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Abstract: Navigating the intricate world of data analytics, one method has emerged as a key tool in
confronting missing data: multiple imputation. Its strength is further fortified by its powerful variant,
robust imputation, which enhances the precision and reliability of its results. In the challenging
landscape of data analysis, non-robust methods can be swayed by a few extreme outliers, leading
to skewed imputations and biased estimates. This can apply to both representative outliers—those
true yet unusual values of your population—and non-representative outliers, which are mere mea-
surement errors. Detecting these outliers in large or high-dimensional data sets often becomes as
complex as unraveling a Gordian knot. The solution? Turn to robust imputation methods. Robust
(imputation) methods effectively manage outliers and exhibit remarkable resistance to their influence,
providing a more reliable approach to dealing with missing data. Moreover, these robust methods
offer flexibility, accommodating even if the imputation model used is not a perfect fit. They are akin
to a well-designed buffer system, absorbing slight deviations without compromising overall stability.
In the latest advancement of statistical methodology, a new robust imputation algorithm has been
introduced. This innovative solution addresses three significant challenges with robustness. It utilizes
robust bootstrapping to manage model uncertainty during the imputation of a random sample; it
incorporates robust fitting to reinforce accuracy; and it takes into account imputation uncertainty in a
resilient manner. Furthermore, any complex regression or classification model for any variable with
missing data can be run through the algorithm. With this new algorithm, we move one step closer
to optimizing the accuracy and reliability of handling missing data. Using a realistic data set and a
simulation study including a sensitivity analysis, the new alogorithm imputeRobust shows excellent
performance compared with other common methods. Effectiveness was demonstrated by measures
of precision for the prediction error, the coverage rates, and the mean square errors of the estimators,
as well as by visual comparisons.

Keywords: large and complex data; missing values; multiple imputation; robust bootstrap;
robust estimation

MSC: 62D10; 62R07; 62F35

1. Introduction

The CRISP data mining model [1] is a widely used framework for data mining projects.
The name CRISP stands for Cross-Industry Standard Process for Data Mining, and the
model consists of six major phases, with data cleaning as one of the essential phases. This
is also true for similar data mining models, e.g., the GSBPM (Generic Statistical Business
Process Model) [2], which is a data process model used by national statistical offices and
other organizations for organizing their statistical work, and its fourth out of seven main
steps reports about data cleaning and the imputation of missing values. This underlines
the importance of data cleaning and the imputation of missing values as one intergrative
part of data processing and analysis.
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Furthermore, current literature on data cleaning reports that missing values are crucial
to address [3], shows the imputation of missing values as one integrative part [4], and
addresses the problems of missing values, see e.g., [5], and some of them are already
discussing robust imputation methods [6,7].

The imputation of missing values is undoubtedly an essential part of data science
applications.

1.1. Different Types of Missing Data: MCAR, MAR, and MNAR

Data are said to be MCAR if the probability of missingness is the same for all units.
In other words, the event of missingness, denoted as R (where R = 1 for observed and
R = 0 for missing), is independent of both observed (Yobs) and unobserved (Ymis) data. The
parameters φ refer to unknowns in the distribution of the data or the process that led to
the missingness. The inclusion of these parameters underscores that whether the data is
MCAR, MAR, or MNAR cannot usually be determined definitively from the data alone
and instead involves untestable assumptions about these unknowns.

P(R = 1|Yobs, Ymis, φ) = P(R = 1, φ)

For example, if we’re collecting data on people’s height and weight and some heights
are missing simply because the machine measuring height malfunctioned randomly, then
that missing data would be MCAR.

The situation is missing at random (MAR) if the probability of missingness depends
on the observed data but not on the unobserved data:

P(R = 1|Yobs, Ymis, φ) = P(R = 1|Yobs, φ)

For example, suppose men are less likely than women to answer a question about
weight. Furthermore, given that we know a person’s gender, their propensity to skip the
weight question is unrelated to their actual weight.

Missing Not at Random (MNAR) is the case if the probability of missingness depends
on the unobserved data:

P(R = 1|Yobs, Ymis, φ) 6= P(R = 1|Yobs, φ)

For instance, if people with higher weights are more likely to skip a weight question,
then the missingness of weight data is directly related to the unobserved missing weight
data. This includes cases where missingness depends on both observed and unobserved
data, or just the unobserved data.

In this contribution, we focus only on the MAR case. MAR is a widely used and crucial
assumption for many statistical procedures dealing with missing data.

1.2. Imputation Uncertainty, Multiple Imputation, and Model Uncertainty

When we handle missing data through imputation, we are dealing with inherent
uncertainties. These well-known uncertainties [7,8] can generally be classified into two
main categories: imputation uncertainty and model uncertainty. Additionally, multiple
imputation estimates several values for each missing value, thus considering that an
imputed value is not a fixed value but derives from a distribution.

1.2.1. Imputation Uncertainty

This pertains to the uncertainty in the imputed values themselves. When we impute
missing data, we’re essentially making an educated guess about what the missing values
could have been, given the observed data and the assumptions we’ve made. This guess
is inherently uncertain because the real values could actually have been different. To
incorporate this uncertainty into our imputation, we typically don’t just fill in the missing
value with a single best guess (like the predicted mean). Instead, we add some noise to our
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guess or draw from the predictive distribution. This reflects our uncertainty about the exact
value of the missing data. For example, suppose we’re dealing with missing values in a
continuous variable and we’re using a linear regression model to predict the missing values.
Instead of just filling in the missing value with the predicted mean from the regression
model, we could add a random residual to this mean (where the residual is drawn from
the distribution of residuals in the observed data). This is known as stochastic regression
imputation, and it is one way to incorporate imputation uncertainty.

1.2.2. Multiple Imputation

With the above considerations, we impute—albeit with noise to account for natural
variability—with fixed values, but in reality we cannot assume a fixed value, but a distri-
bution for a missing value. This problem is absorbed by multiple imputations. Multiple
imputation involves creating multiple datasets where the missing values are replaced with
plausible values based on the distribution of the observed data. Each of these “completed”
datasets is then analyzed, and the results are pooled to create an overall result that takes
into account the uncertainty about what the missing data could be.

1.2.3. Model Uncertainty

Model uncertainty plays only a role for random samples but not for census data. This
pertains to the uncertainty in the model used for imputation. When we use a model (like a
linear regression model) to predict missing values, we’re making assumptions about the
underlying data-generating process. These assumptions are inherently uncertain because
the true data-generating process could actually be different. To incorporate this uncertainty
into our imputation, we typically use methods such as bootstrap or Bayesian regression
that recognize our model as just one possible model out of many. These methods essentially
allow for a range of possible models, each with its own set of predictions for the missing
values. For example, suppose again that we’re using a linear regression model to predict
missing values. We could bootstrap our data (i.e., repeatedly draw random samples from
our data with replacement) and fit a separate regression model to each bootstrap sample.
This would give us a range of regression models, each with slightly different coefficients.
We could then use each model to generate a separate imputed dataset, resulting in multiple
imputed datasets that reflect our model uncertainty.

By incorporating both imputation uncertainty and model uncertainty into our missing
data handling, we can make more accurate inferences that honestly reflect the inherent
uncertainties involved. It is worth noting that imputation methods used in the context
of multiple imputation must include randomness for model uncertainties (e.g., using a
bootstrap or Bayesian methods) and for imputation uncertainties where a random number
generator is used to select one of the plausible values to replace the missing data point.

1.3. The Problem with Outliers

Outliers in a dataset can significantly influence statistical analyses, and therefore, it’s
crucial to understand the different types. Outliers are generally divided into two categories:
representative and non-representative [9].

1.3.1. Representative Outliers

These are data points that are far from the rest of the data but are genuine observations.
They provide valid information about the variability in the data and are not the result of
an error or anomaly in data collection. For example, in a data set on household income,
the incomes of billionaires would be representative outliers. These are true, albeit rare,
observations that genuinely exist in the population. Removing these outliers from the
dataset could lead to biased results because it would artificially reduce the observed
variability in the data. However, they can influence non-robust imputation methods
dramatically. For example, with regression imputation, they might (completely) leverage
out the regression fit so that the fit does not describe the data well. Using such a fit
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to impute missing values would result in unrealistic imputed values just because the
regression was leveraged by outliers. Leaving them out so that the non-robust fit of a
non-robust imputation method is not leveraged is not a good idea since the sample size is
reduced and it is also challenging to detect the outliers.

1.3.2. Non-Representative Outliers

These are data points that are also far removed from the rest of the data, but they do
not provide valid information about the general trend or variability of the data. They are
usually the result of errors, such as measurement errors, data entry errors, or experimental
anomalies. For instance, if a person’s height is recorded as 250 cm due to a typo instead of
the correct 150 cm, this value would be a non-representative outlier. Non-representative
outliers should be corrected when applying non-robust imputation methods, if possible, as
they can distort the true pattern in the data and lead to misleading conclusions. However,
unlike for representative outliers, it is a challenge to detect non-representative outliers and
replace them [10]. It is more convenient to use robust imputation methods at first glance.

In addition, distinguishing between representative and non-representative outliers
can be challenging, and outlier detection methods hardly distinguish between them [11].
In addition, removing outliers after outlier detection is not a good idea since it reduces the
sample size and thus affects the estimation of the variance of an estimators.

By using robust imputation methods, no challenging outlier detection must be made
first, and there is no need to distinguish between representative and non-representative
outliers since both influence and leverage non-robust methods, and both types of outliers
must thus be downweighted to reduce their influence. Without this down-weighting, fits
may be completely driven by the outliers, and unrealistic imputed values may result.

1.4. Open Points and Outline

Common imputation methods, such as regression imputation, can be sensitive to
outliers, meaning that the presence of outliers can dramatically influence the imputed
values. In addition, common frameworks such as MICE do not allow for complex models
(e.g., with interaction terms between predictors or the use of polynomials) for each variable
to impute, and model misspecifications are common even without outlying observations.

A way out to the latter point is to use random forests or XGBoost to impute missing
values. However, even imputation with random forests or XGBoost can be strongly influ-
enced by outliers in the response variable. Imputation methods such as imputation with
MICE using PMM (see Algorithm A3 and [12]), as well as outliers in the predictor space in
particular, can lead to model misspecification, and local outliers in the response variable
near the imputed value can strongly influence the imputations.

IRMI [6], described in Section 2.1, performs robust imputation but does not account
for model uncertainty. Drawing a bootstrap sample and then fitting IRMI would be trivial,
but outliers might be overrepresented in a bootstrap sample and undermine the robustness
properties of robust methods. In Section 2.3, we therefore formulate a robust bootstrap
based on the ideas of ref. [13].

Even with IRMI, complex models cannot be passed through the algorithm. The new
algorithm imputeRobust, explained in Section 2.4, allows for this and also uses a robust
bootstrap to account for outliers and model uncertainty.

Section 2.5 explains the evaluation criteria used to assess the effectiveness of imputeRo-
bust and the compared methods. The results in Section 3.1 show why the integration of
complex models is so important, and Section 3.2 shows the results of a simulation and a
sensitivity analysis. Furthermore, the carbon footprint of our algorithm is roughly outlined
in Section 3. Section 4 discusses the results in a broader context, draws conclusions, and
summarizes all findings.
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2. Materials and Methods
2.1. Robust Imputation

The iterative robust model-based imputation (IRMI) algorithm (see a rough summary
in Algorithm 1), proposed by ref. [6], is an effective procedure for handling missing data.
It is especially suited for dealing with multivariate datasets where observations may be
missing at random. The key steps of the IRMI algorithm can be summarized as follows:

Algorithm 1 Iterative Stepwise Robust Model-Based Imputation (IRMI).

1: Initialize: Impute missing values using kNN imputation.
2: repeat
3: for each variable j with missing values do:
4: (a) Regress j using a robust method (choice depends on the scale of the variable

to impute) on all other variables using observations where j is not missing.
5: (b) Predict the missing values in j using the estimates from the model.
6: update: Replace the missing values in variable j with the noised predictions. This

noise is adequately chosen to consider imputation uncertainty.
7: end for
8: until convergence (changes in the imputed values fall below a specified threshold)

There are many details about this algorithm that are not mentioned here. We refer
to [6].

The IRMI algorithm is robust to outliers and can handle different types of variables
(continuous, categorical, count, etc.). It iterates between model estimation and imputation
until the changes in the imputed values are smaller than a specified threshold, indicating
convergence. The algorithmic complexity depends on the number of missing values and
the chosen regression method. IRMI allows for multiple imputations and imputation
uncertainty but does not consider model uncertainty. In addition, only simple models per
variable can be passed through (so as for MICE).

2.2. Problems in Taking Model Uncertainty into Account with Robust Imputation

One way of considering model uncertainty is to draw bootstrap samples (with replace-
ment) from the data and fit the model to the bootstrap samples. Another approach is to
draw residuals and add them to the fitted values of the response before re-fitting the model
(residual bootstrap). In this contribution, we do not consider the residual bootstrap.

However, the bootstrap method can be problematic when the data contain outliers,
even when robust statistical methods are used for fitting a model.

When you have a fair amount of outliers in your data, outliers can get overrepresented,
i.e., it can happen that more than 50% of your bootstrapped data set are then outliers. More
precisely, since bootstrap involves resampling with replacement, outliers can get selected
multiple times in the resampled data. This can lead to an overrepresentation of the outliers,
and therefore, the bootstrap distribution may be heavily influenced by these outliers.

2.3. Robust Bootstrap

The Robust Bootstrap method proposed by ref. [13] is a variation of the traditional
bootstrap that aims to decrease the influence of outliers on the bootstrap distribution. It
does this by first obtaining a robust estimate of the parameter of interest and then generating
bootstrap samples in a way that down-weights or excludes outliers.

In Algorithm 2, this approach is adapted to consider model uncertainty for continuous
responses, and in Algorithm 3, for non-continuous variables.

This method helps to ensure that the bootstrap distribution is more representative
of the underlying distribution of the data without being overly influenced by outliers or
high-leverage points.
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Algorithm 2 Robust Bootstrap for continuous response.

1: procedure ROBUSTBOOTSTRAP(Data, NumBootstrapSamples)
2: Compute the LTS or MM regression estimator on Data, obtaining parameter esti-

mates βLTS or βMM
3: for i = 1 to NumBootstrapSamples do
4: Generate a bootstrap sample from Data with weights (probabilities to be sam-

pled) based on residuals from the LTS or MM regression model. Outliers, defined by
large residuals, should have smaller weights (MM-regression by using the robustness
weights φ(ri/S)/(ri/S) with ri the residuals, S the robust scale estimate of residuals
and φ the Tukey’s biweight function [14]) or be excluded (LTS-regression based on the
size of the subset h, the percentage of squared residuals whose sum will be minimized).

5: Compute the LTS or MM regression estimator on the bootstrap sample, obtaining
bootstrap parameter estimates βLTS,i or βMM,i

6: end for
7: end procedure

Algorithm 3 Robust Bootstrap for categorical response.

1: procedure ROBUSTBOOTSTRAP(Data, NumBootstrapSamples)
2: Estimate robust Mahalanobis distances [15]
3: Create a weight vector with 1’s and 0’s depending if the robust Mahalanobis dis-

tances are smaller or greater equal than χ2
(p) with p the number of variables. Thus,

outliers receives a weight of 0.
4: for i = 1 to NumBootstrapSamples do
5: Generate a bootstrap sample from Data with weights (probabilities to be sam-

pled) based on the previous step.
6: Apply the imputation method on the bootstrap sample, obtaining bootstrap

parameter estimates.
7: end for
8: end procedure

2.4. Putting It All Together: The imputeRobust Algorithm

imputeRobust is an implementation for the multiple imputation of missing data. The
code aims to estimate the missing values in a dataset using robust techniques.

The input parameters to the imputeRobust algorithm are

formulas: a list of models. For each variable in the data a complex model formula can
be provided. If no formula is provided it uses the simplest model, explaining the
response with all predictor variables in the data set. Any complex model is allowed to
be passed through for each variable in the data set, e.g., considering transformations
of variables, quadratic terms or interactions, etc.

data: the dataset with missing values to be imputed.

boot, robustboot: logical flags to use bootstrapping and robust bootstrapping respectively.
So if true, model uncertainty is either considered by a bootstrap or a robust bootstrap.
General suggestion is to use roubstboot for random samples and no bootstrap at all
for census data.

method: the regression method to use for imputation of continuous variables. Imple-
mented methods are LTS regression, ordinary least squares estimation, generalised
additive models using thin plate splines, MM regression.

multinom.method: the method to use for multinomial logistic regression, used when
imputing nominal variables. Here multinomial log-linear models via neural networks
are used [16].

eps: a numeric value specifying the stopping criterion for the iterative algorithm.
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maxit: the maximum number of iterations for the algorithm.

alpha: a numeric value used for quantile calculation when using the LTS estimator.

uncert: a string specifying the method to generate uncertainty in the imputed values.
Possible methods are to use normal errors, residual errors, midastouch or the PMM
method, see Algorithm 8 for details.

Thus, imputeRobust extends MICE by enabling model formulas for each variable and
by having the ability to deal with outliers, and imputeRobust extends MICE and IRMI by
considering model uncertainty using a robust bootstrap.

The main steps of the algorithm are explained in Algorithms 4–8.

Algorithm 4 imputeRobust.

1: procedure IMPUTEROBUST(formulas, data, boot, robustboot, method, multi-
nom.method, takeAll, eps, maxit, alpha, uncert, familiy, value_back, trace)

2: Initialize parameters, detect and convert character variables to factors.
3: Determine factor type (dichotomous or polytomous), detect problematic factors.
4: if takeAll is true then
5: Initialize the missing values using kNN imputation explained in Algorithm A2.
6: end if
7: Compute the outlier index if there are any categorical variables with missing values.
8: while criteria > eps and iterations < maxit do
9: For each variable j with missing values do:

10: if if boot or robustboot is true then
11: draw a (robust) bootstrap sample considering Algorithms 2 or 3, depending

on if the response is continuous or categorical. Note that Algorithm 3 is applied outside
the loop, since it must be calculated only once while Algorithm 2 must be called in the
inner loop. Fit the following model on the boostrap sample.

12: end if
13: (a) Regress or classify j using a robust method (choice depends on the scale of

the variable to impute) on all other variables using observations where j is not missing,
see Algorithm 5 for the choice of methods and subsequent Algorithms 6 and 7.

14: (b) Predict the missing values in j using the estimates from the model.
15: Update: Replace the missing values in variable j with the noised predictions.

This noise is adequately chosen to consider imputation uncertainty, see Algorithm 8.
16: Update value of criteria until convergence (changes in the imputed values fall

below a specified threshold)
17: end while
18: return imputed data.
19: end procedure

Algorithm 5 Imputation method selection.

1: procedure IMP(form, data, type, method, multinom.method, index, factors, boot, ro-
bustboot, uncert, outIndex)

2: Select method based on variable type, see Algorithm 6 and 7
3: return imputed values of the response, consider imputation uncertainty (Algorithm 8).
4: end procedure

Algorithm 6 Robust imputation for nominal type.

1: procedure USEROBUSTMN(form, data, index, factors, boot, robustboot, uncert, multi-
nom.method, outIndex)

2: Perform robust multinomial regression for imputation based on multinom.method.
3: return imputed values.
4: end procedure
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Algorithm 7 Robust imputation for numeric type.

1: procedure USEROBUSTNUMERIC(form, data, method, index, factors, boot, robustboot,
uncert)

2: Perform robust regression for imputation based on method, apply bootstrapping if
needed.

3: Generate imputed values based on specified uncertainty method (Algorithm 8).
4: return imputed values.
5: end procedure

Algorithm 8 Imputation uncertainty.

1: procedure IMPUTATIONUNCERTAINTY(uncert)
2: if response is continuous then
3: if uncertainty equals normal error then
4: It generates normally distributed random numbers with mean 0 and (robust)

standard deviation. It then adds these random numbers to the predicted values, i.e.,
normally distributed errors are added to the predicted values.

5: end if
6: if uncertainty equals residual error then
7: Samples residuals from the fitted model and adds them to the predicted

values. For robust imputation, only the residuals from the non-outliers are chosen. This
assumes that the variability of the missing values can be captured by the residuals of
the model.

8: end if
9: if uncertainty equals weighted residual error—midastouch then

10: Weights residuals based on the distance to the missing point and samples a
residual to add to the prediction. This is a more complex method that weights residuals
based on their “closeness” in the predictor space to the point being imputed. Samples
are taken using these weights as selection probabilities.

11: end if
12: if uncertainty equals PMM then
13: This is the well-known PMM method. For each missing value, the observed

values with the closest predicted values are found and one randomly selects one of
their observed values as the imputed value.

14: end if
15: end if
16: if response is nominal then
17: Draw a sample from the categories with selection probabilities based on the

model fit.
18: end if
19: return imputed values.
20: end procedure

2.5. Evaluation Criteria

The Mean Absolute Percentage Error (MAPE) is frequently used to compare the
performance of different imputation methods. In this context, the MAPE is computed as
the average of the absolute differences between the true values and the imputed values,
divided by the absolute true values. The result is then multiplied by 100 to convert it to a
percentage. Lower MAPE values indicate a better fit of the imputation method.

Given a variable y = (y1, y2, . . . , yn) with true values and ŷ = (ŷ1, ŷ2, . . . , ŷn) as the
corresponding imputed values, the MAPE for one variable with missings is calculated as

MAPE = 100× 1
n(miss)

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ , (1)
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where n(miss) is the total number of missing values. The MAPE is calculated for all variables
with missing values in a data set and summed up.

The Normalized Root Mean Squared Error (NRMSE) is a standardized measure of
the differences between the actual values and the predicted values from a model, namely
the imputed values in this case. It is particularly useful when you want to compare the
predictive performance of different models or different datasets. The NRMSE for one
variable with missingness can be calculated with

NRMSE =

√√√√ 1
n(miss)

n(miss)

∑
i=1

(
yi − ŷi

s

)2
, (2)

where s is the standard deviation of the true values. Again, if there is more than one
variable missing, the NRMSE is calculated for each variable and summed up.

The Mean Squared Error of Correlation (MSECor) measures the average squared
difference between the correlations in two different datasets or two different versions of a
dataset. It is commonly used to evaluate how well an imputation method is able to preserve
the correlation structure of the original data. It can be calculated with

MSECor =
1
p

p

∑
i=1

p

∑
j=1

(cor(Xi, Xj)− cor(Yi, Yj))
2 , (3)

where p is the number of variables in the dataset, cor(Xi, Xj) is the correlation coefficient
between the i-th and j-th variables in dataset X, cor(Yi, Yj) is the correlation coefficient
between the i-th and j-th variables in dataset Y (the imputed data set).

The coverage rate of an estimator is calculated by checking if the (only in a simulation
known) true value lies within a (1 – α)% confidence interval around the estimated parameter
by repeatedly simulating data, imputing data and calculating the estimator. It is given by

CR =
1
R

R

∑
i=1

I(li ≤ θ ≤ ui) , (4)

with R the number of simulations, I is an indicator function that is equal to 1 if the
condition li < θ < ui is true and 0 otherwise, and li and ui represent the lower and upper
bounds of the confidence interval for the estimate θ. It is defined by also considering non-
representative outliers. Thus, after imputation, the coverage rate and respective confidence
intervals are calculated on the basis of the non-outlying observations.

The root mean squared error (RMSE) of an estimator, when estimated in a simulation,
is a widely used measure of the differences between values predicted by a model or an
estimator and the values observed. In the context of a simulation, we might run the
simulation many times with different random inputs and compare the estimator’s output
each time to the true value. For each simulation run, you calculate the (squared) error,
which is the difference between the estimated value and the true value. You then calculate
the mean of these squared errors across all simulation runs. The square root gives the
RMSE. So, if θ̂ represents the estimator and θ represents the true value, the RMSE for n
simulation runs can be written as

RMSE =

√
1
n

n

∑
i=1

(θ̂i − θ)2 (5)

This formula provides a measure of the accuracy of the estimator. It tells you, on
average, how much the estimator’s predictions deviate from the true values. The smaller
RMSE signifies a better fit of the model to the data.
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3. Results
3.1. Highlighting the Benefits When Allowing Complex Model Formulas

With the artificial but not unrealistic data set of Swiss watches with n = 200 observa-
tions, we want to highlight that imputeRobust can deal with any complex model formulation
of a linear model. In Figure 1, top left, one can see the prices of Swiss watches depending
on the age. This is the fully observed data set. Classic watches generally increase in price,
while regular watches decrease in price of time. However, this is not generally true, and
thus one can see some outliers in between the majority of classic and regular Swiss watches.
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Figure 1. Imputation of the Swiss watches data set using selected benchmarking methods.

One question is how different imputation methods deal with such a rather simple data
set when the price depends on age with interaction to the type of watch (classic or regular).
We set some 10% of the prices to zero using MAR corresponding to the age of watches,
indicated by red triangles in the plots in Figure 1. Various imputation methods are used
to impute these introduced missing values (blue circles; see also the connecting lines to
the true values), and the MAPE, NRMSE, and MSECor are reported. The (benchmarking)
methods used are given in Table 1 and further explained in Appendix A. For all multiple
imputation methods, only one imputed data set is shown.

Table 1. Benchmarking methods.

Method Short Description Reference

kNN k nearest neighbor imputation [17]

PMM Predictive mean matching using MICE [12]

midastouch Almost PMM, but with another selection criteria [18]

ranger (Multiple) Imputation with random forests [19]

XGBoost (Multiple) Imputation with XGBoost [20]

IRMI Iterative stepwise regression imputation using ro-
bust methods

[6]

compl. case anal. Removing observations with missing values.

mean imputation Imputation with the arithmetic mean of observed values.

Finding 1: kNN performs by far the best among the benchmarking methods. Outliers
have no influence on the imputation, and accuracy is best.

Finding 2: All other methods are strongly influenced by outliers or the wrong model
choice. With the exception of kNN, these are all very poor results.

Finding 3: We can very easily see that many methods are very much influenced by
model misspecification, contrary to what is claimed, e.g., for PMM [8].
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Figure 1 shows two different methods under three different settings for model uncer-
tainty and four different imputation uncertainty treatments. These settings are summarized
in Table 2.

Table 2. Settings for imputeRobust for lm-. . . and MM-. . .. lm symbolizes the use of ordinary least
squares regression while MM denotes the using robust MM-regression estimators.

Method Model Uncertainty Imputation Uncertainty

. . .-normal-no-boot no normal noise

. . .-resid-no-boot no residual noise

. . .-midastouchno-boot no midastouch

. . .-pmm-no-boot no PMM

. . .-normal-boot/. . .-normal-robustboot bootstap/robust bootstrap normal noise

. . .-resid-boot/. . .-resid-robustboot bootstap/robust bootstrap residual noise

. . .-midastouch-boot/. . .-wresid-robustboot bootstap/robust bootstrap midastouch

. . .-pmm-boot/. . .-pmm-robustboot bootstap/robust bootstrap PMM

Figure 2 shows the results of the OLS regression. These results are also shown only for
benchmarking purposes. Even if we have chosen the right model with the interaction terms
of age of a watch and type of watch, outliers influence the results. The results improve
slightly when the robust bootstrap is used.
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Figure 2. Imputation of the Swiss watches data set using imputeRobust with different parameters.
Results are based on OLS regression.

Finding 4: A robust bootstrap improves the treatment of outliers, but a robust bootstrap
is not sufficient to reduce the influence of outliers.

Figure 3 shows the results from using robust MM estimators. While model uncertainty
is not considered for the first row of results in this figure, in the second and third rows of
graphics, model uncertainty is considered by a bootstrap and a robust bootstrap.

Finding 5: Results generally improve when using a robust bootrap together with a
robust MM estimator.
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Figure 3. Imputation of the Swiss watches data set using imputeRobust with different parameters.
Results are based on MM-estimation.

Finding 6: The best results are obtained by considering the imputation uncertainty
with PMM. The combination of imputeRobust with robust bootrap, robust MM estimation,
and PMM provides the best results.

Finding 7: For the imputation uncertainty by using the residuals, the (robustly)
weighted and matched residuals through midastouch advance the results compared with
the unweighted version.

3.2. Simulation Results

A synthetic data set with n = 200 data points is repeatedly simulated with 2000
repetitions. Multiple imputation methods such as MICE (PMM and midastouch), IRMI,
imputation with XGBoost, and imputeRobust are carried out with 10 multiple imputations.
The results are pooled using the pooling rule of Rubin [21]. The data generation procedure
is as follows:

First bn/2c points are simulated, denoted as x, from a normal distribution N (200, 40),
and sorted in increasing order. Generate the variable y = x +N (200, 20). Generate dn/2e
points, denoted as x2, from N (200, 40), and sort them in decreasing order. Generate the
variable y2 = −x2 +N (400, 20). Create a data frame with three variables:

Price: Concatenation of y and y2 (Price).

Age: Transformation of concatenation of x and x2 by the formula x
10 − 10 (Age).

Type: A factor variable with “classic” for the first n/2 points and “regular” for the rest.
Figure 3, top left, shows one realization already including outliers as introduced below.

We introduce 30% missing values into the column Price based on a specified mecha-
nism (kind) and at a specified proportion (rate). We select a random sample of rows with
the MAR mechanism, where the probability of each row being selected is proportional to
the Age value in that row. The modified dataframe with the newly introduced missing
values in column Price is returned.

To generate a data set of n(out) (non-representative) outliers each row is a random
draw from a multivariate normal distribution. The mean vector of this distribution is fixed

at c(300, 15) and the covariance matrix is 10×
(

1 0.8
0.8 1

)
. Random noise is added to

the first column of the dataframe. This noise is drawn from a normal distribution with
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mean 0 and standard deviation 20. Each outlier is then assigned a type, either “regular” or
“classic”, with the intention to roughly equally randomly divide the outliers into these two
categories. Figure 3, top left, shows one realization already including these outliers seen in
the middle of the two data clouds.

Figure 4 shows the coverage rates for the mean price of classic watches related to a
significance level of 0.05 for the benchmarking methods. Thick gray lines correspond to the
actual methods, while for comparison reasons all other methods are displayed in light gray
lines. The coverage rates are generally below 0.95, whereby midastouch gives the most
realistic ones, even for larger amounts of outliers. This is somehow surprising because
this method is very sensitive to outliers [7]. Other methods—expect IRMI—are influenced
by outliers.
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Simulation results. Swiss watches , MAR

Figure 4. Coverage rates for the mean price of classic watches for different number of outliers from 0
to 60. Benchmarking methods.

As one can see from Figure 5 that these methods involve some model misspecification
by not considering the interaction term, mean imputation is competitive with sophisticated
benchmarking model-based methods.

Figures 6 and 7 show the coverage rates and RMSE for imputeRobust. Generally, one
can see that both robust MM estimators and robust bootstrapping are necessary to stay
robust against outliers (last line of graphics in this figure), especially for the residual and
midastouch imputation uncertainty approaches.

Finding 8: For population data, MM regression with no bootstrap gives the best result
for considering imputation uncertainty with normal error or PMM. It outperforms OLS
regression and residual bootstrapping.

Finding 9: For sample data, taking model uncertainty into account, the combination
of MM regression, robust bootstrap, and normal error or PMM to account for imputation
uncertainty are the best choices. A robust bootstrap will not repair ordinary least-squares
regression in terms of outliers. The robust bootstrap is preferable to the ordinary bootstrap.
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Figure 5. Root mean squared error for the mean price of classic watches for different number of
outliers from 0 to 60.
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Figure 6. Coverage rates for the mean price of classic watches for different number of outliers from 0
to 60. The new imputeRobust algorithm with different choices of parameters.
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Figure 7. Root mean squared error for the mean price of classic watches for different number of
outliers from 0 to 60. The new imputeRobust algorithm with different choices of parameters.

3.3. Carbon Footprint
3.3.1. Carbon Footprint of the Simulations

All results were calculated on a MacBookPro M1 Max with 32 GB of RAM on macOS
Ventura on 10 CPUs in parallel. We assume that the MacBook Pro consumes around
30 watts per hour under heavy load. The simulations took about 6 h of heavy computations
on all 10 CPUs, that’s 180 watt-hours or 0.18 kilowatt-hours (kWh). Assuming the global
average carbon footprint for electricity is about 475 g CO2 per kWh as of the last update.
Therefore, this is 0.18 kWh * 475 g CO2/kWh = 85.5 g CO2 for 6 h of usage.

3.3.2. Carbon Footprint of imputeRobust

With the same equipment, for one imputation with imputeRobust of our data set with
200 observations, approx. 0.05 s on one CPU are needed for robust MM-regression with
PMM, and about 0.03 s are needed in average for ordinary least squares estimation with
normal noise. Any other method of imputeRobust lies between these two numbers.

To illustrate this, let’s make a very simplified assumption: if using all 10 CPUs corre-
sponds to 100% power usage, then using 1 out of 10 CPUs might correspond to roughly 10%
power usage. Again, this is an oversimplified assumption and actual power consumption
will not scale linearly like this. If we assume the power consumption is 10%, we get 3 watts.
If the calculations take 0.05 s, then the energy used is:

Energy (in watt-seconds, equivalent to joules) = Power (watts) × Time (seconds) =
3 W × 0.05 s = 0.15 joules.

To convert this to kilowatt-hours this is 0.15 joules = 0.00000004167 kWh.
Using the same carbon intensity as before (475 g CO2 per kWh):

0.00000004167 kWh * 475,000 g CO2/kWh = 0.0000198 g CO2, or 0.0198 mg CO2.
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This is a very rough estimation, and actual figures can vary based on many factors. Fur-
thermore, consider that Apple’s Silicon (like the M1 Max chip) is designed to be more
energy-efficient than many other laptop processors, which could reduce energy consump-
tion and thus carbon emissions.

Considering all assumptions, the carbon emission of one imputation of our data set
with 200 observations on three variables and 30% of missing values in the response variable
will be below 0.0000198 g CO2.

4. Discussion and Conclusions
4.1. General Comments

Several studies have shown the power of IRMI [6,7] and its usefulness and superior
performance in practice when dealing with outliers in a data set. However, model uncer-
tainty when imputing sample data can only be considered in IRMI when bootstrapping the
data by hand before sending it to IRMI. While this would be easily be possible, a ordinary
bootstrap is not the best choice and can undermine the robustness properties of a robust
imputation method. The new algorithm, imputeRobust solves this issue by using a robust
bootstrap, and as new enhancement various different imputation uncertainty procedures
are provided. Last but not least, we allow to specify a complex statistical model for any
variable in the data set to consider transformations of variables, the addition of quadratic
or cubic terms or polynoms and interaction terms.

4.2. Concrete Findings

Our findings indicate that when handle missing data in a dataset, particularly when
the data has outliers or requires complex modeling, the choice of imputation method can
significantly affect the accuracy and robustness of the results.

The k-Nearest Neighbors (kNN) algorithm, as seen in Finding 1, was the standout
performer among all the methods benchmarked in our study. It is notable that kNN was
unaffected by outliers and offered superior accuracy. This underlines its reliability for
imputing missing values, especially in scenarios characterized by data irregularities. kNN
is not affected by model misspecification since it does not rely on a statistical model but
only on distances between observations.

In contrast, as indicated by Findings 2 and 3, most of the other methods we analyzed
were heavily impacted by outliers or incorrect model choice. This includes popular methods
such as the Predictive Mean Matching (PMM) implementation in MICE [8], which has
been claimed to be robust to model misspecification. Our findings suggest a re-evaluation
of these claims may be in order. Even if the number of outliers is zero, imputeRobust
outperforms benchmarking methods, such as IRMI and others, because it can pass complex
models to the imputation algorithm to avoid model misspecifications.

Although imputation with random forests and XGBoost is robust against model
misspecifications, it is influenced by outliers and thus gives lower coverage rates and a
higher RMSE than imputeRobust.

In terms of methods for handling outliers, our Findings 4 and 5 show that a robust
bootstrap can mitigate the influence of outliers, but not sufficiently in isolation. However,
when paired with a robust MM estimator, the treatment of outliers significantly improves.

Our proposed algorithm, imputeRobust, as discussed in Finding 6, achieves the best
results by incorporating a robust bootstrap, a robust MM estimator, and PMM to deal
with imputation uncertainty. This points towards the necessity of a comprehensive, multi-
pronged approach when dealing with outlier-robust imputation.

Addressing the issue of imputation uncertainty, as per Findings 7 to 9, the use of
(robustly) weighted matched residuals (midastouch) improves outcomes compared with
unweighted raw residuals. When considering population data, MM regression without
bootstrap gives the best result for considering imputation uncertainty with normal error
or PMM, outperforming OLS regression and residual bootstrap. For sample data, a com-
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bination of MM regression, robust bootstrap, and normal error or PMM to account for
imputation uncertainty provides the most accurate results.

A key insight here is that a robust bootstrap does not repair ordinary least squares re-
gression in terms of outliers, but it does offer superior performance to the ordinary bootstrap.

4.3. Conclusions

In conclusion, our results underscore the importance of careful method selection and
the consideration of multiple factors, including the presence of outliers, model specification,
and the nature of the data (i.e., population or sample data). They also provide strong
evidence for the potential of our new algorithm, imputeRobust, to effectively handling
missing data with robustness and precision.

The imputeRobust algorithm can handle different patterns of (multivariate) missingness,
different amounts of missing values, and continuous, categorical, or binary variables. Fur-
thermore, for each variable with missing parts, a complex model can be passed through the
algorithm, allowing, for example, interactions between predictors or the use of transforma-
tions or polynomials. This is why it can be used for many different datasets. imputeRobust
is implemented as a chain with an outer loop to update imputations until convergence.

The new algorithm imputeRobust for imputing missing values is valuable for a broad
range of stakeholders. These primarily include data scientists, statisticians, and researchers
across various fields such as healthcare, social sciences, economics, and more who regularly
work with datasets that may have missing values. Additionally, industries that rely on
accurate data analysis for decision-making, like finance, marketing, tech, and government
agencies, are also key stakeholders. Even software developers creating data analysis tools
could benefit from advancements in robust imputation techniques, as we presented in
this article.

Finally, in order to reach a wider audience, imputeRobust will be made available on
GitHub, more specifically on https://github.com/statistikat/VIM, accessed on 30 April
2023. This is to ensure that the information is accessible, understandable, and usable for
those who can benefit from it. After being tested by interested users from all over the world,
it will finally be made available on CRAN, the comprehensive R archive network, as part
of the R package VIM [17].

4.4. Limitations

Basically, imputeRobust just assumes that you can provide a complex model that allows
a linear relationship between the response and the predictor matrix for the majority of the
data points. If this is not the case, a non-linear model using generalized additive models
can also be used in imputeRobust. However, this has not been discussed in this paper.

Due to constraints on length, we’ve only explored one specific dataset and simulation.
The selection was driven by the desire to illuminate particular issues inherent in a certain
data context and further explore these issues through simulation. However, additional sim-
ulation studies could potentially yield further insights. Nonetheless, the current simulation
has highlighted key points, contributing to the concise nature of this article.

Computational times are not reported in this study. For information regarding the
computational times associated with MM-regression and least squares regression, we direct
readers to the relevant original papers, as these methodologies typically consume the
majority of computational time. Existing literature thoroughly documents the computation
times of MM-regression and ordinary least squares regression. In cases of categorical
variables with missing values, we recommend consulting the research by ref. [6]. This
work delves into the computation times associated with the multinomial model, which,
like imputeRobust, is used in the context of missing value imputation. It’s worth noting
that [6] also reports on the computation times for IRMI for continuous variables, which
are quite comparable to those of imputeRobust. This similarity is not surprising, given that
the MM fit—the most computationally intensive part of both algorithms—is common to
both methods.

https://github.com/statistikat/VIM
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Our simulations were based on a sample size of only 200 observations. Even though
the results are good with a sample size of 200, they become better with larger data sets as
more information becomes available, if the computational speed allows. It is worth men-
tioning that the methods discussed in this study have been found to be effective for large
datasets encompassing many variables since the underlying regression and classification
methods are proven to work for large data sets [22]. Thus, despite the study’s limita-
tions, the presented techniques demonstrate substantial potential in the field of missing
data imputation.

Nowadays, deep learning methods are heavily used in many applications, see e.g.,
refs. [23,24], and used for the imputation of missing values [25–27]. However, these artificial
deep neural network-based methods are sensitive to outliers as the standard loss functions
are not robust. Further work is needed to make these methods robust against outliers first.

The carbon footprint was estimated not only for the simulations but also for our new
algorithm. More extensive evaluation might be useful since many factors influence the
carbon footprint, such as the runtimes of imputeRobust on different sizes of data and the
amount of missingness, and you would need to know the exact power consumption of
your device and the carbon intensity of your local electricity supply.
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Abbreviations
The following abbreviations are used in this manuscript:

IRMI Iterative Stepwise Robust Model-Based Imputation
kNN k nearest neighbor imputation
MICE Multiple Imputation with Chained Equations
PMM Predictive Mean Matching

Appendix A

Appendix A.1

Mean imputation is a simple and commonly used method to handle missing data. This
algorithm replaces missing values in each variable with the mean value of the observed
data for the same variable. The mean imputation algorithm can be described as follows:

Algorithm A1 Mean Imputation Algorithm (for benchmarking only).

1: for each variable with missing data do
2: Calculate the mean of the observed values for the current variable.
3: Replace missing values in the current variable with the calculated mean.
4: end for

Mean imputation offers a quick and easy way to handle missing data. However,
it may not always be the best method, as it can lead to underestimated variances and
biased estimates, especially when the data is not missing completely at random. More
advanced methods like multiple imputation are often preferred for handling missing data
in statistical analyses.

kNN imputation in the R package VIM REFERENCE uses Gower’s distance, which is
suitable for mixed data that can include ordinal, continuous, and categorical variables.

Gower’s distance is particularly useful because it can handle different types of vari-
ables by converting each type of variable to a [0, 1] scale, then computes the distances as a
sum of the scaled differences over all variables.

For each missing value in the dataset, the algorithm finds the k nearest observations
based on the Gower’s distance. If there are k such neighbors, it then imputes the missing
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value: For continuous or ordinal data, it uses the mean value of the neighbors. For
categorical data, it uses the mode (most common value) of the neighbors. If there are less
than k neighbors available, the algorithm skips that missing value and moves to the next,
see Algorithm A2.

Algorithm A2 kNN Imputation Algorithm using Gower’s Distance.

1: procedure KNN(Data, k)
2: for each i where Data[i] is missing do
3: Neighbors← the k points in Data with the smallest Gower’s distances to i that

are not missing
4: if there are k such Neighbors then
5: if Data[i] is continuous or ordinal then
6: Data[i]←median(Neighbors)
7: else if Data[i] is categorical then
8: Data[i]←mode(Neighbors)
9: end if

10: else
11: Continue to the next i
12: end if
13: end for
14: return Data
15: end procedure

Please note that the actual implementation in the VIM package is more complex as it
handles different edge cases and is optimised in terms of performance.

Multiple Imputation by Chained Equations (MICE), also known as Fully Conditional
Specification (FCS), is another popular method for handling missing data. This method
works by performing multiple imputations for the missing values, creating several different
complete datasets. The results from these datasets can then be pooled to create a single,
more robust estimate. Algorithm A3 represents a simplified version of the MICE algorithm.

Algorithm A3 Multiple Imputation by Chained Equations (MICE).

1: procedure MICE(Data, m, Iterations)
2: Initialize Data1, Data2, . . . , Datam with simple imputations (e.g., mean imputation)
3: for k = 1 to m do
4: for iter = 1 to Iterations do
5: for each variable V with missing values in Datak do
6: Predict V given other variables using Datak (create a prediction model)
7: Replace missing values in V in Datak with predictions from the model
8: end for
9: end for

10: end for
11: return Data1, Data2, . . . , Datam

12: end procedure

“Midastouch”, on the other hand, also fits a linear regression model to predict missing
values but it modifies the selection criteria, see Algorithm A5 [18].

In the Multiple Imputation by Chained Equations (MICE) framework, for categorical
variables, by default, the method used is Bayesian polytomous logistic regression. This
method is suitable for categorical variables (both ordered and unordered).

The Bayesian polytomous logistic regression creates a probabilistic model for each
category level and uses these probabilities to impute missing values. This approach
accounts for the uncertainty of the imputed values and naturally handles the categorical
nature of the variable.
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The exact method might slightly differ based on the number of categories, order of
categories (for ordinal data), and other factors. For example, for binary variables (a special
case of categorical variables with two levels), the MICE algorithm uses logistic regression
as a default.

Algorithm A4 MICE using Predictive Mean Matching (PMM).

1: procedure MICE_PMM(Data, m, Iterations)
2: Initialize Data1, Data2, . . . , Datam with simple imputations (e.g., mean imputation)
3: for k = 1 to m do
4: for iter = 1 to Iterations do
5: for each variable V with missing values in Datak do
6: Predict V given other variables using a linear regression model in Datak

7: For each missing value in V in Datak, find set S of observed values in V
that are closest to the predicted value

8: Replace missing value with a random selection from set S
9: end for

10: end for
11: end for
12: return Data1, Data2, . . . , Datam

13: end procedure

Algorithm A5 Midastouch Imputation.

1: procedure MIDASTOUCH(Data, y)
2: Identify yobs (observed values) and ymis (missing values) in y in Data
3: Draw a bootstrap sample from the donor pool of yobs, called ybs
4: Estimate a beta matrix on ybs using the leave one out principle
5: Compute type II predicted values for yobs and ymis using the beta matrix, producing

predicted yobs (nobs × 1) and predicted ymis (nmis × nobs)
6: Calculate the distance between each predicted yobs and the corresponding predicted

ymis
7: Convert the distances to drawing probabilities
8: for each missing value in ymis do
9: Draw a donor from the entire donor pool considering the drawing probabilities

10: Replace the missing value with the observed value of the selected donor in y
11: end for
12: return Data
13: end procedure

Random Forest is a powerful machine learning algorithm that can also be used for
imputation of missing data. The R package ranger provides an efficient implementation of
Random Forest, which can be used for imputation.

Algorithm A6 is a simplified version of the Random Forest imputation algorithm
using ranger.

This approach takes advantage of the strengths of Random Forest, including its ability
to handle non-linear relationships and interactions between variables.

Please note that in practice, additional steps might be necessary for tuning the Random
Forest parameters (NumTrees and mTry), assessing the quality of the imputations, and
handling different types of variables (continuous, ordinal, categorical).
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Algorithm A6 Random Forest Imputation using Ranger.

1: procedure MISSRANGER(Data, NumTrees, mTry)
2: for each variable V with missing values in Data do
3: Create a copy of Data, called DataCopy
4: Replace missing values in V in DataCopy with median(V) (or mode for categori-

cal variables)
5: Build a Random Forest model with NumTrees trees and mTry variables tried at

each split, using DataCopy to predict V
6: Predict missing values in V in Data using the Random Forest model, and replace

missing values with predictions
7: end for
8: return Data
9: end procedure
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