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Abstract: This paper deals with the strong approximate subdifferential formula for the difference of
two vector convex mappings in terms of the star difference. This formula is obtained via a scalariza-
tion process by using the approximate subdifferential of the difference of two real convex functions
established by Martinez-Legaz and Seeger, and the concept of regular subdifferentiability. This for-
mula allows us to establish approximate optimality conditions characterizing the approximate strong
efficient solution for a general DC problem and for a multiobjective fractional programming problem.
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1. Introduction

It is well known that the theory of DC mathematical programming, dealing with
functions expressed as a difference of two convex functions, is now very well developed
due to its theoretical aspects and extensive range of practical applications in optimal
control, mechanics, operations research, and others (see [1–8] and references therein).
This theory constitutes an important approach to nonconvex optimization problems. In
machine learning, a lot of important learning problems such as Boltzmann machines can be
formulated as DC programming (see [9]).

The overview paper [4] presents essential results on theory, applications, and solution
methods for DC programming in the sense of global optimization. Significant advances
have been made in the study of duality theory associated with constrained DC optimization
problems (see [10–15]).

The motivation for this paper stems from the significant contributions of Martinez-
Legaz and Seeger [16], who established a formula for the approximate subdifferential of
the difference of two convex functions over a locally convex topological vector space. This
formula is expressed in terms of the star difference of two subsets, and the authors provided
an application for DC programming.

The aim of this work is to show how the formula established by Martinez-Legaz and
Seeger can be used to obtain the approximate subdifferential of the difference of two vector
convex mappings by using the vector strong subdifferential, the concept of subdifferential
regularity [17], and a scalarization process. Two illustrations are given: the first deals with
a constrained DC vector programming problem, and the second deals with a constrained
multiobjective fractional programming problem. The rest of the work is organized as
follows. In Section 2, we present some basic definitions and preliminary material. In

Mathematics 2023, 11, 2718. https://doi.org/10.3390/math11122718 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11122718
https://doi.org/10.3390/math11122718
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5981-2511
https://doi.org/10.3390/math11122718
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11122718?type=check_update&version=1


Mathematics 2023, 11, 2718 2 of 14

Section 3, we recall the formula established by Martinez-Legaz and Seeger [16] and show
how this formula can be used to obtain the approximate subdifferential of the difference of
two vector convex mappings. In Sections 4 and 5, we derive, from the obtained formula,
optimality conditions for two vector cone-constrained programming problems. Finally, the
paper ends with a conclusion and future work.

2. Preliminaries

In this paper, let E, F, and G be tree real Hausdorff locally convex topological vector
spaces. The space F (respectively, G) is endowed with a nonempty convex cone F+ ⊂ F
(respectively, G+ ⊂ G) introducing a partial preorder in F (respectively, in G) defined by:
for y, y′ ∈ F+

y ≤F+ y′ ⇐⇒ y′ − y ∈ F+.

We adjoin to F (respectively to G) two abstract elements +∞F and −∞F, such that

−∞F = −(+∞F),

y−∞F ≤F+ y′, ∀y, y′ ∈ F

(+∞F)− (+∞F) = +∞F,

y ≤F+ y′ + ∞F = +∞F, ∀y, y′ ∈ F ∪ {+∞F}

β.(+∞F) = +∞F, ∀β ≥ 0

.

The dual topological spaces of E and G are denoted respectively by E∗ and G∗, and
the duality pairing in G is denoted by 〈g∗, z〉, with g∗ ∈ G∗ and z ∈ G. The positive dual
cone of G+ is defined by

G∗+ := {g∗ ∈ G∗ : 〈g∗, z〉 ≥ 0, ∀z ∈ G+}.

Let ∅ 6= S ⊂ F. The point m ∈ F is said to be a lower bound of S if m ≤F+ y, for all
y ∈ S. We denote by inf S, if it exists, the greatest lower bound of S.

Let B and C be two nonempty subsets of F, and α ≥ 0. The following operations will
be used:

B + C := {x + y : x ∈ B, y ∈ C}
αB := {αx, x ∈ B}

∅ + B = B + ∅ := ∅.

Let H : E −→ F ∪ {+∞F} be a given mapping. The effective domain of H is de-
noted by

domH := {x ∈ E : H(x) ∈ F}.

We say that H is proper when domH 6= ∅. The epigraph of the mapping H is denoted
by EpiH, which is defined as follows:

EpiH :=
{
(x, y) : H(x) ≤F+ y

}
.

H is called F+-convex if

H(αx + (1− α)x̃) ≤F+ αH(x) + (1− α)H(x̃), ∀α ∈ [0, 1], ∀x, x̃ ∈ E.

A mapping K : F −→ G ∪ {+∞G} is said to be (F+, G+)-increasing if for all y, y′ ∈ F,

y ≤F+ y′ =⇒ K(y) ≤G+ K
(
y′
)
.
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The composed mapping K ◦ H : E −→ G ∪ {+∞G} is defined as follows:

(K ◦ H)(x) :=


K(H(x)), if x ∈ domH

+∞G, else.

Let us note that if K is (F+, G+)-increasing and G+-convex and if H is F+-convex, then
K ◦ H is G+-convex.

Following [18], whenever x̃ ∈ domH and ε ∈ F+, the strong ε-subdifferential of H at x̃
is defined by

∂s
εH(x̃) :=

{
T ∈ L(E, F) : T(x− x̃)− ε ≤F+ H(x)− H(x̃), ∀x ∈ E

}
,

where L(E, F) denotes the vector space of continuous linear mappings from E to F. For
ε = 0, we have the usual strong vector subdifferential

∂sH(x̃) :=
{

T ∈ L(E, F) : T(x− x̃) ≤F+ H(x)− H(x̃), ∀x ∈ E
}

.

If x̃ /∈ domH, we set ∂s
ε H(x̃) = ∂s H(x̃) := ∅. Let us note that when F = R, ∂s

ε H(x̃)
reduces to the usual subdifferential of convex analysis, denoted by

∂εH(x̃) := {e∗ ∈ E∗ : 〈e∗, x− x̃〉 − ε ≤ H(x)− H(x̃), ∀x ∈ E}.

3. Approximate Subdifferential of the Difference of Two Vector Convex Mappings

In this section, we attempt to extend the formula of [16] for the difference of two
vector-valued mappings. Let us recall this scalar formula [16] expressed by means of the
star difference of two subsets of E∗.

Definition 1 ([19]). The star difference between two subsets B and C of E∗ is given by

B � C = {e∗ ∈ E∗ : e∗ + C ⊂ B}.

Theorem 1 ([16]). Let H, K : E −→ R ∪ {+∞} be two proper functions, x ∈ domH ∩ domK,
and ε ≥ 0. If H and K are lower semicontinuous and convex, then

∂ε(H − K)(x) =
⋂

η≥0

{
∂η+εH(x)� ∂ηK(x)

}
.

Let H : E −→ G ∪ {+∞G} and g∗ ∈ G∗+\{0}. The scalar function g∗ ◦ H : E −→
R∪ {+∞} is defined by

(g∗ ◦ H)(x) =


〈g∗, H(x)〉, if x ∈ domH

+∞, else.

Let us note that, for any g∗ ∈ G∗+\{0}, dom(g∗ ◦ H) = domH and, if H is G+-convex,
then g∗ ◦ H is convex. In order to state our main result, we will need the following lemma.

Lemma 1. 1. If G+ is closed and if there exists z ∈ G such that 〈g∗, z〉 ≥ 0, for all g∗ ∈
G∗+\{0}, then z ∈ G+;

2. Let H : E −→ G ∪ {+∞G} be a given G+-convex mapping, ε ∈ G+, and x̃ ∈ E. If G+ is
closed, then

∂s
εH(x̃) =

⋂
g∗∈G∗+\{0}

{
A ∈ L(E, G), g∗ ◦ A ∈ ∂〈g∗ ,ε〉(g∗ ◦ H)(x̃)

}
;
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3. If the topological interior of G+ is nonempty and intG+ 6= ∅, then for any g∗ ∈ G∗+\{0},
we have

R+ = {〈g∗, θ〉, θ ∈ (intG+) ∪ {0G}}, (1)

where R+ = [0,+∞[.

Proof. 1. See ([20] Proposition 2.1).
2. See ([17] Theorem 3.2).
3. We have {〈g∗, θ〉, θ ∈ (intG+) ∪ {0G}} ⊂ R+ for any g∗ ∈ G∗+\{0}. For the reverse

inclusion, let g∗ ∈ G∗+\{0} and α ∈ R+. If α = 0, we obviously have 0 = 〈g∗, 0G〉.
Following ([20] Proposition 2.1), there exists some z0 ∈ intG+ such that 〈g∗, z0〉 = 1,
and hence we write α = 〈g∗, αz0〉 for any α > 0. Let us note that αz0 ∈ intG+ since
α > 0, z0 ∈ intG+, and intG+ is a cone.

We say that a vector valued mapping K : E −→ G ∪ {+∞G} is star G+-lower semicon-
tinuous at x̃ if the function g∗ ◦ K is lower semicontinuous at x̃ for any g∗ ∈ G∗+ (see [21]),
and K is called weak regular γ-subdifferentiable at x̃ ∈ domK, where γ ≥ 0 (see [17]), if

∂γ(g∗ ◦ K)(x̃) =
⋃

η∈Gγ
+

〈g∗ ,η〉=γ

g∗ ◦ ∂s
ηK(x̃), ∀g∗ ∈ G∗+\{0}

where G0
+ = {0G} and Gγ

+ = G+ if γ > 0.
If γ = 0, we say K is weak regular subdifferentiable at x̃.

Theorem 2. Let H, K : E −→ G ∪ {+∞G} be two given mappings, x̃ ∈ domH ∩ domK and
ε ∈ G+. Then

∂s
ε(H − K)(x̃) ⊆

⋂
η∈G+

{
∂s

η+ε H(x)� ∂s
ηK(x̃)

}
with equality if H and K are proper, G+-convex, and star G+-lower semicontinuous; K is weak
regular γ-subdifferentiable at x̃ for all γ ≥ 0 and the cone G+ is closed; and intG+ 6= ∅.

Proof. Let T ∈ ∂s
ε(H − K)(x̃), i.e.,

H(x)− K(x)− H(x̃) + K(x̃)− T(x− x̃) + ε ∈ G+, ∀x ∈ E. (2)

Let η ∈ G+. Then, for all T′ ∈ ∂s
ηK(x), we have

K(x)− K(x̃)− T′(x− x̃) + η ∈ G+, ∀x ∈ E. (3)

Adding (2) and (3) term by term, and since G+ is a convex cone, we obtain

H(x)− H(x̃)−
(
T + T′

)
(x− x̃) + (η + ε) ∈ G+, ∀x ∈ E,

i.e.,
T + T′ ∈ ∂s

ε+η H(x̃), ∀T′ ∈ ∂s
ηK(x̃),

which yields that, for any η ∈ G+,

T ∈ ∂s
η+εH(x̃)� ∂s

ηK(x̃),

i.e.,
T ∈

⋂
η∈G+

{
∂s

η+εH(x̃)� ∂s
ηK(x̃)

}
,
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and the direct inclusion is proved. For the reverse inclusion, let

T ∈
⋂

η∈G+

{
∂s

η+εH(x̃)� ∂s
ηK(x̃)

}
;

then, for every η ∈ G+, we have

T ∈ ∂s
η+ε H(x̃)� ∂s

ηK(x̃),

i.e.,
T + T′ ∈ ∂s

ε+η H(x̃), ∀T′ ∈ ∂s
ηK(x̃).

Since H is G+-convex, it follows according to property (2) of Lemma 1 that

g∗ ◦ T + g∗ ◦ T′ ∈ ∂〈g∗ ,η+ε〉(g∗ ◦ H)(x̃), ∀T′ ∈ ∂s
ηK(x̃), ∀g∗ ∈ G∗+\{0},

and then

g∗ ◦ T + g∗ ◦ ∂s
ηK(x̃) ⊂ ∂〈g∗ ,ε〉+〈g∗ ,η〉(g∗ ◦ H)(x̃), ∀η ∈ G+, ∀g∗ ∈ G∗+\{0}. (4)

Let θ ∈ (intG+) ∪ {0G}. Since K is weak regular γ-subdifferentiable at x̃ for all γ ≥ 0,
then K is weak regular 〈g∗, θ〉-subdifferentiable at x̃ for all g∗ ∈ G∗+\{0}, i.e.,

∂〈g∗ ,θ〉(g∗ ◦ K)(x̃) =
⋃

η∈G〈g
∗ ,θ〉

+
〈g∗ ,η〉=〈g∗ ,θ〉

g∗ ◦ ∂s
ηK(x̃), ∀g∗ ∈ G∗+\{0}, (5)

with

G〈g
∗ ,θ〉

+ :=

{
0, if θ = 0G

G+, if θ ∈ intG+.

From (4), we deduce that, for any θ ∈ (intG+) ∪ {0G} and g∗ ∈ G∗+\{0}, we have

g∗ ◦ T +
⋃

η∈G〈g
∗ ,θ〉

+
〈g∗ ,η〉=〈g∗ ,θ〉

g∗ ◦ ∂s
ηK(x̃) ⊂

⋃
η∈G〈z

∗ ,θ〉
+

〈g∗ ,η〉=〈g∗ ,θ〉

∂〈g∗ ,η〉+〈g∗ ,ε〉(g∗ ◦ H)(x̃), (6)

i.e.,

g∗ ◦ T +
⋃

η∈G〈g
∗ ,θ〉

+
〈g∗ ,η〉=〈g∗ ,θ〉

g∗ ◦ ∂s
ηK(x̃) ⊂ ∂〈g∗ ,θ〉+〈g∗ ,ε〉(g∗ ◦ H)(x̃). (7)

From (5) and (7), it follows that

g∗ ◦T+ ∂〈g∗ ,θ〉(g∗ ◦K)(x̃) ⊂ ∂〈g∗ ,θ〉+〈g∗ ,ε〉(g∗ ◦ H)(x̃), ∀θ ∈ (intG+)∪{0G}, ∀g∗ ∈ G∗+\{0},

i.e.,

g∗ ◦ T ∈ ∂〈g∗ ,ε〉+〈g∗ ,θ〉(g∗ ◦ H)(x̃)� ∂〈g∗ ,θ〉(g∗ ◦ K)(x̃), ∀g∗ ∈ G∗+\{0}, ∀θ ∈ (intG+)∪ {0G}.

Again, by applying the property (3) of Lemma 1, we can write

g∗ ◦ T ∈ ∂〈g∗ ,ε〉+β(g∗ ◦ H)(x̃)� ∂β(g∗ ◦ K)(x̃), ∀g∗ ∈ G∗+\{0}, ∀β ≥ 0,

which yields

g∗ ◦ T ∈
⋂

β≥0

{
∂〈g∗ ,ε〉+β(g∗ ◦ H)(x̃)� ∂β(g∗ ◦ K)(x̃)

}
, ∀g∗ ∈ G∗+\{0}.
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Since H and K are proper G+-convex, star G+-lower semicontinuous at x̃ ∈ domH ∩
domK, then g∗ ◦ H and g∗ ◦ K are proper convex, lower semicontinuous functions and finite
at x̃; hence, by applying Theorem 1, we obtain

g∗ ◦ T ∈ ∂〈g∗ ,ε〉(g∗ ◦ H − g∗ ◦ K)(x̃), ∀g∗ ∈ G∗+\{0},

i.e.,
g∗ ◦ T ∈ ∂〈g∗ ,ε〉g

∗ ◦ (H − K)(x̃), ∀g∗ ∈ G∗+\{0}.

By using the scalarization process of the strong subdifferential given by property (2)
of Lemma 1, we obtain

T ∈ ∂s
ε(H − K)(x̃).

This completes the proof.

By taking ε = 0G in Theorem 2, we obtain the formula of the exact subdifferential of
the difference of two vector convex mappings.

Corollary 1. Let H, K : E −→ G ∪ {+∞G} be two given mappings and x̃ ∈ domH ∩ domK.
Then

∂s(H − K)(x̃) ⊆
⋂

η∈G+

{
∂s

η H(x̃)� ∂s
ηK(x̃)

}
with equality if H and K are proper, G+-convex, and star G+-lower semicontinuous; K is weak
regular γ-subdifferentiable at x̃ for all γ ≥ 0; and the positive cone G+ is closed and intG+ 6= ∅.

4. Application to DC Vector Programming Problems

Let H : E −→ G ∪ {+∞G} be a mapping and ε ∈ G+. A point x̃ ∈ domH is called an
ε-minimizer of H on C if

H(x̃)− ε ≤G+ H(x), ∀x ∈ C,

where ∅ 6= C ⊂ E. If C = E, we have that x̃ is an ε-minimizer of H if and only if 0 ∈ ∂s
εH(x̃).

The vector indicator mapping δv
C : E −→ G ∪ {+∞G} is defined by

x 7−→ δv
C(x) :=


0, if x ∈ C

+∞G, else.

The ε-normal set of C at x̃ ∈ C in a vector sense is defined by

Nv
ε (C, x̃) := ∂s

εδv
C(x̃) =

{
T ∈ L(E, G) : T(x− x̃) ≤G+ ε, ∀x ∈ C

}
.

It is clear that if T ∈ L+(F, G) := {T ∈ L(F, G) : T(F+) ⊂ G+}, then T is (F+, G+)-
increasing. By taking a G+-convex mapping L : E −→ F ∪ {+∞F}, it follows that the
composed mapping T ◦ L : E −→ G ∪ {+∞G} is G+-convex.

We will need the following result later.

Lemma 2 ([22]). We suppose that the convex cone G+ is closed. For every ε ∈ G+, we have

1. If y′ ∈ F+, then

T ∈ Nv
ε (F+, y′)⇐⇒

{
− T ∈ L+(F, G)

− ε ≤G+ T(y′);

2. If y′ ∈ −F+, then

T ∈ Nv
ε (−F+, y′)⇐⇒

{
T ∈ L+(F, G)

− ε ≤G+ T(y′).
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In [18], Théra developed the calculus formula for the strong ε-subdifferential of the
addition of two convex vector mappings. We need to recall that (G, G+) is said to be order
complete if inf A exists, for each nonempty subset A ⊂ G order-bounded from below. We
say that G is normal if there exists a basis of neighborhoods N of 0G such that

N = (N + G+) ∩ (N − G+).

Theorem 3 ([18]). Let H, K : E −→ G ∪ {+∞G} be two G+-convex mappings. If H is
continuous at some point of domH ∩ domK and (G, G+) is normal order-complete, then for every
x ∈ E and ε ∈ G+, we have

∂s
ε(H + K)(x) =

⋃
ε1+ε2=ε

ε1, ε2∈G+

{
∂s

ε1
H(x) + ∂s

ε2
K(x)

}
.

Consider the following constrained DC vector minimization problem,

(P1)


min(H(x)− K(x))

x ∈ C
,

where ∅ 6= C ⊂ E is convex and H, K : E −→ G ∪ {+∞G} are two proper G+-convex
mappings. By using the vector indicator mapping, the problem (P1) is equivalent to the
following unconstrained problem:

min(H(x) + δv
C(x)− K(x))

x ∈ E
.

Now, we establish necessary and sufficient optimality conditions for the minimization
problem (P1) characterizing an ε-minimizer.

Theorem 4. Let H, K : E −→ G ∪ {+∞G} be two proper, G+-convex and star G+-lower
semicontinuous mappings, and ∅ 6= C ⊂ E be convex and closed. If H is continuous at some
point of domH ∩ C, (G, G+) is normal order-complete, K is weak regular γ-subdifferentiable at
x̃ ∈ domH ∩ domK for all γ ≥ 0, and the cone G+ is closed and intG+ 6= ∅. Then x̃ is an
ε-minimizer of the problem (P1) if and only if, for all η ∈ G+,

∂s
ηK(x̃) ⊂

⋃
ε1+ε2=η+ε

ε1, ε2∈G+

{
∂s

ε1
H(x̃) + Nv

ε2
(C, x̃)

}
.

Proof. We have that x̃ is an ε-minimizer of the problem (P1) if and only if

0 ∈ ∂s
ε((H + δv

C)− K)(x̃). (8)

Since the subset C is convex and nonempty, the vector indicator mapping δv
C is G+-

convex and proper. It is simple to observe that g∗ ◦ δv
C = δC, for any g∗ ∈ G∗+, where δC is

the scalar indicator function of the subset C. Given the fact that C is closed, it follows that
δC is lower semicontinuous, and we deduce that δv

C is star G+-lower semicontinuous.
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Since H and δv
C are G+-convex, star G+-lower semicontinuous, and domH ∩ C 6= ∅,

then
(

H + δv
C
)

is G+-convex, proper, and star G+-lower semicontinuous. As K is weak
regular γ-subdifferentiable at x̃ for any γ ≥ 0, and the positive cone G+ is closed and
intG+ 6= ∅, then by virtue of Theorem 2, (8) becomes

0 ∈ ∂s
η+ε(H + δv

C)(x̃)� ∂s
ηK(x̃), ∀η ∈ G+,

i.e.,
∂s

ηK(x̃) ⊂ ∂s
η+ε(H + δv

C)(x̃), ∀η ∈ G+. (9)

As H and δv
C are G+-convex, H is continuous at some point of domH ∩ C, and (G, G+)

is normal order-complete; then, according to Theorem 3, (9) becomes

∂s
ηK(x) ⊂

⋃
ε1+ε1=ε+η

ε1, ε2∈G+

{
∂s

ε1
H(x̃) + Nv

ε2
(C, x̃)

}
, ∀η ∈ G+.

The proof is complete.

By taking C = E in (9) of the above proof, we deduce the following proposition.

Proposition 1. Let H, K : E −→ G ∪ {+∞G} be two proper, G+-convex, and star G+-lower
semicontinuous mappings. If K is weak regular γ-subdifferentiable at x̃ ∈ domH ∩ domK for all
γ ≥ 0, and the cone G+ is closed and intG+ 6= ∅, then x̃ is an ε-minimizer of H− K if and only if

∂s
ηK(x̃) ⊂ ∂s

η+εH(x̃), ∀η ∈ G+.

In particular, x̃ is a minimizer of H − K if and only if

∂s
ηK(x̃) ⊂ ∂s

η H(x̃), ∀η ∈ G+.

Remark 1. The above proposition generalizes a result due to Hiriart-Urruty’s [3] characterizing a
global minimum for a scalar DC programming problem.

A point x̃ ∈ domH is said to be an ε-maximizer of H on C if

H(x) ≤G+ H(x̃) + ε, ∀x ∈ C.

Consider the following constraint convex vector maximization problem:

(P2)


max K(x)

x ∈ C
.

The problem (P2) becomes equivalent to
min(δv

C(x)− K(x))

x ∈ E
.

Corollary 2. Let K : E −→ G ∪ {+∞G} be a proper, G+-convex, and star G+-lower semicontin-
uous mapping and ∅ 6= C ⊂ E be convex and closed. If K is weak regular γ-subdifferentiable at
x̃ ∈ domK ∩ C for all γ ≥ 0, and the cone G+ is closed and intG+ 6= ∅, then x̃ is an ε-maximizer
of the problem (P2) if and only if

∂s
ηK(x̃) ⊂ Nv

η+ε(C, x̃), ∀η ∈ G+.
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Proof. It suffices to take H = δv
C in Proposition 1.

Let us now consider the following constrained vector minimization problem,

(P3)


min H(x)− K(x)

L(x) ∈ −F+,

where H, K : E −→ G ∪ {+∞G} are two G+-convex mappings and L : E −→ F ∪
{+∞F} is a proper F+-convex mapping. By using the vector indicator mapping δv

−F+ , the
unconstrained minimization problem below is equivalent to the problem (P3):

min(H(x) + δv
−F+ ◦ L(x)− K(x))

x ∈ E
.

The following result will be required to state the necessary and sufficient approximate
optimality conditions that characterize an ε-minimizer of problem (P3).

Theorem 5 ([23]). Let H : E −→ G ∪ {+∞G} be a proper G+-convex mapping, K : F −→ G ∪
{+∞G} be a proper, G+-convex, and (F+, G+)-increasing mapping and L : E −→ F ∪ {+∞F}
be a proper and F+-convex mapping. If there exists a ∈ domH ∩ domL∩L−1(domK) such that K
is continuous at the point L(a), then

∂s
ε(H + K ◦ L)(x̃) =

⋃
η+η′=ε

η, η′∈G+

{
∂s

η(H + T ◦ L)(x̃), T ∈ ∂s
η′K(L(x̃))

}
,

for any x̃ ∈ E and ε ∈ G+.

Now, we are prepared to announce the approximate optimality conditions related to
problem (P3).

Theorem 6. Let H, K : E −→ G ∪ {+∞G} be two proper, G+-convex, and star G+-lower
semicontinuous mappings, and L : E −→ F ∪ {+∞F} be a proper and F+-convex mapping.
If there exists some point a ∈ domH ∩ L−1(−intF+), L−1(−F+) is closed, K is weak regular
γ-subdifferentiable at x̃ ∈ domH ∩ domK ∩ L−1(−F+) for all γ ≥ 0, and the cone G+ is closed
and intG+ 6= ∅, then x̃ is an ε-minimizer of the problem (P3) if and only if for any η ∈ G+ and
for any A ∈ ∂s

ηK(x̃), there exist ε1, ε2 ∈ G+ and T ∈ L+(F, G), satisfying ε1 + ε2 = η + ε,
A ∈ ∂s

ε1
(H + T ◦ L)(x̃), and −ε2 ≤G+ T(L(x̃)).

Proof. The point x̃ is an ε-minimizer of the problem (P3) if and only if

0 ∈ ∂s
ε(H + δv

−F+ ◦ L− K)(x̃). (10)

Let us recall that the vector indicator mapping δv
−F+ : F −→ G ∪ {+∞G} is (F+, G+)-

increasing (see [20]) and G+-convex. Since L is F+-convex, then δv
−F+ ◦ L is G+-convex. The

fact that g∗ ◦ δv
−F+ ◦ L = δ−F+ ◦ L for any g∗ ∈ G∗+\{0}, it follows that

Epi
(

g∗ ◦ δv
−F+ ◦ L

)
=

{
(x, α) : L(x) ∈ −F+, α ∈ R+

}
= L−1(−F+)×R+,

and as L−1(−F+) is closed, we deduce that Epi
(

g∗ ◦ δv
−F+ ◦ L

)
is closed, which yields that

δv
−F+ ◦ L is star G+-lower semicontinuous. Since H is G+-convex, star G+-lower semi-

continuous and a ∈ domH ∩ L−1(−intF+), it follows that H + δv
−F+ ◦ L is G+-convex, star
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G+-lower semicontinuous, and proper. We claim that δv
−F+ is continuous on−intF+. Indeed,

for any neighborhood V of 0G, we have δv
−F+(−intF+) = {0G} ⊂ V. As a ∈ L−1(−intF+),

then δv
−F+ is continuous at L(a). Let us note that all assumptions of Proposition 1 are

satisfied; therefore, we obtain

∂s
ηK(x̃) ⊂ ∂s

η+ε

(
H + δv

−F+ ◦ L
)
(x̃), ∀η ∈ G+. (11)

Let us observe that all hypotheses of Theorem 5 are satisfied and therefore (11) becomes
equivalent to

∂s
ηK(x̃) ⊂

⋃
ε1+ε2=η+ε

ε1, ε2∈G+

{
∂s

ε1
(H + T ◦ L)(x̃), T ∈ ∂s

ε2
δv
−F+(L(x̃))

}
, ∀η ∈ G+,

i.e.,
∂s

ηK(x̃) ⊂
⋃

ε1+ε2=η+ε

ε1, ε2∈G+

{
∂s

ε1
(H + T ◦ L)(x̃), T ∈ Nv

ε2
(−F+, L(x̃))

}
, ∀η ∈ G+.

Therefore, by virtue of Lemma 2 we obtain, for any η ∈ G+ and for any A ∈
∂s

ηK(x̃), there exist ε1, ε2 ∈ G+, and T ∈ L+(F, G) satisfying ε1 + ε2 = η + ε, A ∈
∂s

ε1
(H + T ◦ L)(x̃), and −ε2 ≤G+ T(L(x̃)). This completes the proof.

5. Application to a Multiobjective Fractional Programming Problem

This section focuses on a general multiobjective fractional programming problem,

(Q)


min

(
h1(x)
k1(x) , . . . , hn(x)

kn(x)

)
L(x) ∈ −F+

,

where the functions hi, ki : E −→ R are convex such that hi(x) ≥ 0, ki(x) > 0, for any
x ∈ E (i = 1, . . . , n), and L : E −→ F ∪ {+∞F} is a proper F+-convex mapping. The
following notation will be required:

ε := (ε1, . . . , εn) ∈ Rn
+,

νi := hi(x̃)
ki(x̃) − εi,

ε := (ε1k1(x̃), . . . , εnkn(x̃)).

The finite-dimensional space G := Rn is equipped with its natural order induced by
the positive cone

G+ := Rn
+ = {(d1, . . . , dn) ∈ Rn : di ≥ 0, ∀i = 1, . . . , n},

i.e.,
(c1, . . . , cn) ≤Rn

+
(d1, . . . , dn)⇐⇒ ci ≤ di, ∀i = 1, . . . , n.

The following definition is equivalent to the one of an ε-minimizer.

Definition 2. Let ε = (ε1, . . . , εn) ∈ Rn
+. We say that a point x̃ ∈ L−1(−F+) is an ε-minimizer

of the problem (Q) if

hi(x̃)
ki(x̃)

− εi ≤
hi(x)
ki(x)

, ∀x ∈ L−1(−F+), ∀i = 1, . . . , n.

By using a parametric approach, we can equivalently convert the multiobjective
fractional programming problem (Q) into a DC vector nonfractional programming problem
defined in the following way:
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(Qx̃)


min(H(x)− Kx̃(x))

L(x) ∈ −F+
,

where H : E −→ Rn and Kx̃ : E −→ Rn are two mappings defined for every x ∈ E by

H(x) := (h1(x), . . . , hn(x)), Kx̃(x) := (ν1k1(x), . . . , νnkn(x)).

In order to relate the fractional programming problem (Q) to the DC vector optimiza-
tion problem (Qx̃), we formulate the following lemma.

Lemma 3. A point x̃ ∈ L−1(−F+) is an ε-minimizer of (Q) if and only if x̃ is an ε̄-minimizer of
the problem (Qx̃).

Proof. Assume that x̃ is an ε-minimizer of (Q). From Definition 2, we have for each
i = 1, . . . , n

hi(x̃)
ki(x̃)

− εi ≤
hi(x)
ki(x)

, ∀x ∈ L−1(−F+). (12)

Since ki(x) > 0, we deduce from (12) that 0 ≤ hi(x)− νiki(x), for any x ∈ L−1(−F+)
and i = 1, . . . , n. As hi(x̃)− νiki(x̃)− εiki(x̃) = 0, we write

0 = hi(x̃)− νiki(x̃)− εiki(x̃) ≤ hi(x)− νiki(x), ∀x ∈ L−1(−F+), ∀i = 1, . . . , n,

i.e.,
H(x̃)− Kx̃(x̃)− ε ≤Rn

+
H(x)− Kx̃(x), ∀x ∈ L−1(−F+),

which yields that x̃ is an ε-minimizer for the problem (Qx̃).
By using similar arguments as above, we show easily that if x̃ is an ε̄-minimizer for

the problem (Qx̃), then x̃ is an ε-minimizer for the problem (Q).
This completes the proof.

The problem (Qx̃) is reduced to the following unconstrained minimization problem:
min(H(x) + δv

−F+ ◦ L(x)− Kx̃(x))

x ∈ E
.

Proposition 2. Let hi, ki : E −→ R be 2n convex and lower semicontinuous functions such that
hi(x) ≥ 0 and ki(x) > 0, for each i = 1, . . . , n and for any x ∈ E. Let L : E −→ F ∪ {+∞F}
be a proper F+-convex mapping. We assume that L−1(−F+) is closed nonempty and there exists
some x0 ∈ E such that (n − 1) functions ki are continuous at x0. Let ε = (ε1, ..., εn) ∈ Rn

+,
x̃ ∈ L−1(−F+), and νi := hi(x̃)

ki(x̃) − εi ≥ 0 (i = 1, . . . , n). Then, x̃ is an ε-minimizer of the

problem (Q) if and only if for any ηi ≥ 0 and for any e∗i ∈ ∂ηi (νiki)(x̃), there exist εi
1, εi

2 ≥ 0 and
Ti ∈ L+(F,R) satisfying εi

1 + εi
2 = εi + ηi, e∗i ∈ ∂εi

1
(hi + Ti ◦ L)(x̃) and −εi

2 ≤ Ti(L(x̃)).

Proof. Let x̃ ∈ L−1(−F+), ε̄ := (ε1k1(x̃), ..., εnkn(x̃)), and η = (η1, ..., ηn) ∈ Rn
+. By

Lemma 3, we have that x̃ is an ε-minimizer of (Q) if and only if x̃ is an ε̄-minimizer of the
problem (Qx̃) i.e.,

0 ∈ ∂s
ε(H + δv

−F+ ◦ L− Kx̃)(x̃).
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Let us note that in this situation G = Rn and G+ = Rn
+, which is a closed convex cone,

and intG+ 6= ∅; hence, the Rn
+-convexity of the mappings H and Kx̃ follows easily from the

convexity of the functions hi and ki for i = 1, . . . , n. For any g∗ = (α1, . . . , αn) ∈ G∗+ = Rn
+,

we have g∗ ◦ H = ∑n
i=1 αihi and, since hi is lower semicontinuous, we deduce that g∗ ◦ H is

lower semicontinuous, which yields that H is star Rn
+-lower semicontinuous. Similarly, we

show that Kx̃ is also star Rn
+-lower semicontinuous.

Let γ ≥ 0, by virtue of [17], the γ-weak subdifferential regularity of Kx̃ = (ν1k1, . . . , νnkn)
becomes exactly a famous chain rule of convex analysis, i.e., for any (α1, . . . , αn) ∈
Rn
+ \ {0Rn}, we have

∂γ(
n

∑
i=1

αiνiki) =
⋃

εi≥0
∑n

i=1 αiεi=γ

n

∑
i=1

αi∂εi (νiki)

and this formula holds under the popular Moreau–Rockafellar qualification condition,
i.e., the functions ki, (i = 1, . . . , n) are convex and there exits some x0 ∈ E such that
(n− 1) functions ki are continuous at x0. For our purpose, this qualification condition is
satisfied. Let us emphasize that all the assumptions of Theorem 6 are fulfilled; therefore,
x̃ is an ε-minimizer of the problem (Q) if and only if for any A ∈ ∂s

ηKx̃(x̃), there exist
ε1, ε2 ∈ Rn

+ and T ∈ L+(F,Rn) satisfying ε1 + ε2 = η + ε, A ∈ ∂s
ε1
(H + T ◦ L)(x̃) and

−ε2 ≤Rn
+

T(L(x̃)).
The strong η-subdifferential ∂s

ηKx̃(x̃) reduces to

∂s
ηKx̃(x̃) = ∂η1(ν1k1)(x̃)× . . .× ∂ηn(νnkn)(x̃).

The condition T ∈ L+(E,Rn) can be written as T = (T1, . . . , Tn) where Ti ∈ L+(E,R).
The composed mapping T ◦ L : E −→ Rn ∪ {+∞Rn} is defined by

(T ◦ L)(x) :=


T(L(x)) = (T1(L(x)), . . . , Tn(L(x))), if x ∈ domL

+∞Rn , otherwise
.

Now, we can write A = (e∗1 , . . . , e∗n) with e∗i ∈ E∗, and hence we obtain

A ∈ ∂s
ηKx̃(x̃)⇐⇒ e∗i ∈ ∂ηi (νiki)(x̃), ∀i = 1, . . . , n.

The condition A ∈ ∂s
ε1
(H + T ◦ L)(x̃) may be rewritten as e∗i ∈ ∂εi

1
(hi + Ti ◦ L)(x̃)

for any i = 1, . . . , n. Obviously, the condition −ε2 ≤Rn
+

T(L(x̃)) is equivalent to −εi
2 ≤

Ti(L(x̃)), for any i = 1, ..., n.
The proof is complete.

6. Conclusions and Discussion

Our investigation in this article aimed to extend within the setting of vector convex
mappings a formula [16] dealing with the approximate subdifferential of the difference
of two real convex functions. This is obtained by a scalarization process by using this
scalar formula, the regular subdifferentiability concept, and the difference star operation.
Therefore, the established result allows us to obtain the existence of approximate strong so-
lutions to a constrained vector DC programming problem and a constrained multiobjective
fractional problem.

Let us note that a similar result of Proposition 1 was developed by Hiriart-Urruty [3]
for an unconstrained scalar DC optimization problem in terms of Fenchel approximate
subdifferentials characterizing a global (exact or approximate) solution. Additionally, in [5],
a similar condition is established characterizing a weakly efficient solution for the difference
of two vector mappings in finite or infinite-dimensional preordered space.
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In a forthcoming work, we will try to study a Pareto version (weak and proper) of the
above formula and also, we will attempt to find efficient algorithms for solving numerically
this class of problems.
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