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Abstract: In enterprise management, there are often multiple agents competing for the same products
to reduce production cost. On this basis, this paper investigates a two-agent slack due-date single-
machine scheduling problem with deteriorating jobs, where the processing time of a job is extended
as a function of position-dependent workload, resource allocation and a common deterioration rate.
The goal is to find the optimal sequence and resource allocation that minimizes the maximal value
of earliness, tardiness, and decision variables of one agent subject to an upper bound on cost value
of the second agent. Through theoretical analysis, a polynomial time algorithm with O(N3) time is
proposed for the problem, where N is the maximum number of jobs between the two agents.
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1. Introduction

In practical fields such as enterprise management and production processing, there are
often multiple agents competing with each other to provide the same products to consumers,
with the corresponding multiple comparisons so that can choose the agent in their favor.
Such problems are multi-agent scheduling problems (Agnetis et al. [1]; Tuong et al. [2]).
Gu et al. [3] proposed an algorithm to minimize the makespan on the basis of given lower
bound for the multi-agent scheduling problem of m parallel machine. He et al. [4] elicited
pareto-optimal schedule to simultaneously minimize the maximum cost of agent A and
makespan of agent B under a two-agent scheduling problem with parallel batch processing.
Wang et al. [5] presented a numerical simulation of multi-agent competing for multiple jobs
in a cloud manufacturing platform to minimize the total completion time as well as the
weighted amount of tardy jobs to provide theoretical support for subsequent investors. Wan
et al. [6] also constructed a polynomial time algorithm and a dual FPTAS (fully polynomial
time approximation scheme) algorithm to minimize the weighted number of tardy jobs for
the single-machine two-agent scheduling problem with unit processing time.

One cause of the tardiness in job production involves another type of scheduling
problem, namely, the just-in-time scheduling, which specifies delivery date for a job that
incurs excess costs if completed earlier or later. This delivery date is also known as the due
date, and familiar due dates include (a) common due date: i.e., the due date of each job is
the same constant (Shabtay et al. [7], Falq et al. [8], Wu et al. [9] and Liu and Wang [10]);
(b) different due date: the opposite of common due date (Mosheiov et al. [11] and Hidayat
et al. [12]); (c) slack due date: the due date of each job, although different, but with a
common decision variable (Liu et al. [13] and Liu and Jiang [14]).

For a large due date, it is beneficial for plant production but not for competition, that is
to say, the study of the multi-agent scheduling problem with due date is of great importance
for practical research. Yin et al. [15] designed a pseudo-polynomial dynamic programming
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algorithms for a two-agent scheduling problem with minimalist common and slack due
date assignment. Wang et al. [16], on the other hand, considered the two-agent single-
machine scheduling problem with common, slack, and different due date simultaneously
and proposed polynomial-time dynamic programming algorithms to solve them.

To improve the competition rate, the producer can allocate a certain amount of re-
sources to each job to reduce the processing time. The multi-agent scheduling problem with
resource allocation has been studied by Wang et al. [17] for a two-agent scheduling with
linear resource, for which a FPTAS is proposed for the NP-hard problem. Luo [18] stud-
ied the slack due date problem with convex resource, and presented an optimal solution
algorithm with time complexity of O(N3) for the two-agent minmax earliness, tardiness,
and common decision variable, where N is the maximum number of jobs between the
two agents.

In addition, the increasing processing time due to deteriorating jobs (see Wu et al. [19],
Gawiejnowicz [20], Zhang et al. [21], Sun et al. [22]) is unavoidable in practical machin-
ing. Individual agents can minimize the common objective function based on rational
arrangement of job sequences. Yin et al. [23], Wang et al. [24] and Li et al. [25] explored the
two-agent scheduling problem with linear deterioration.

In summary, in this paper, based on Luo [18], the processing time of the job extended as
a function of position-dependent workload, resource allocation and a common deterioration
rate and minimized maximum value of earliness, tardiness, and decision variable under
slack due date of one agent subject to an upper bound on cost value of the second agent is
investigated. The goal is to find the minimum cost and the corresponding optimal resource
allocation for processing a batch of jobs simultaneously through competition between two
agents. The paper is structured as follows: Section 2 describes the problem under study;
Section 3 gives the specific algorithm; and Section 4 provides conclusions regarding the
problem studied.

The similar literature mentioned above and the specific problem studied in this paper
are detailed in Table 1.

Table 1. Literature contents and achievement of this paper.

Research Contents Algorithm Complexity Research Conte References

1|condd|rAqA + ∑NA
k=1 vA

k UA
k : ∑NB

h=1 CB
h ≤ Õ O(N2

ANB/ε + N2
ANB log NA) Yin et al. [15]

1|slkdd|rAqA + ∑NA
k=1 vA

k UA
k : ∑NB

h=1 CB
h ≤ Õ O(N3

ANB/ε + N3
ANB log NA) Yin et al. [15]

1|condd|rAdA + ∑A
k=1(aAEA

k + vAUA
k ) :

rBdB + ∑B
h=1(aBEB

h + vBUB
h ) ≤ Õ

O(N2
AN2

BÕ) Wang et al. [16]

1|slkdd|rAqA + ∑A
k=1(aAEA

k + vAUA
k ) :

rBqB + ∑B
h=1(aBEB

h + vBUB
h ) ≤ Õ

O(N2
AN2

BÕ) Wang et al. [16]

1|di f dd|∑A
k=1(r

AdA
k + aAEA

k + vAUA
k ) :

∑B
h=1(r

BdB
h + aBEB

h + vBUB
h ) ≤ Õ

O(N2
AN2

BÕ) Wang et al. [16]

1|tL
k = pL

k (c + vs), dA
k = dA|∑NA

k=1 aA
k EA

k : FB
max(EB) ≤ Õ O(NA log NA + NB log NB) Yin et al. [23]

1|tL
k = Υk(c + vs)|∑A

k=1 ωkCA
k + zLB

max NP-hard Wang et al. [24]

1|slkdd, conv, ∑NA
k wk ≤W, ∑NB

h=1 uh ≤ U|

max1≤k≤NA

{
max

{
aAEA

k + rAqA, bATA
k + rAqA}} : O(N3) (N = max{NA, NB}) Luo [18]

max1≤h≤NB

{
max

{
aBEB

h + rBqB, bBTB
h + rBqB}} ≤ Õ

1|slkdd, de, ∑NA
k wk ≤W, ∑NB

h=1 uh ≤ U|

max1≤k≤NA

{
max

{
aAEA

k + rAqA, bATA
k + rAqA}} : O(N3) (N = max{NA, NB}) This paper

max1≤h≤NB

{
max

{
aBEB

h + rBqB, bBTB
h + rBqB}} ≤ Õ
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2. Notation Description

The symbols involved in this research are detailed in Table 2:

Table 2. Notation table.

Notation Significance

slkdd slack due date
de deteriorating jobs

A (resp. B) agent A (agent B)
L set of agents

NA (resp. NB) number of jobs of A (number of jobs of B)
JL set of jobs of two agents

JA
k (resp. JB

h ) job Jk of agent A, k = 1, . . . , NA (job Jh of agent B, h = 1, . . . , NA)
Jk,x JA

k at position x (k = 1, . . . , NA, x = 1, . . . , NA)
Jh,y JB

h at position y (h = 1, . . . , NB, y = 1, . . . , NB)
tk,x (th,y) processing time of Jk,x (processing time of Jh,y)
ρk,x (ηh,y) workload of Jk,x (workload of Jh,y)
wk (uh) resource of JA

k (resource of JB
h )

∑NA
k wk ≤W upper bound of resource allocation of A

∑NB
h=1 uh ≤ U upper bound of resource allocation of B

Υ deterioration rate
sk (sh) starting time of JA

k (starting time of JB
h )

qL common decision variable
dL

k due date of JL
k

CL
k completion time JL

k
EL

k amount of earliness
TL

k amount of tardiness
σ job scheduling

3. Problem Description

Consider two agents A and B, each with NL independent jobs, i.e., JL = {JL
1 , JL

2 , . . . , JL
NL
},

where L ∈ {A, B}. These jobs need to be processed on a machine without interruption by
competition and one job can be processed at a time. For agent A (B), the processing time
tk,x (th,y) of job JA

k (JB
h ) at position x (y) can be expressed as

tk,x(wk, sk) =

(
ρk,x

wk

)κ

+ Υsk (1)

th,y(uh, sh) =

(
ηh,y

uh

)κ

+ Υsh (2)

in which ρk,x (reps. ηh,y) is the workload of JA
k (resp. JB

h ) at position x (y); wk (resp. rh) is
the amount of resources allocated to JA

k (resp. JB
h ); Υ and sk (resp. sh) are the deterioration

rate and starting time of JA
k (resp. JB

h ), respectively.
As in the slack due date assignment mentioned in the introduction, each job JL

k
(k = 1, . . . , NL) enjoys a common decision variable, which can be written as qL (≥0).
The corresponding due date can be given as

dL
k = tL

k + qL, k = 1, . . . , NL, L ∈ {A, B} (3)

where tL
k is given by (1) and (2) corresponding to the two agents. For the job com-

pleted earlier/later than dL
k , the amount of earliness/tardiness can be indicated as EL

k =
max{0, tL

k + qL − CL
k }/TL

k = max{0, CL
k − tL

k − qL}.
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As in Luo [18], this paper minimizes the maximum value of earliness, tardiness,
and decision variable qL; i.e., the objective function is

FL = max
1≤k≤NL

{
max

{
aLEL

k + rLqL, bLTL
k + rLqL

}}
, L ∈ {A, B} (4)

and aL, bL, and rL are the costs of earliness, tardiness, and the decision variable of JL
k .

Under the total amount of resources constraints of agents A and B (i.e., ∑NA
k wk ≤W,

∑NB
h=1 uh ≤ U), the goal is to find the optimal sequence and the optimal quantity of resource

allocations w = {w1, . . . , wNA} and u = {u1, . . . , uNB} such that the cost of agent A is
minimized subject to the cost of B satisfies FB ≤ Õ. This problem can be stated in a
three-field notation as

1

∣∣∣∣∣slkdd, de,
NA

∑
k

wk ≤W,
NB

∑
h=1

uh ≤ U

∣∣∣∣∣FA : FB ≤ Õ,

where slkdd is slack due date and de is the job processing time expressions (1) and (2).

4. Problem Solving

Let [k] be the job at the k-th position in the sequence. According to the Equations (1)
and (2), the completion time of J[k] for agent A (B) can be organized as follows,

CA
[k] =

k

∑
l=1

(
ρ[l],l

w[l]

)κ

(1 + Υ)k−l

CB
[h] =

h

∑
l=1

(
η[l],l

u[l]

)κ

(1 + Υ)h−l

and the corresponding processing time can be collated as

tA
[k] =

(
ρ[k],k

w[k]

)κ

+ Υ

(
k−1

∑
l=1

(
ρ[l],l

w[l]

)κ

(1 + Υ)k−l−1

)

tB
[h] =

(
ρ[h],h

w[h]

)κ

+ Υ

(
h−1

∑
l=1

(
η[l],l

u[l]

)κ

(1 + Υ)h−l−1

)

Lemma 1. For the given sequence σA of agent A, the sum of processing time can be written as

NA

∑
k=1

tA
[k] =

NA

∑
k=1

χk

(
ρ[k],k

w[k]

)κ

where χk is the position-dependent coefficient, and

χk = 1 + Υ
NA−k

∑
m=1

(1 + Υ)NA−k−m (5)

in which k = 1, . . . , NA. The expression for the coefficient of agent B is similar, and can be expressed
in term of ς while replacing NA with NB.
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Proof of Lemma 1.

NA

∑
k=1

tA
[k] =

NA

∑
k=1

[(
ρ[k],k

w[k]

)κ

+ Υ

(
k−1

∑
l=1

(
ρ[l],l

w[l]

)κ

(1 + Υ)k−l−1

)]

=

(
ρ[1],1

w[1]

)κ

+

(
ρ[2],2

w[2]

)κ

+ Υ

(
ρ[1],1

w[1]

)κ

+

(
ρ[3],3

w[3]

)κ

+ Υ

(
ρ[2],2

w[2]

)κ

+Υ(1 + Υ)

(
ρ[1],1

w[1]

)κ

+ . . . +

(
ρ[NA],NA

w[NA]

)κ

+ Υ

(
ρ[NA−1],NA−1

w[NA−1]

)κ

+Υ(1 + Υ)

(
ρ[NA−2],NA−2

w[NA−2]

)κ

+ . . .

+Υ(1 + Υ)NA−2

(
ρ[1],1

w[1]

)κ

=
NA

∑
k=1

χk

(
ρ[k],k

w[k]

)κ

To solve the problem 1
∣∣∣slkdd, de, ∑NA

k wk ≤W, ∑NB
h=1 uh ≤ U

∣∣∣FA : FB ≤ Õ, the follow-
ing properties can be given.

Lemma 2 (Mor and Mosheiov [26]). The jobs in agents A and B are processed sequentially
according to the block structure; i.e., there are two possible feasible sequences: σ1 = τ{σA, σB},
or σ2 = τ{σB, σA}.

Lemma 3 (Mor and Mosheiov [26]). For a given sequence σ and resource allocation, the optimal
decision variable qL for agent L and the corresponding objective function value are, respectively,
determined by the following equations:

qL(σ) =

{
0, rL > bL

aLsL
1+bLsL

NL
aL+bL , rL ≤ bL

(6)

FL(σ) =

 bLsL
NL

, rL > bL

bL(aL+rL)sL
NL
−aL(bL−rL)sL

1

aL+bL , rL ≤ bL
(7)

in which L ∈ {A, B}, and sL
1 and sL

NL
are the starting time of JL

1 and JL
NL

, and related to the job
processing sequence.

According to (7), when selecting the job processing sequence to minimize sL
NL

(rL > bL),
or to minimize sL

NL
while maximizing sL

1 (rL ≤ bL), FL(σ) can be minimized. Because
the position of the job is not determined, the specific values of sL

1 and sL
NL

cannot be
obtained. For this, the 0− 1 variables need to be introduced, i.e., {Θk,x|k, x = 1, . . . , NA}
and {Ωh,y|h, y = 1, . . . , NB}, in which Θk,x = 1; that is, the job JA

k is assigned at the x-
th position. Otherwise, Θk,x = 0; Ωh,y = 1, the job JB

h is assigned at the y-th position,
otherwise Ωh,y = 0. For the introduction of 0 − 1 variables, the job sequence is also
determined, then the expressions for sL

1 and sL
NL

under the sequence σ1 can be written
according to Lemma 2 as

sA
1 (σ1) = 0, sA

NA
(σ1) =

NA

∑
k=1

NA−1

∑
x=1

tk,x(wk, sk)Θk,x =
NA

∑
k=1

NA−1

∑
x=1

χx

(
ρk,x

wk

)κ

Θk,x (8)
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It can be inferred from (7) that

FA(σ1) = ψA
NA

∑
k=1

NA−1

∑
x=1

χx

(
ρk,x

wk

)κ

Θk,x (9)

where ψA can be obtained by bringing (9) to the two conditions in (7) separately as follows:

ψA = min
{

bA,
bA(aA + rA)

aA + bA

}

sB
1 (σ1) = CA

NA
(σ1) =

NA

∑
k=1

NA

∑
x=1

χx

(
ρk,x

wk

)κ

Θk,x (10)

sB
NB
(σ1) =

NA

∑
k=1

NA

∑
x=1

χx

(
ρk,x

wk

)κ

Θk,x +
NB

∑
h=1

NB−1

∑
y=1

ςy

(
ηh,y

uh

)κ

Ωh,y (11)

FB(σ1) =


bB

 ∑NA
k=1 ∑NA

x=1 χx

(
ρk,x
wk

)κ
Θk,x

+∑NB
h=1 ∑NB−1

y=1 ςy

(
ηh,y
uh

)κ
Ωh,y

, rB > bB

rB ∑NA
k=1 ∑NA

x=1 χx

(
ρk,x
wk

)κ
Θk,x

+ bB(aB+rB)
aB+bB ∑NB

h=1 ∑NB−1
y=1 ςy

(
ηh,y
uh

)κ
Ωh,y

, rB ≤ bB

(12)

Under the sequence σ2, sL
1 and sL

NL
can be similarly represented as

sB
1 (σ2) = 0, sB

NB
(σ2) =

NB

∑
h=1

NB−1

∑
y=1

th,y(uh, sh)Ωh,y =
NB

∑
h=1

NB−1

∑
y=1

ςy

(
ηh,y

uh

)κ

Ωh,y (13)

It also can be known from (7) that

FB(σ2) = ψB
NB

∑
h=1

NB−1

∑
y=1

ςy

(
ηh,y

uh

)κ

Ωh,y (14)

where ψB can be obtained in the same way as ψA:

ψB = min
{

bB,
bB(aB + rB)

aB + bB

}

sA
1 (σ2) =

NB

∑
h=1

NB

∑
y=1

ςy

(
ηh,y

uh

)κ

Ωh,y (15)

sA
NA

(σ2) =
NB

∑
h=1

NB

∑
y=1

ςy

(
ηh,y

uh

)κ

Ωh,y +
NA

∑
k=1

NA−1

∑
x=1

χx

(
ρk,x

wk

)κ

Θk,x (16)

FA(σ2) =


bA

 ∑NB
h=1 ∑NB

y=1 ςy

(
ηh,y
uh

)κ
Ωh,y

+∑NA
k=1 ∑NA−1

x=1 χx

(
ρk,x
wk

)κ
Θk,x

, rA > bA

rA ∑NB
h=1 ∑NB

y=1 ςy

(
ηh,y
uh

)κ
Ωh,y

+ bA(aA+rA)
aA+bA ∑NA

k=1 ∑NA−1
x=1 χx

(
ρk,x
wk

)κ
Θk,x

, rA ≤ bA

(17)
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It is clear that ϕA is a constant and does not affect the ordering of the jobs; therefore,
the minimization of (9) obtained above can be translated into the following optimization
problem:

min FA
1 =

NA

∑
k=1

NA

∑
x=1

χx

(
ρk,x

wk

)κ

Θk,x

s.t.
NA

∑
k=1

Θk,x = 1, x = 1, . . . , NA − 1

NA

∑
x=1

Θk,x = 1, k = 1, . . . , NA (18)

NA

∑
k

wk ≤ W

wk > 0, k = 1, . . . , NA

Obviously, the premise of minimizing FA(σ1) is to find the optimal resource allocation
w = {w1, . . . , wNA}, for which the solution can be converted to the following nonlinear
programming problem:

min FA
1 =

NA

∑
k=1

NA

∑
x=1

χx

(
ρk,x

wk

)κ

Θk,x

s.t.
NA

∑
k

wk ≤W (19)

wk > 0, k = 1, . . . , NA

and the following property can be given according to (19).

Lemma 4. For a given sequence of jobs σ1, the optimal resource vectors w∗ = (w1, . . . , w∗NA
), u∗ =

(u∗1 , . . . , u∗NB
), and the corresponding objective function value FL(σ1) can be written specifically as

w∗k =

(
∑NA

x=1 χxρκ
k,xΘk,x

) 1
κ+1

∑NA
k=1

(
∑NA

x=1 χxρκ
k,xΘk,x

) 1
κ+1
×W (20)

u∗h =

(
∑NB

y=1 ςyηκ
h,yΩh,y

) 1
κ+1

∑NB
h=1

(
∑NB

y=1 ςyηκ
h,yΩh,y

) 1
κ+1
×U (21)

FA(σ1) =
ψA

Wκ

 NA

∑
k=1

(
NA

∑
x=1

χxρκ
k,xΘk,x

) 1
κ+1
κ+1

(22)

and

FB(σ1) =



bB


1

Wκ

(
∑NA

k=1

(
∑NA

x=1 χxρκ
k,xΘk,x

) 1
κ+1
)κ+1

+ 1
Uκ

(
∑NB

h=1

(
∑NB

y=1 ςyηκ
h,yΩh,y

) 1
κ+1
)κ+1

, rB > bB

rB

Wκ

(
∑NA

k=1

(
∑NA

x=1 χxρκ
k,xΘk,x

) 1
κ+1
)κ+1

+ bB(aB+rB)
(aB+bB)Uκ

(
∑NB

h=1

(
∑NB

y=1 ςyηκ
h,yΩh,y

) 1
κ+1
)κ+1 , rB ≤ bB

(23)
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Proof of Lemma 4. The proof of agent B is the same.
The Lagrange multiplier method is used to solve (19), and the specific function can be

written as

L(w, µ) =
NA

∑
k=1

NA

∑
x=1

χx

(
ρk,x

wk

)κ

Θk,x + µ

(
NA

∑
k

wk −W

)
Take partial derivatives of wk and µ yield

∂L(w, µ)

∂wk
= −κ

NA

∑
x=1

ρκ
k,x

wκ+1
k

Θk,x + µ = 0 (24)

∂L(w, µ)

∂µ
=

NA

∑
k

wk −W = 0 (25)

Combing (24) and (25), the collation gives

w∗k =

(
∑NA

x=1 χxρκ
k,xΘk,x

) 1
κ+1

∑NA
k=1

(
∑NA

x=1 χxρκ
k,xΘk,x

) 1
κ+1
×W

Bringing (20) to the objective function FA
1 in (18) yields (22).

According to (22) obtained in this lemma, (18) can be turned into solving the following
assignment problem, and agent B in the same way as follows

AP(σA) : min
NA

∑
k=1

NA

∑
x=1

χ
1

κ+1
x ρ

κ
κ+1
k,x Θk,x AP(σB) : min

NB

∑
h=1

NB

∑
y=1

ς
1

κ+1
y η

κ
κ+1
h,y Ωh,y

s.t.
NA

∑
k=1

Θk,x = 1, x = 1, . . . , NA − 1 s.t.
NB

∑
h=1

Ωh,y = 1, y = 1, . . . , NB − 1

NA

∑
x=1

Θk,x ≤ 1, k = 1, . . . , NA

NB

∑
y=1

Ωh,y ≤ 1, h = 1, . . . , NB

Θk,x = 0/1, k, x = 1, . . . , NA Ωh,y = 0/1, h, y = 1, . . . , NB

Then, Algorithm 1 can be given for the case where the deterioration rates are all
the same.

Note: The optimal solution of the problem can be determined only by calculating the
objective function values FB under two sequences, σ1 = τ{σA, σB} and σ2 = τ{σB, σA},
separately according to the steps of Algorithm 1. That is, if the objective function value
FB < Õ is calculated for either of the two sequences, there is an optimal sequence; otherwise,
there is no feasible solution.

Theorem 1. For the problem

1

∣∣∣∣∣slkdd, de,
NA

∑
k

wk ≤W,
NB

∑
h=1

uh ≤ U

∣∣∣∣∣FA : FB ≤ Õ,

it can be solved in O(N3) time by Algorithm 1, where N = max{NA, NB}.

Proof of Theorem 1. Step 1, the solution of AP(σA) and AP(σB) takes O(N3
A) and O(N3

B);
Step 2 takes O(NA) or O(NB) time; Steps 3–6 are constant time, then the total time com-
plexity does not exceed O(N3) (N = max{NA, NB}).
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Algorithm 1: The algorithm of 1
∣∣∣slkdd, de, ∑NA

k wk ≤W, ∑NB
h=1 uh ≤ U

∣∣∣FA : FB ≤ Õ

Input: NL, aL, bL, rL, κ, Υ, W, U, Õ, where L ∈ {A, B}, and workload (ρk,x)NA×A and
(ηh,y)NB×B.

Output: The optimal sequence σ1 or σ2, or no optimal sequence, resource allocation w
and u, and common decision variable qL and corresponding due date dL

k .
Step 1. According to the assignment problem, AP(σA) and AP(σB), and bring them
into (22) and (23) to calculate the value of objective function. If FB(σ1) ≤ Õ, then
output the optimal sequence σ1 = τ{σA, σB}; otherwise turn to Step 4.
Step 2. Calculate the optimal amount of resource allocation according to (20) and (21).
Step 3. Calculate the processing time tk,x (th,y) of the job by using (1) and (2), qA(σ1)

(qB(σ1)) according to Lemma 3 and dA
k (σ1) (dB

h (σ1)) according to (3).
Step 4. Consider the feasibility of the sequence σ2 = τ{σB, σA} at this point. Calculate
FB(σ2) after making appropriate adjustments from (22), if FB(σ2) ≤ Õ, turn to S5;
otherwise turn to Step 6.
Step 5. Calculate FA(σ2) after adjusting according to (23), and output the optimal
sequence σ2 = τ{σB, σA}. The following steps are the same as Step 2 and Step 3.
Step 6. Output conclusion: the problem has no optimal solution. End of the algorithm.

5. Examples

Example 1. Consider NA = 7, NB = 6 as an example, Υ = κ = 2, W = 100, U = 80, Õ = 2000,
(aA, aB) = (15, 7), (bA, bB) = (10, 8), (rA, rB) = (6, 8), the workload of agent A can be randomly
generated by MATLAB with a 7× 7 matrix, as detailed in the following table (Table 3), and the
workload of B can be obtained by removing the last row and column from the table.

Table 3. The workload of agent A.

k/x (h/y) 1 2 3 4 5 6 7

1 82 55 81 4 66 83 77
2 91 96 15 85 18 70 80
3 13 97 43 94 71 32 19
4 92 16 92 68 4 96 49
5 64 98 80 76 28 4 45
6 10 96 96 75 5 44 65
7 28 49 66 40 1 39 71

Because bA = 10 > 6 = rA and bB = 8 = rB, both agents A and B belong to the second
case. The coefficient matrices of AG(σA) and AG(σB) can be seen in the following two
tables (Tables 4 and 5).

Table 4. The coefficient matrices of AG(σA).

k/x 1 2 3 4 5 6 7

1 169.8707 90.2493 81.0000 7.5595 33.9711 27.4426 18.0992
2 182.0833 130.8327 26.3162 57.9963 14.2866 24.4966 18.5664
3 49.7590 131.7397 53.1056 62.0212 35.6659 14.5370 7.1204
4 183.4148 39.6231 88.1766 49.9797 5.2415 30.2381 13.3905
5 144.0000 132.6436 80.3320 53.8266 19.1802 3.6342 12.6515
6 41.7743 130.8327 90.7143 53.3534 6.0822 17.9753 16.1662
7 82.9879 83.5602 70.6628 35.0882 2.0801 16.5863 17.1464

The bold values are the optimal solution.
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Table 5. The coefficient matrices of AG(σB).

k/x 1 2 3 4 5 6

1 117.7817 62.5754 56.1623 5.2415 23.5543 19.0277
2 126.2495 90.7143 18.2466 40.2124 9.9058 16.9850
3 34.5009 91.3432 36.8214 43.0031 24.7293 10.0794
4 127.1727 27.4731 61.1383 34.6540 3.6342 20.9659
5 99.8440 91.9699 55.6991 37.3213 13.2988 2.5198
6 28.9647 90.7143 62.8978 36.9932 4.2172 12.4634

The bold values are the optimal solution.

Where the assignment result Θ1,4 = Θ2,3 = Θ4,2 = Θ5,6 = Θ6,1 = Θ7,5 = 1 of
agent A can be calculated by Lingo, and place JA

3 in the last position of the sequence
because of Θ3,x = 0, in which x = 1, . . . , 7. Then, the optimal sequence of agent σA =
{JA

6 , JA
4 , JA

2 , JA
1 , JA

7 , JA
5 , JA

3 }. The result of agent B is Ω1,4 = Ω2,3 = Ω3,1 = Ω4,2 = Ω6,5 = 1
and Ω5,y = 0 (y = 1, . . . , 6); therefore, the optimal sequence is σB = {JB

3 , JB
4 , JB

2 , JB
1 , JB

6 , JB
5 }.

Now determine whether σ1 = τ{σA, σB} is feasible. Calculate the optimal resource
allocation for the two agents based on (20) and (21), as follows:

w∗ = (w1, w2, w3, w4, w5, w6, w7) = (32.6087, 30.9295, 20.5422, 5.9009, 1.6237, 2.8368, 5.5581)

u∗ = (u1, u2, u3, u4, u5, u6) = (29.9360, 23.8381, 15.8323, 4.5480, 3.6592, 2.1864)

The corresponding processing time is

(tA
1 , tA

2 , tA
3 , tA

4 , tA
5 , tA

6 , tA
7 ) = (0.0940, 0.4556, 1.6324, 4.8235, 14.3903, 44.7798, 144.0368)

(tA
1 , tA

2 , tA
3 , tA

4 , tA
5 , tA

6 ) = (0.1886, 0.8277, 2.9301, 8.6663, 27.0924, 82.7570)

Obviously, sA
1 (σ1) = 0, sA

7 (σ1) = 66.1756, sB
1 (σ1) = 210.2124, and sB

6 (σ1) = 249.9175.
The corresponding can be calculated by (22) and (23) to obtain FA(σ1) = 1766.1 and
FB(σ1) = 2661.7 > 2000.

The sequence σ1 = τ{σA, σB} is obviously not a feasible solution; now consider σ2 =
τ{σB, σA}. At this point, sB

1 (σ2) = 0, sB
6 (σ2) = 39.7051, sA

1 (σ2) = 122.4621, and sA
7 (σ2) =

188.6377. The objective function values are FB(σ2) = 979.6931 and FA(σ2) = 2500.9. It can
be seen that FB(σ2) = 979.6931 < 2000; therefore, σ2 = τ{σB, σA} is the optimal sequence.
The optimal decision variables are qB(σ2) = 21.1761 and qA(σ2) = 148.9323. The optimal
due date can be correspondingly written as

(d∗1 , d∗2 , d∗3 , d∗4 , d∗5 , d∗6)(B) = (21.3647, 22.0038, 24.1062, 29.8424, 48.2685, 103.9331)

and

(d∗1 , d∗2 , d∗3 , d∗4 , d∗5 , d∗6 , d∗7)(A) = (149.0263, 149.3879, 150.5647, 153.7558, 163.3226, 193.7121, 292.9691)

Example 2. The modified date is as follows: (aA, aB) = (6, 4), (bA, bB) = (7, 5), (rA, rB) =
(6, 8), and other data are the same as Example 1. Because the workload of the job remains unchanged
and the assignment is independent of the cost coefficients, the optimal sequences of A and B are
constant, and the optimal resource allocations are also constant.

Clearly, rA < bA and rB > bB, then agent A belongs to case 2 of (23) and agent B belongs
to case 1 of (23). For the sequence σ1 = τ{σA, σB}, FB(σ1) = 1633.5 < 2000, the the optimal
sequence is σ1 = τ{σA, σB}. In addition, qA = 35.6330, qB = 0, and the corresponding optimal
due date is

(d∗1 , d∗2 , d∗3 , d∗4 , d∗5 , d∗6 , d∗7)(A) = (35.7270, 36.0886, 37.2654, 40.4565, 50.0233, 80.4128, 179.6698)

and
(d∗1 , d∗2 , d∗3 , d∗4 , d∗5 , d∗6)(B) = (0.1886, 0.8277, 2.9301, 8.6663, 27.0924, 82.7570)
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6. Conclusions

This paper solved the two-agent scheduling problem with deteriorating jobs, where
the processing time is a function of position-dependent workload, resource allocation,
and a common deterioration rate. Under slack due date assignment, the goal was to find
the optimal sequence and resource allocation through minimize the maximum value of
earliness, tardiness, and decision variables (q) of one agent subject to an upper bound on
cost value of the second agent. A polynomial time algorithm with O(N3) time is proposed
for the case where the deterioration rate of each job is the same, where N is the maximum
number of jobs between the two agents. Further research should consider the problem with
a general linear deterioration or extend our model to the problems with variable processing
times (see Sun and Geng [27], Wu et al. [28] and Wu et al. [29]).
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