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1. Introduction

Let us consider a set of boundary value problems (BVPs) for a singularly perturbed
second-order ordinary differential equation

εy′′ = f (x, y, y′), a < x < b, 0 < ε� 1, (1)

in which f is a continuous function on [a, b]×R2 and the solution yε(x) satisfies one of the
following boundary conditions:

y′ε(a) = 0, y′ε(b) = 0 (Neumann conditions), (2)

yε(a)− yε(b) = 0, y′ε(a)− y′ε(b) = 0 (periodic conditions), (3)

y′ε(a) = 0, yε(b)− yε(c) = 0, a < c < b (three point conditions), (4)

yε(c)− yε(a) = 0, yε(b)− yε(d) = 0, a < c ≤ d < b (5)

(three− or four− point conditions).

The aim of the paper is to establish, in Theorem 2, sufficient conditions for uniform
convergence of the solutions of problem (1), (j) ( j ∈ {2, 3, 4, 5}) to the solution of the reduced
problem f (x, y, y′) = 0 on the whole interval [a, b] for ε going to 0+, which we obtain when
we formally set ε = 0 to (1). The question of whether a system depends continuously on a
parameter is particularly important in the context of applications where the measurements,
and so also the mathematical models, are known only to a certain accuracy. For BVPs for
ordinary differential equations (ODEs), some results on the continuous dependence of the
solution on the parameter are known; see, e.g., [1–3] and the references therein. In these
works, among other conditions, the continuous dependence of the right-hand side of the
differential equations on the parameter is required.

It seems that in the theory of the Cauchy initial problem for ODEs, the questions
regarding (a) the existence of a solution, (b) the uniqueness of the solution and (c) the
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continuous dependence of solutions on the initial values or parameters are solved in a
satisfactory way. Under the natural and simple assumptions, one can prove that an ODE
possesses a unique solution which continuously depends on parameters. The problem of
the continuous dependence on parameters for BVPs seems to be more complicated than in
the case of the Cauchy initial problem. For an illustration, let us consider a periodic BVP

y′′ = (y′ + µ)(y′2 + 1), (3), µ ≥ 0. (6)

The solution satisfies

z(x)∫
z(a)

dz
z2 + 1

=

x∫
a

(z + µ)dx, where z = y′

and for x = b, we obtain

atan(z(b))− atan(z(a)) = y(b)− y(a) + (b− a)µ.

Hence, using (3), it holds that 0 = (b− a)µ, a contradiction for µ > 0. Thus, the given
problem has a solution only for µ = 0. So, in this case, we cannot speak on the continuous
dependence of the solutions on the parameter µ. On the other hand, the initial value
problem for (6) possesses a solution on any finite interval, and this solution continuously
depends on µ.

Similarly, for the linear BVP y′′ = −y + µx, 0 < x < π, µ ∈ R with the Neumann
boundary conditions (2), that is, y′µ(0) = y′µ(π) = 0, there is a solution for µ = 0 only; in
fact, infinitely many solutions yµ=0(x) = c2 cos x, c2 ∈ R. On the other hand, for the same
problem, but on the interval [0, 1] instead of [0, π], there exists for each µ ∈ R a unique
solution yµ(x) = (x− sin x + 1−cos 1

sin 1 cos x)µ, uniformly converging to yµ=0(x) ≡ 0 on [0, 1]
for µ→ 0.

In light of what is written above, the continuous dependence of solutions on the
parameter is not at all obvious for singularly perturbed problems (1) because f /ε is not
continuous at ε = 0, and there is room for arising phenomena that are typical for singularly
perturbed problems, such as boundary layers, interior layers and those which have been
intensively studied over the last 50 years using various techniques, such as the following:

• Geometric singular perturbation theory [4–8];
• Asymptotic expansion of the solutions [9,10];
• Lower and upper solutions method [11–14].

At this point, it is worth mentioning that each of the above-mentioned methods has
its advantages or disadvantages depending on the types of problems to which they are
applied—initial or boundary value problem, time-invariant or time-variant vector field
defining the dynamical system, properties of the solution of a reduced problem and the or-
der of a differential equation or dynamical system. Certainly, for the problems we consider
in this paper, the method of lower and upper solutions is an elegant tool for analyzing the
asymptotic (for ε→ 0+) behavior of solutions to singularly perturbed problems.

The rest of this paper is organized as follows. Section 2 contains a general existence
theorem for second-order nonlinear BVPs for which a priori bounds on solutions can be
established. In Section 3 (Theorem 2), the sufficient conditions regarding the existence and
asymptotic behavior of solutions are established for singularly perturbed BVPs (SPBVPs).
This section also contains an expression, namely the inequality (15), estimating the error
we commit by approximating the solution of the original singularly perturbed problem by
the solution of a reduced problem, resembling the continuous dependence of the solution
on the parameter. By employing the Peano phenomenon (Lemma 5) in the Section 4,
we study the uniqueness of solution of SPBVPs and the structure of the solution set of a
reduced problem.
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2. Boundary Value Problems

Before discussing in detail the existence and asymptotic behavior (for ε→ 0+) of the
solutions for SPBVPs (1), (j) ( j ∈ {2, 3, 4, 5}), let us give an outline of the principal method
of proof that we use throughout, the method of lower and upper solutions. This method
employs the theory of differential inequalities, which was developed by M. Nagumo [15]
and later refined by Jackson [16]. It enables one to prove the existence of a solution, and at
the same time, to estimate this solution in terms of the solutions of appropriate differential
inequalities. This inequality technique leads elegantly (and easily) to results about the
existence of solutions and their asymptotic behavior.

A key role for the a priori solution estimation method is played by the Bernstein–
Nagumo condition [17,18], which guarantees the boundedness of the first derivative of
the solution (Lemma 1), allowing the use of Schauder’s fixed-point theorem to prove the
existence of the solution of BVP

y′′ = f (x, y, y′), a < x < b (7)

subject to the boundary condition (j) ( j ∈ {2, 3, 4, 5}) and its lower and upper bounds. Of
course, in this section, the boundary conditions (j) are considered without the subscript “ε”.

The differential inequality approach of Nagumo is based on the observation that if
there exist sufficiently smooth, say, twice continuously differentiable on the interval [a, b]
functions α(x) and β(x) possessing the following properties:

α′′(x) ≥ f (x, α(x), α′(x)), [β′′(x) ≤ f (x, β(x), β′(x))] for every t ∈ [a, b]

and in the case (2);

α′(a) ≥ 0, α′(b) ≤ 0 [β′(a) ≤ 0, β′(b) ≥ 0];

in the case (3);

α(a)− α(b) = 0, α′(a)− α′(b) ≥ 0 [β(a)− β(b) = 0, β′(a)− β′(b) ≤ 0];

in the case (4);

α′(a) = 0, α(b)− α(c) ≤ 0 [β′(a) = 0, β(b)− β(c) ≥ 0];

in the case (5);

α(c)− α(a) = 0, α(b)− α(d) ≤ 0 [β(c)− β(a) = 0, β(b)− β(d) ≥ 0];

then the problem (7), (j) ( j ∈ {2, 3, 4, 5}) has a solution y = y(x) of class C2([a, b]) such that
α(x) ≤ y(x) ≤ β(x) for x in [a, b], provided that f does not grow “too fast” as a function of
y′. Bernstein showed that a priori bounds for derivatives of solutions to (7) can be obtained
once such bounds are found for the solutions themselves, provided that the nonlinearity in
f is at most quadratic in y′ [19,20]:

Definition 1 (Bernstein–Nagumo condition, [17,18]). We say that the function f satisfies a
Bernstein–Nagumo condition if for each M > 0 there exists a continuous function hM : [0, ∞)→
[aM, ∞) with aM > 0 and

∞∫ sds
hM(s)

= +∞

such that for all y, |y| ≤ M, all x ∈ [a, b] and all z ∈ R

| f (x, y, z)| ≤ hM(|z|).

Remark 1. The most common type of Bernstein–Nagumo condition is the following:

f (x, y, z) = O(|z|2) as |z| → ∞ for all (x, y) in [a, b]× [α, β]

leading to three common classes of the BVPs, namely with:

f (x, y, y′) ≡ p(x, y) (semilinear problem);
f (x, y, y′) ≡ p(x, y)y′ + q(x, y) (quasilinear problem);
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f (x, y, y′) ≡ p(x, y)y′2 + q(x, y) (quadratic problem) [12];

which are usually analyzed separately. However, the main result of the paper, Theorem 2, covers
more cases (noninteger powers of y′). An illustrative example is introduced in Example 4.

Lemma 1 ([17], p. 428 in [18]). Let f satisfy a Bernstein–Nagumo condition. Let y(x) be any
solution of (7) on [a, b] satisfying the condition |y(x)| ≤ M, a ≤ x ≤ b. Then, there exists a
number N > 0 depending only on M and hM such that |y′(x)| ≤ N on [a, b]. More exactly, N
can be taken as the root of the equation

N∫
2M/(b−a)

sds
hM(s)

= 2M.

Satisfying the Bernstein–Nagumo condition does not in itself guarantee the existence
of a solution to the BVPs. To prove this statement, we need the following lemma:

Lemma 2. Let f (·) be continuous on R and have no real zeros. Then, BVP y′′ = f (y′), (2) or (3)
does not have a solution.

Proof. From y′′ = f (y′), we obtain

z(b)∫
z(a)

dz
f (z)

=

b∫
a

dx.

Because z(a) = z(b), we obtain 0 = b− a, a contradiction.
Another argument is based on the fact that from the assumption on the function f , the

y′ is strictly monotone, and hence it is impossible for it to hold that y′(a) = y′(b).

For the BVP y′′ = µ + (y′)2, µ ≥ 0, (2) or (3), Lemma 2 implies that, despite the fact
that the function f satisfies the Bernstein–Nagumo condition, this BVP does not have a
solution, if µ > 0. For µ = 0, there is infinitely many of constant solutions.

The converse statement also holds, namely that if a function f does not satisfy the
Bernstein–Nagumo condition, the problem can have a solution if it can be shown that the
boundedness of the solution y implies the boundedness of its first derivative y′. We now
formulate a more general statement, which is a combination of the findings and results
in [20,21] extended to other types of boundary conditions that guarantees the existence of a
solution (and boundedness of its first derivative) if the right-hand side of the differential
equation y′′ = f (x, y, y′) does not satisfy the Bernstein–Nagumo condition.

Lemma 3. Let the following hold:

(k) there is a constant M0 ≥ 0 such that [y f (x, y, 0)] ≥ 0 for |y| > M0;
(kk) | f (x, y, z)| ≤ A(x, y)z2L + B(x, y), where A and B are non-negative functions bounded for

(x, y) ∈ [a, b]× [−M0, M0] and L ≥ 0 (but L need not be an integer). Denote

A0 = sup A(x, y) and B0 = sup B(x, y),

for (x, y) ∈ [a, b]× [−M0, M0].

Then, the BVP (7), (j) ( j ∈ {2, 3, 4, 5}) has a solution y = y(x), |y(x)| ≤ M0 on [a, b], if

∞∫
0

dν

1 + νL > 4M0 A1/L
0 B1−(1/L)

0 . (8)
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Remark 2. Note that for L equal to 0, 1/2 or 1, we obtain semilinear, quasilinear and quadratic
problem, respectively.

Example 1. Consider the BVPs

y′′ = (sin 2πx)y′3 + ωy + x2 + 1, 0 < x < 1, (2)−(5), ω > 0, (9)

that is, f (x, y, z) = O(|z|3) as |z| → ∞. Here, L = 3/2 and Lemma 3 applies with M0 = 2/ω,
A0 = 1 and B0 = 4. Thus, BVPs (9), (j) ( j ∈ {2, 3, 4, 5}) have a solution if

∞∫
0

dν

1 + νL =

∞∫
0

dν

1 + ν3/2

= 2/3

[
ln
(

x2 − x + 1
)

2
+
√

3 atan

(
2
√

3 x
3
−
√

3
3

)
− ln(x + 1)

]∞

0

= (2/31/2)(π/2 + atan(1/31/2)) >
211/3

ω
or

ω >
211/3

(2/31/2)(π/2 + atan(1/31/2))
≈ 5.2511.

Figures 1 and 2 show the simulation results for all four boundary conditions.
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Figure 1. Solution of the BVP y′′ = (sin 2πx)y′3 + ωy + x2 + 1, 0 < x < 1, (2) (left) and (3) (right) for
ω = 6, which implies that |y(x)| ≤ M0 = 2/ω = 1/3 in the interval [0, 1] on the basis of Lemma 3.
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Figure 2. Solution of the BVP y′′ = (sin 2πx)y′3 + ωy + x2 + 1, 0 < x < 1, (4) (c = 1/2) (left) and (5)
(c = d = 1/2) (right) for ω = 6, which implies that |y(x)| ≤ M0 = 2/ω = 1/3 in the interval [0, 1]
on the basis of Lemma 3.
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Now, we return again to the method of a priori estimates of solutions, where in
summary, we then have the following theorem:

Theorem 1. If:

α, β ∈ C2([a, b]) are the lower and upper solutions for the BVP (7), (j) ( j ∈ {2, 3, 4, 5}) such that
α(x) ≤ β(x) on [a, b] and f satisfies a Bernstein–Nagumo condition,

or, alternatively;

the hypotheses (k), (kk) and (8) of Lemma 3 hold;

then, there exists a solution y(x) ∈ C2([a, b]) of (7), (j) with the following:

α(x) ≤ y(x) ≤ β(x), a ≤ x ≤ b;

or

|y(x)| ≤ M0 on [a, b], respectively.

The proof of this theorem is a direct adaptation of the proofs realized in [20–22], so we
omit them.

The key technical tool in the proof of Theorem 1 is the following Lemma 4 [22,23],
whose proof (for which we do not claim any originality) is provided in Appendix A for
the convenience of the reader and to show standard approaches used in the study of the
existence of solutions to BVPs.

Lemma 4. Let there exist a constant L̃ > 0 such that

|F(x, y, z)| ≤ L̃

for all (x, y, z) ∈ [a, b]×R2. Then, the BVP

y′′ + Ky = F(x, y, y′), K < 0, (j) ( j ∈ {2, 3, 4, 5}) (10)

has a solution.

The use of this lemma in the proof of Theorem 1 is enabled by Lemma 1, which
guarantees the boundedness of the first derivative of the solution for (7) and hence the
boundedness of the right-hand side of the differential equation in the solution and its first
derivative domain.

Example 2. Consider BVP

y′′ − 2y = 0.75(atan y)(1 + sin (y′)) + cos3(3πx), 0 < x < 1/2, (11)

with three-point boundary conditions (5),

y(1/4)− y(0) = 0, y(1/2)− y(1/4) = 0. (12)

Since
|F(x, y, z)| = |0.75(atan y)(1 + sin z) + cos3(3πx)| ≤ 3

4
π + 1

on [0, 1/2] × R2 and K = −2 < 0; on the basis of Lemma 4, there exists a solution of the
BVP (11), (12) and, because the function F(x, y, z) + 2y is increasing in the variable y for each
fixed (x, z) ∈ [0, 1/2]×R, this solution is unique by Lemma 6. This BVP is not solvable explicitly;
therefore, the simulation result is shown in Figure 3. The corresponding MATLAB program code
that generated this figure is in Appendix B.
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Figure 3. Solution of the BVP (11), (12)→ y(0) = y(1/4) = y(1/2) = 0.1178.

Analogous statements and ideas as presented for the boundary conditions we deal with
in this paper also apply to other boundary conditions (e.g., Dirichlet boundary conditions,
Robin boundary conditions, etc.) [11,12].

3. Singularly Perturbed Boundary Value Problems

In the following definition of stability for the solution u(x) of the reduced problem
f (x, y, y′) = 0, we assume that the function h(x, y) , f (x, y, u′(x)) has the stated number
of continuous partial derivatives with respect to y in

Dδ(u) , {(x, y) ∈ R2 : a ≤ x ≤ b, |y− u(x)| ≤ δ},

δ > 0 is a constant and q ≥ 0 is an integer.

Definition 2 ([12]). The solution u = u(x) of a reduced problem is said to be (Iq)–stable in [a, b]
if there exists a positive constant m such that

∂jh(x, u(x))
∂yj ≡ 0 for a ≤ x ≤ b and j = 0, 1, . . . , 2q,

and
∂2q+1h(x, y)

∂y2q+1 ≥ m > 0 in Dδ(u)

for some positive constant δ.

The following theorem is one of the main results of this paper.

Theorem 2. Let u ∈ C2([a, b]) be a solution of the reduced problem f (x, y, y′) = 0 which is
(Iq)–stable in [a, b] and satisfies the boundary condition (j) ( j ∈ {2, 3, 4, 5}). Let f satisfy the
Bernstein–Nagumo condition.

Then, there exists ε0 such that for every ε ∈ (0, ε0] the SPBVP (1), (j) ( j ∈ {2, 3, 4, 5}) has a
solution y = yε(x) satisfying

|yε(x)− u(x)| ≤ Cε
1

2q+1 , a ≤ x ≤ b, (13)

where

C =
( γ

m

) 1
2q+1 , γ ,

(
max

x∈[a,b]
|u′′(x)|

)
(2q + 1)!

Proof. The claim of the theorem follows from Theorem 1 of the previous section, if we
can exhibit, for example by construction, the existence of the lower and upper bounding
functions αε(x) and βε(x) with the required properties.
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We now define, for x in [a, b] and ε > 0, the functions

αε(x) = u(x)− Γ(ε), βε(x) = u(x) + Γ(ε). (14)

Here, Γ(ε) = (εγ/m)
1

2q+1 , where γ is a positive constant which is specified later.
It is obvious that the functions αε, βε have the following properties:
αε ≤ βε on the interval [a, b] and satisfies the boundary conditions required for lower

and upper solutions for the SPBVP (1), (j).
Now, it just remains to prove that

εα′′ε (x) ≥ f (x, αε(x), α′ε(x)) and εβ′′ε (x) ≤ f (x, βε(x), β′ε(x)).

We treat the case that u(x) is (Iq)–stable and consider αε(x). From Taylor’s Theorem
and the hypothesis on the (Iq)–stability of the solution u(x) of the reduced problem, we have

f (x, αε(x), α′ε(x)) = h(x, αε(x))− h(x, u(x))

=
2q

∑
i=1

1
i!

∂ih(x, u(x))
∂yi [αε(x)− u(x)]i − 1

(2q + 1)!
∂2q+1h(x, ξε(x))

∂y2q+1 [Γ(ε)]2q+1

= − 1
(2q + 1)!

∂2q+1h(x, ξε(x))
∂y2q+1 [Γ(ε)]2q+1,

where (x, ξε(x)) is a point between (x, αε(x)) and (x, u(x)); (x, ξε(x)) ∈ Dδ(u) for suffi-
ciently small ε, say, for ε ∈ (0, εL]. Then, for every x ∈ [a, b]

εα′′ε (x)− f (x, αε(x), α′ε(x)) ≥ εu′′(x) +
m

(2q + 1)!
[Γ(ε)]2q+1 ≥ −ε|u′′(x)|+ εγ

(2q + 1)!

= ε

(
γ

(2q + 1)!
− |u′′(x)|

)
.

Now, if we choose a constant γ such that γ ≥ |u′′(x)|(2q + 1)!, x ∈ [a, b], then
εα′′ε (x) ≥ f (x, αε(x), α′ε(x)). The most accurate estimate of the error in approximating the
solutions for the SPBVP (1), (j) by solving the reduced problem is obtained if we choose

γ =

(
max

x∈[a,b]
|u′′(x)|

)
(2q + 1)!

The verification for an upper solution βε(x) follows by symmetry. In detail, we have

f (x, βε(x), β′ε(x)) = h(x, βε(x))− h(x, u(x))

=
2q

∑
i=1

1
i!

∂ih(x, u(x))
∂yi [βε(x)− u(x)]i +

1
(2q + 1)!

∂2q+1h(x, ϑε(x))
∂y2q+1 [Γ(ε)]2q+1

=
1

(2q + 1)!
∂2q+1h(x, ϑε(x))

∂y2q+1 [Γ(ε)]2q+1,

where (x, ϑε(x)) is a point between (x, u(x)) and (x, βε(x)), and (x, ϑε(x)) ∈ Dδ(u) for
sufficiently small ε, say, for ε ∈ (0, εU ]. Then,

f (x, βε(x), β′ε(x))− εβ′′ε (x) ≥ m
(2q + 1)!

[Γ(ε)]2q+1 − εu′′(x) ≥ εγ

(2q + 1)!
− ε|u′′(x)|.

The end of the proof is now the same as in the case of the lower bound αε(x). The
inequalities for αε and βε hold simultaneously if the parameter ε is from the interval (0, ε0],
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where ε0 = min{εL, εU}. Now, using Theorem 1 and (14), for every ε ∈ (0, ε0], there is a
solution yε(x) for the SPBVP (1), (j) satisfying the inequality

|yε(x)− u(x)| ≤ Γ(ε) =
[

ε

m

(
max

x∈[a,b]
|u′′(x)|

)
(2q + 1)!

] 1
2q+1

, a ≤ x ≤ b. (15)

The theorem is proved.

Example 3. Let us consider the semilinear SPBVP

εy′′ = [y− sin 4πx]3, 0 < x < 1/2, 0 < ε� 1, (16)

yε(1/4)− yε(0) = 0, yε(1/2)− yε(1/4) = 0. (17)

On the basis of Definition 2, the solution of the reduced problem u(x) = sin 4πx is (Iq)–stable
with q = 1, and Theorem 2 implies for every sufficiently small ε the existence of solutions which
uniformly converge to the solution of the reduced problem. The convergence of the solutions is
successively shown in Figures 4–6.

In this context, it is certainly worth noting that if instead of an odd power of [y− sin 4πx] we
consider an even power of the form 2n, n ∈ N = {1, 2, . . . }, the SPBVP (16), (17) has no solution.
Indeed, for the boundary conditions (17), the Rolle’s theorem implies the existence of points θ1 ∈
(0, 1/4) and θ2 ∈ (1/4, 1/2), such that y′ε(θi) = 0, i = 1, 2 and y′′ε (θ̃) = 0, θ̃ ∈ (θ1, θ2), and
y′ε(x) takes its local extremum at θ̃, which is the inflection point of the solution yε(x) (see, for details,
e.g., [24]), and this contradicts the fact that the yε(x) is a convex function on the whole interval
[0, 1/2]—in fact, yε(x) is strictly convex because the set {x ∈ [0, 1/2] : yε(x)− sin 4πx = 0}
does not contain an open interval. An analogous argument also holds for the other boundary
conditions from the set (j) ( j ∈ {2, 3, 4, 5}).
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Figure 4. Solution of the SPBVP εy′′ = [y− sin 4πx]3, yε(1/4)− yε(0) = 0, yε(1/2)− yε(1/4) = 0,
for ε = 10−2 (left), ε = 10−3 (right). The dashed line shows the function u(x) = sin 4πx, the solution
of the reduced problem.

Example 4. Let us consider SPBVP with a noninteger power of y′:

εy′′ =
(
y′
)4/5

+ (x2 + 100)y + φ(x), 0 < x < 3π/2, (18)

where
φ(x) = −

[
sin4/5 x + (x2 + 100)(2 + cos x)

]
and the boundary condition (4)

y′ε(0) = 0, yε(3π/2)− yε(π/2) = 0.

The solution of the reduced problem is u(x) = 2 + cos x, which is (Iq)–stable with q = 0.
Theorem 2 implies for every sufficiently small ε the existence of solutions which uniformly converge
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to the solution of the reduced problem with ε → 0+; Figures 7 and 8 pictorially describe this
convergence. For simulation purposes, we chose relatively large values of the parameter ε, the
reason being that here m = 100, which results in rapid convergence of the solutions to the solution
of the reduced problem, as shown by the inequality (15), and it would be impossible visually to
distinguish the solution of SPBVP from the solution of the reduced problem in the figures, which
would practically merge.
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Figure 5. Solution of the SPBVP εy′′ = [y− sin 4πx]3, yε(1/4)− yε(0) = 0, yε(1/2)− yε(1/4) = 0,
for ε = 10−4 (left), ε = 10−5 (right).
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Figure 6. Solution of the SPBVP εy′′ = [y− sin 4πx]3, yε(1/4)− yε(0) = 0, yε(1/2)− yε(1/4) = 0,
for ε = 10−6 (left), ε = 10−7 (right).
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Figure 7. Solution of the SPBVP (18), (4) for ε = 102 (left), ε = 101 (right). The dashed line shows the
function u(x) = 2 + cos x, x ∈ [0, 3π/2], the solution of the reduced problem.
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Figure 8. Solution of the SPBVP (18), (4) for ε = 10−1.

4. Structure of the Solutions Set of the Reduced Problem

Lemma 5 (Peano phenomenon, compare with [22]). Assume the following:

(j) f (x, ·, z) is nondecreasing in R for each (x, z) ∈ [a, b]×R;
(jj) for each r > 0 there is an Lr > 0 such that

| f (x, y, z)− f (x, y, z̃)| ≤ Lr|z− z̃|

for each pair of points (x, y, z), (x, y, z̃) ∈ [a, b]× [−r, r]× [−r, r].

If y1,ε(x) and y2,ε(x) are two solutions of the SPBVP (1), (j) ( j ∈ {2, 3, 4, 5}), then:

(a) y1,ε(x)− y2,ε(x) = c(ε) in [a, b];
(b) if c(ε) > 0 (c(ε) < 0), then for each c1, 0 ≤ c1 ≤ c(ε) (0 ≥ c1 ≥ c(ε)) the function

y2,ε(x) + c1 is a solution of the SPBVP (1), (j) ( j ∈ {2, 3, 4, 5}).

Lemma 6 ([22]). If f satisfies the strengthened condition (j)

(j’) f (x, ·, z) is increasing in R for each (x, z) ∈ [a, b]×R,

then there exists at most one solution of the SPBVP (1), (j) ( j ∈ {2, 3, 4, 5}).

Lemma 5 and Theorem 2 are the clues for the following result.

Theorem 3. Let the assumptions of Lemma 5 be fulfilled, and f satisfies the Bernstein–Nagumo
condition.

Then, there exists at most one solution u = u(x) of the reduced problem f (x, y, y′) = 0
such that:

(i) u ∈ C2([a, b]);
(ii) u satisfies the boundary condition (j) ( j ∈ {2, 3, 4, 5});
(iii) u is (Iq)–stable in [a, b].

Proof. Suppose to the contrary that there are two solutions u1, u2 of the reduced problem
satisfying (i) and (ii). Let u1 and u2 be (Iq1)–stable and (Iq2)–stable in the interval [a, b].
By Theorem 2, the SPBVP (1), (j) ( j ∈ {2, 3, 4, 5}) has a solution y1,ε(x) (y2,ε(x)) for every
ε ∈ (0, ε1] (ε ∈ (0, ε2]) satisfying |y1,ε(x) − u1(x)| ≤ Γ1(ε) → 0+ (|y2,ε(x) − u2(x)| ≤
Γ2(ε)→ 0+). By Lemma 5, y1,ε(x)− y2,ε(x) = c(ε) in [a, b] for every ε ∈ (0, min{ε1, ε2}]. Be-
cause y1,ε(x)→ u1(x) and y2,ε(x)→ u2(x) for ε→ 0+ in [a, b], u1(x)− u2(x) = c = const
in [a, b]. Since the functions u1 and u2 are solutions of the reduced problem, it holds that
f (x, u1, u′1) = f (x, u2, u′2) = 0, while, however, u′1 = u′2. The condition of nondecreasing-
ness of the function f in the variable y implies that in the case of c > 0 (c < 0), the functions
u1 − c1 for 0 ≤ c1 ≤ c (0 ≥ c1 ≥ c) are also the solutions of the reduced problem. Hence,
f (x, y, u′1(x)) ≡ 0 and f (x, y, u′2(x)) ≡ 0 in the area Dδ1(u1) ∩Ω and Dδ2(u2) ∩Ω, respec-
tively, where Ω ⊂ R2 is a bounded set determined by the functions y = u1(x), y = u2(x),
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x ∈ [a, b] and the lines x = a and x = b. This contradicts the assumption of (Iq)–stability of
the solutions of the reduced problem. Theorem 3 is proved.

5. Conclusions

In this paper, we established conditions for uniform convergence of the solutions of
singularly perturbed boundary value problems for the second-order differential equation
εy′′ = f (x, y, y′), a ≤ x ≤ b, subject to either the Neumann, periodic or three- or four -point
boundary conditions, (2) – (5) to the solution of the reduced problem on the entire interval
[a, b]. In doing so, we used the apparatus of the method of lower and upper solutions,
which, combined with the somewhat forgotten notion of (Iq)–stability of the solution of a
reduced problem, forms in principle a simple and elegant tool for proving the existence
and asymptotic behavior of solutions for ε going to 0+.
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Appendix A. Proof of Lemma 4

Let C1 , C1([a, b]) be endowed with the norm ||y||1 = sup
a≤x≤b

|y(x)|+ sup
a≤x≤b

|y′(x)|.

Then, (C1, || · ||1) is a Banach space. Define the mapping T : C1 → C1 by setting for each
y ∈ C1

Ty(x) =
b∫

a

G(x, s)F(s, y(s), y′(s))ds, a ≤ x ≤ b,

where G is the Green function for y′′ + Kx = 0, (j) with a real constant K < 0. If

N1 , sup
[a,b]×[a,b]

|G(x, s)|(b− a), N2 , sup
[a,b]×[a,b]

|∂G(x, s)
∂x

|(b− a),

then we have that |Ty(x)| ≤ N1 L̃ and |(Ty(x))′| ≤ N2 L̃. Therefore, T maps the closed,
bounded and convex set

B , {y ∈ C1 : |y(x)| ≤ N1 L̃, |y′(x)| ≤ N2 L̃, a ≤ x ≤ b}

into itself. Furthermore TB is compact by the Arzelà–Ascoli theorem. Hence, by the
Schauder fixed-point theorem, T has a fixed point in B. This is a solution of BVP (10). The
lemma is proved.
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Appendix B. The MATLAB R2022a Code Used for Generating Figure 3

function Example2_3bvp(solver)
% Check for pasting of character " ’ " (<=PDF conversion of code)
% Use vertical single quotation mark instead of right single quotation
mark !
if nargin < 1
solver = ’bvp4c’;
end
bvpsolver = fcnchk(solver);
% Initial mesh - duplicate the interface point xc
xc=0.25;
xinit = [0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10,
0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22,
0.23, 0.24, xc, xc, 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34,
0.35, 0.36, 0.37, 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46,
0.47, 0.48, 0.49, 0.50];
% all points in "xinit" must be in one line !!!
yinit = [0.0; -1.0];
sol = bvpinit(xinit,yinit);
sol = bvpsolver(@f,@bc,sol);
plot(sol.x,sol.y(1,:),’k’,’LineWidth’,1.5)
pbaspect([2 1 1])
xlabel(’x’); ylabel(’y’); grid on
print(’Figure_3’,’-deps’) % output -> Figure_3.eps
function dydx = f(x,y,region)

dydx = zeros(2,1);
dydx(1)=y(2); % y(1) = y and y(2) = y’

switch region
case 1
dydx(2)=0.75*atan(y(1))*(1+sin(y(2)))+(cos(3*pi*x))^3+2*(y(1));
case 2
dydx(2)=0.75*atan(y(1))*(1+sin(y(2)))+(cos(3*pi*x))^3+2*(y(1));

otherwise
error(’MATLAB:threebvp3:BadRegionIndex’,’Incorrect region index:%d’,
region);

end
end
% -----------------------------------------------------------------------
% Boundary conditions

function res=bc(YL,YR)
res=[YR(1,1)-YL(1,1) % the first boundary condition y1/4(1)-y0(1)=0

YR(1,1)-YL(1,2) % continuity of y(1) at xc=1/4
YR(2,1)-YL(2,2) % continuity of y(2) at xc=1/4
YR(1,2)-YL(1,2)]; % the second boundary condition y1/2(1)-y1/4(1)=0

end
% -----------------------------------------------------------------------

end
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