle of
mass z ∈ (x0, ∞). For the particle of mass y, we consider a coagulation rate R(y, z, t) ≥ 0 of
the mass change y→ z per unit time by coagulating with a particle of mass z− y, which is
given by

R(y, z, t) = K(y, z− y)u(z− y, t) for 0 < y < x0 < z.



Mathematics 2023, 11, 2770 14 of 16

The mass flux J(x0, t) is given by

J(x0, t) =
∫ x0

0
yu(y, t)

(∫ ∞

x0

R(y, z, t) dz
)

dy

=
∫ x0

0

∫ ∞

x0

yu(y, t)K(y, z− y)u(z− y, t) dzdy

=
∫ x0

0

∫ ∞

x0−y
yK(y, z)u(y, t)u(z, t) dzdy.

This gives Formula (3), and SCE (1) is derived from (2) and Proposition 1.

Appendix B. A Simple Proof of Gelation Phenomena

In this appendix, we provide proof of the occurrence of gelation for the coagulation
kernel K(x, y) ≥ axy. This type of proof is provided in [26,27]. We include it here for the
reader’s convenience.

Proposition 4. We suppose that K(x, y) ≥ axy, with a > 0, and u is a weak solution of SCE on
[0, T], with M1(0) < ∞. Then, we obtain

M1(t) ≤
√

2M0(0)
at

for t ∈ (0, T].

In particular, it implies that a gelation M1(t) < M1(0) should occur if t∗ < t ≤ T, where

t∗ :=
2M0(0)
aM1(0)2 .

Proof. From the truncated moment identity (Theorem 1) with b(x) = 1, we have

∂

∂t
m0(r, t) ≤ − a

2

∫ r

0

∫ r−x

0
xyu(x, t)u(y, t) dydx− a

∫ r

0

∫ ∞

r−x
xyu(x, t)u(y, t) dydx

≤ − a
2

∫ r

0

∫ ∞

0
xyu(x, t)u(y, t) dydx

= − a
2

m1(r, t)M1(t).

Integrating within (0, t), we obtain

m0(r, t)−m0(r, 0) ≤ − a
2

∫ t

0
m1(r, s)M1(s) ds for r ∈ R+, t ∈ [0, T].

From Proposition 2 and Fatou’s lemma, taking r → ∞, we have

M0(t)−M0(0) ≤ −
a
2

lim
r→∞

∫ t

0
m1(r, s)M1(s) ds

≤ − a
2

∫ t

0

(
lim
r→∞

m1(r, s)
)

M1(s) ds

= − a
2

∫ t

0
M1(s)2 ds for t ∈ [0, T].

This implies that,

M0(0) ≥ M0(0)−M0(t) ≥
a
2

∫ t

0
M1(s)2ds ≥ a

2

∫ t

0
M1(t)2ds =

at
2

M1(t)2,

where we have used that M1(t) is non-increasing (Proposition 2). Hence, we have proven
the assertion.
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Appendix C. Supplementary Lemma

Lemma 4. Let I = [a, b] for a < b, and let D := {(x, y) ∈ R2; a ≤ y ≤ x ≤ b}. We suppose
that f (x, y) satisfies f ∈ C0(D) and ∂ f

∂x ∈ C0(D), and define g(x) :=
∫ x

a f (x, y) dy for x ∈ I .
Then, g ∈ C1(I), and it holds that

g′(x) = f (x, x) +
∫ x

a

∂ f
∂x

(x, y) dy for x ∈ I . (A3)

Proof. For x ∈ I , since f (x, y) = f (y, y) +
∫ x

y
∂ f
∂x (z, y) dz, we have

g(x) =
∫ x

a

(
f (y, y) +

∫ x

y

∂ f
∂x

(z, y) dz
)

dy

=
∫ x

a
f (z, z) dz +

∫ x

a

∫ z

a

∂ f
∂x

(z, y) dydz

=
∫ x

a

(
f (z, z) +

∫ z

a

∂ f
∂x

(z, y) dy
)

dz.

This implies that g ∈ C1(I) and (A3).

Appendix D. Convexity and Superadditivity

In this appendix, we provide some brief information about the convexity and superad-
ditivity of a function defined on R+.

Definition 3. Let b(x) be a function, b : R+ → R. Then,

b is called convex on R+ if

b
(
(1− θ)x + θy

)
≤ (1− θ)b(x) + θb(y) for x, y ∈ R+ and θ ∈ [0, 1].

b is called superadditive on R+ if

b(x + y) ≥ b(x) + b(y) for x, y ∈ R+.

Proposition 5. If b is convex on R+, the following inequality holds

b(x + y) ≥ b(x) + b(y)− b(0) for x, y ∈ R+. (A4)

In particular, if b is convex on R+ and b(0) ≤ 0, then b is superadditive on R+.

Proof. When x = 0 or y = 0, (A4) holds. If x > 0 and y > 0, we have

b(x) = b
(

y
x + y

0 +
x

x + y
(x + y)

)
≤ y

x + y
b(0) +

x
x + y

b(x + y).

Similarly, we have

b(y) ≤ x
x + y

b(0) +
y

x + y
b(x + y).

Adding these inequalities, we obtain (A4).
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