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Abstract: Human visual system is a crucial component of the nervous system, enabling us to per-
ceive and understand the surrounding world. Advancements in research on the visual system have
profound implications for our understanding of both biological and computer vision. Orientation
detection, a fundamental process in the visual cortex where neurons respond to linear stimuli in
specific orientations, plays a pivotal role in both fields. In this study, we propose a novel orienta-
tion detection mechanism for local neurons based on dendrite computation, specifically designed
for grayscale images. Our model comprises eight neurons capable of detecting local orientation
information, with inter-neuronal interactions facilitated through nonlinear dendrites. Through the
extraction of local orientation information, this mechanism effectively derives global orientation
information, as confirmed by successful computer simulations. Experimental results demonstrate
that our mechanism exhibits remarkable orientation detection capabilities irrespective of variations
in size, shape, or position, which aligns with previous physiological research findings. These find-
ings contribute to our understanding of the human visual system and provide valuable insights
into both biological and computer vision. The proposed orientation detection mechanism, with its
nonlinear dendritic computations, offers a promising approach for improving orientation detection in
grayscale images.

Keywords: artificial visual system; orientation detection; dendritic neuron model; convolutional
neural network; noise resistance Greyscale Images

MSC: 68T07

1. Introduction

Between 1950 and 1980, neurophysiologist David Hubel and neuroscientist Torsten
Wiesel conducted a series of scientific studies on vision, focusing on cortical cells in rabbits
and monkeys [1,2]. Their experiments revealed several important biological phenomena:
first, visual cortical cells are highly sensitive to rectangular spots and slits; second, there
are simple cortical cells that respond only to stimuli at specific angles, a property known
as orientation selectivity [3–5]. Orientation detection is a crucial function of the visual
system, allowing us to recognize and interact with our surroundings [3]. However, little is
understood about how orientation selectivity contributes to the global orientation detection
of objects with varying sizes, shapes, and positions. To address this issue, we proposed a
novel mechanism in a previous paper [6]. Our approach involves local orientation selection
neurons that can detect an object’s orientation angle, and infer global orientation from
this information.

Despite progress in understanding the visual computations performed by V1 and
other areas of the cortex, important questions remain. For instance, it is unclear how com-
putations in V1 relate to those performed elsewhere in the cortex, and whether V1 contains
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unique mechanisms for computing orientation from retinal images [7–9]. Recent studies
suggest that dendrites play a critical role in visual computing, particularly in invertebrates.
These studies use Boolean logic to represent the nonlinear interactions of dendritic trees,
using operators such as “and,” “or,” and “not” rather than softer alternatives like mini-
mum or maximum. Additionally, experiments have demonstrated that single dendrites in
neocortical pyramidal neurons can perform computation on input that was traditionally
thought to require multilayer networks, such as linearly indivisible classification [10–12].

The retina is a crucial structure in the visual system, serving as a specialized compo-
nent of the central nervous system. It plays a vital role in converting photoelectric signals,
processing them, and transmitting visual signals to the cerebral cortex. The discovery of
retinal receptive fields and orientation-selective ganglion cells (OSGCs) in the retina marked
a critical milestone in the study of biological orientation detection [13]. In vivo and in vitro
studies have extensively explored the properties of orientation-selective ganglion cells
(OSGCs) in the mammalian retina. These studies, particularly in mice and rabbits, have
identified OSGCs as a significant component of the output layer of the retina, specifically
the retina ganglion cells [14–19]. However, like other neural systems in the brain, OSGCs
cannot perform complex visual tasks independently. The frontal neural pathway of OSGCs
spans the entire retinal layers, forming the “OSGC vertical pathway,” the ganglion cell
layer of the retina comprises various cell types, including photoreceptor cells (PCs) in the
outer nuclear layer (ONL), horizontal cells (HCs), bipolar cells (BCs), amacrine cells (ACs),
and orientation-selective ganglion cells (OSGCs) [19–22]. These layers interact through
synapses, enabling intercellular information sharing and cooperation to constitute a func-
tional vertical pathway. While photoreceptors are not orientation-selective, downstream
OSGCs exhibit orientation selectivity [23,24]. The neural computational processes underly-
ing this selectivity, as well as the associated neural circuits and membrane biophysics, have
been a classic example of neural computation and the focus of decades of research. Figure 1
illustrates these concepts:
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Figure 1. Retinal cell model.

About 60 years ago, Hubel and Wiesel observed that certain cortical cells responded
selectively to certain orientations of visual stimuli, but the precise mechanisms underlying
this selectivity remain unknown. This paper proposes a novel mechanism for generating
orientation selectivity in V1 cortical anatomy. We hypothesize the existence of locally
directed detection neurons that selectively receive neighboring photoreceptor inputs and
compute the direction to which they respond. Using a dendritic neuron model, we extend
this mechanism to multi-orientation detection neurons. We conducted experiments on a
dataset comprising 252,000 images with varying shapes, sizes, positions, and orientations
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to validate the effectiveness of our mechanism. The results of our experiments clearly
demonstrate that our approach is highly effective in accurately detecting object orientation
direction. Furthermore, computer simulations of our mechanism confirmed its reliability
and robustness across a range of orientation scenarios. This study may shed some light on
the exact mechanism of selectively to certain orientations of visual stimuli.

Therefore, we propose an orientation detection mechanism based on the OSGCs for
grayscale images. Building upon this mechanism, we also propose an artificial visual
system (AVS) for planar orientation detection and other visual information processing. To
verify its validity, we compared it with other models in the Related Works section and
obtained satisfactory results. This demonstrates that our proposed model in the paper can
effectively perform orientation detection in grayscale images and outperforms the current
mainstream models in many aspects.

The principles and mechanisms of the model are described in detail in the Mechanism
section, the accuracy of the model is verified experimentally in the Experiment section, and
finally the model is compared with the mainstream models currently used for orientation
recognition in the Related Works section.

2. Mechanism
2.1. Dendritic Neuron Model

Artificial neural networks (ANNs) have been a prominent research area in the field
of artificial intelligence since the 1980s [25,26]. By mathematically modeling brain synap-
tic connections and information processing mechanisms, neural networks have become
indispensable in various fields such as medical diagnosis, stock index prediction, and
autonomous driving, exhibiting remarkable performance [26–28]. This section will provide
a detailed description of the neuron’s structure and its orientation detection mechanism.
Our hypothesis proposes that simple ganglion neurons detect orientation information by
sensing light signals within and around their receptive fields.

While many of these networks rely on the traditional McCulloch-Pitts neuron model
as their basic computing unit [29], this model fails to capture the nonlinear dendritic mecha-
nisms that are crucial for information processing in biological neurons [30]. Recent research
on dendrites in neurons, however, has revealed their crucial role in overall calculations,
providing strong support for future research [31–38]. Koch, Poggio, and Torre proposed
that the interaction between synapses on the adendritic branch of retinal ganglion cells
can be regarded as a logical AND operation, where excitatory synapses are intercepted
if activated inhibitory synapses are closer to the cell body [39–41]. The current from the
dendritic branch is summed up at the branch node, which can be modeled as a logical
OR operation [42–44]. The outputs of the branch nodes converge at the cell body, or soma.
Upon surpassing the threshold, the neuron fires and transmits a signal through its axon to
other neurons. In Figure 2a, the ideal δ cell model is illustrated. If the inhibition interaction
is modeled as a NOT gate, the output of the δ cell model can be expressed as follows:

Output = X1X2 +
−

X3X4 +
−

X5X6X2 (1)

Excitatory inputs X1, X2, X4, and X6 are denoted by logical 1 signals, whereas inhibitory
inputs X3 and X5 are denoted by logical 0 signals. The cell body (soma) signal produces
a logical 1 signal only in three scenarios: (i) X1 = 1 and X2 = 1; (ii) X3 = 0 and X4 = 1; and
(iii) X5 = 0, X6 = 1, and X2 = 1. In contrast, the γ cell model receives input from both
excitatory and inhibitory synapses, as shown in Figure 2b. Its output can be expressed
as follows:

Output =
−

X1X2X3 (2)
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2.2. Local Orientation Detection Neuron

This section will provide a detailed description of the neuron’s structure and its
orientation detection mechanism. Our hypothesis suggests that simple ganglion neu-
rons detect orientation information by sensing light signals within and around their
receptive fields.

The visual system’s primary pathway for transmitting visual information occurs from
photoreceptors to bipolar cells, then to ganglion cells, the lateral geniculate nucleus (LGN),
and ultimately to the primary visual cortex [45]. Assuming a 2D visual field or receptive
field, we can divide it into M × N regions, with each region corresponding to the smallest
visually distinguishable area. When light falls on a region, the corresponding photoreceptor
or a cluster of photoreceptors converts the light signal into an electrical signal, which is
transmitted to the ON-OFF response bipolar cells. For simplicity in neural computation,
we utilize only the ON-response mechanism. Thus, if a photoreceptor receives light, its
corresponding ON-response bipolar cell outputs 1; otherwise, it outputs 0. The input signal
is represented by Xij, which indicates the position of the 2D receptive field. Prior to this,
horizontal cells intervene to identify color in grayscale, with an excitatory input color
chromatic difference threshold set to θ. If the color difference between adjacent pixels is
less than θ, the neuron receives excitatory input; if the color difference is greater than θ, it
receives inhibitory input. The input signal is processed as follows:

HC =

0, |x ij − xi−1j−1

∣∣∣< θ;

1, |x ij − xi−1j−1

∣∣∣≥ θ.
(θ = 3) (3)

which is described in Figure 3:
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degrees, and 135 degrees.

For this study, we set the receptive field to a 3 × 3 matrix, enabling us to obtain the
active states of eight neurons corresponding to four different orientation angles. These
include 135◦ and 315◦ for 135◦ inclines, 90◦ and 270◦ for vertical, 45◦ and 225◦ for 45◦

inclines, and 0◦ and 180◦ for horizontal. Furthermore, increasing the size of the receptive
field allows for the extraction of more orientation information.

2.3. Global Orientation Detection

As previously mentioned, the locally directed detection neurons interact through the
reception of light in their respective fields. We posit that local orientation information can
be used to infer global orientation. By measuring the intensity of neuronal activity in all
local orientations of the receptive field, we can make orientation assessments by summing
up the neuronal output in different orientations.

There are four possible solutions for measuring the activity intensity of local orienta-
tional detection neurons in the two-dimensional receptive field (M × N): (1) Single-neuron
scheme: This involves assuming the existence of only one local orientation detection retinal
ganglion neuron that scans eight orientations for each location. (2) Multi-neuron scheme:
This involves assuming the existence of eight different neurons that scan eight adjacent
positions in different orientations to provide local orientation information. (3) Neuron array
scheme: This involves assuming the existence of multiple non-overlapping neurons that
slide across the receptive field to provide orientation information. (4) All-neuron scheme:
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This involves assuming that each photoreceptor corresponds to a 3 × 3 receptive field with
its local orientation in eight positions. In each receptive field, local orientation detection
neurons can extract basic orientation information. The local orientation information is used
to infer the global orientation.

To illustrate the orientational detection mechanism, we employ a simple 5 × 5 two-
dimensional image with a target angle of 45 degrees, as depicted in Figure 4. Without loss of
generality, we utilize the first solution, which involves the local detection of retinal ganglion
neurons scanning each position from (1, 1) to (5, 5) on the receptive field to generate local
orientation information. Figure 4 demonstrates that the activation level of the 45◦ neurons
is the highest, indicating consistency with the target orientation.
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2.4. Artificial Visual System (AVS)

The visual system includes sensory organs (eyes) and pathways connecting the visual
cortex with other parts of the central nervous system. Local visual feature detection
neurons within the visual system can extract fundamental local visual characteristics, such
as local orientation information, which are subsequently combined by subsequent layers
to detect higher-order features. Expanding upon this mechanism, we have created an
artificial vision system (AVS) depicted in Figure 5. The Local Feature Detection Neuron
(LFDN) layer corresponds to neurons in the V1 region of the cerebral cortex, such as
Local Orientation Detection Neurons, and is utilized to extract fundamental local visual
features. The extracted features are then transmitted to the subsequent layer, known
as the global feature detection layer neurons, which correspond to the primate brain in
the temporal region (MT), this layer detects higher-order features, such as the global
orientation of an object. The neurons in this layer can be a sum of the output of simple layer
1 neurons, including direct detection, motion orientation detection, motion speed detection,
binocular vision perception, or a single layer, two layers corresponding to V4 and V6, three
layers corresponding to V2, V3, and V5 network, or even multilayer networks for pattern
recognition. Notably, AVS is a feedforward neural network that can be trained by error
backpropagation. In contrast to traditional multi-layer neural networks and convolutional
neural networks, the local feature detection neurons (LFDN) in AVS layer 1 can be designed
in advance based on prior knowledge and do not typically require learning. Even if learning
is necessary, AVS is a good starting point that can greatly improve learning efficiency and
speed. Additionally, AVS has a simpler and more efficient hardware implementation
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compared to Convolutional Neural Network (CNN). In addition, most applications only
require simple logical calculations.
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3. Experiment

The effectiveness of our proposed mechanism and mechanism-based AVS was vali-
dated through the generation of a large dataset of 32 × 32 grayscale pixel images for testing
purposes. We used a 3 × 3 window to scan each pixel of the two-dimensional image,
extracted the local position information of each pixel using eight orientation detection neu-
rons, and derived the global position information from the local information. We created
ten sets of random graphs with varying widths and positions in four orientation for the
dataset. For all experiments, we used a 3 × 3 receptive domain with a step size of 1 and set
the color chromatic difference threshold to 10.

Figures 6 and 7 depict objects at 135◦ angles of varying sizes, while Figures 8 and 9
depict objects oriented horizontally and vertically, respectively. We tallied the number of
activations in all orientations and selected the orientation with the strongest signal as the
output result. The experimental results are presented in Figures 6–9.
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The above is only a representative part of the experimental results, after a large number
of experiments show that AVS can give accurate judgments of orientation regardless of the
color and size of the target in the grayscale map.

4. Related Works

To compare our AVS’s global orientation detection performance with other methods,
we chose CNNs because of their widespread use and success in object detection, segmenta-
tion, and image recognition. Figure 10 shows the CNN architecture used in our experiments,
which is a typical architecture for handwritten character recognition [46]. It includes seven
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layers: (1) a convolutional layer with 30 3 × 3 filters producing 30 32 × 32 feature maps;
(2) a 2 × 2 max pooling layer.; and (3) An Affin layer, also known as a fully connected
layer in neural networks, was used with a full network architecture consisting of
8192 (30 × 16 × 16) input nodes, a hidden layer of 100 nodes, and an output layer of
4 nodes. The CNN received 1024 (32 × 32) inputs for a 32 × 32 pixel image and produced
30 32 × 32 feature maps after convolution and pooling. In contrast, our AVS only had two
layers: (1) A perceptron layer consisting of 4096 (4 × 32 × 32) local orientation detection
neurons was used to generate four 32 × 32 local orientation feature maps for the AVS.; and
(2) a summing pooling layer that produced four outputs by summing the four local orienta-
tion feature maps. Compared to the CNN, which had a much larger number of parameters
(820,004), our AVS had only 12 parameters for local orientation detection neurons (4 × 3),
leading to a significant reduction in the number of parameters and computation cost.
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Furthermore, while CNN requires hundreds of layers, AVS only requires two layers.
Therefore, the hardware implementation of AVS is significantly simpler and more efficient
than CNN. Table 1 summarizes the comparisons between CNN and AVS.

Table 1. Comparison between CNN and AVS.

Metrics CNN AVS

Layers >7 2
Parameters 820,004 12
Reasoning Black Box Reasonable

Bio-Soundness Low High
Noise Resistance Low High

Learning Cost High No

To compare the anti-noise ability of AVS and CNN, we added random noise to the
non-object area, which was independent of and not connected to the object. The Figure 11
shows the added noise levels of 0.1%, 0.5%, 1%, 2.5%, 5%, and 10%. To detect the planar
orientations of these object images with noise, we utilized AVS and CNN. Table 2 presents
the identification accuracy of both AVS and CNN on object images with added noise, with
the corresponding data presented in the table. However, we can see that the identification
accuracy of CNN drops to 97.86% even if noise level is 0.1% (only one pixel is added). As
the noises level increases to 10%, CNN’s identification accuracy drops sharply. In contrast,
AVS consistently maintains 100% identification accuracy, demonstrating excellent noise
resistance performance.
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Table 2. Comparison of identification accuracy between CNN and AVS.

Noises Level 0.1% 0.5% 1% 2.5% 5% 10%

CNN 97.86% 59.26% 51.38% 37.98% 35.24% 30.32%
AVS 100% 100% 100% 100% 100% 100%

To facilitate a fair comparison, we trained a Convolutional Neural Network (CNN)
for global orientation detection. The training and testing data sets consisted of 15,000 and
5000 samples, respectively. The objects varied in size from 2 to 256 pixels and were randomly
placed with diverse shapes. The CNN was trained using the backpropagation method with
the Adam optimizer. The performance of the trained CNN for orientation detection was
impressive, achieving a recognition accuracy of 99.997%. This performance is remarkable,
although slightly lower than the untrained AVS, which achieved 100% accuracy.

While the AVS does not typically require learning for most applications, it does possess
advantages over CNNs. Firstly, the AVS requires significantly fewer parameters to train
compared to increasingly deep CNN architectures with millions of optimized parameters.
Secondly, the AVS can leverage a priori knowledge of the system and task to start learning
from a well-informed initial value, whereas CNNs rely on random initial values. Thirdly,
the convergence of AVS is guaranteed within a certain number of iterations [47], while
CNNs often require more training time and can be prone to local minima. Importantly, the
learning process of AVS is controllable and its results are interpretable, in contrast to the
black box nature of CNN learning where results can be opaque and untraceable to humans.

Furthermore, the hardware implementation of AVS is notably simpler and more
efficient compared to CNNs, as CNNs may require hundreds of layers while AVS only
requires two layers. Additionally, while CNNs claim similarity to Hubel and Wiesel’s AVS
in terms of connecting units to local receptive fields [26], they fail to fully uincorporate
the crucial concept of locally sensitive, direction-selective neurons. Hence, CNNs can be
referred to as convolutional networks rather than convolutional “neural” networks. On the
other hand, the AVS is built upon Hubel and Wiesel’s visual system concept, effectively
utilizing local receptive fields and orientation-selective neurons. It not only integrates these
concepts but also introduces a novel mechanism for inferring global orientation, resulting
in successful global orientation detection.
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In light of the research conducted by David Marr and James Albus on the cerebellum
being a perceptron [48,49], as well as the discovery of long-term inhibition at synapses
supporting the cerebellar perceptron theory by Masao Ito et al. [50], we can confidently
state that the AVS surpasses CNNs in terms of orientation for biometric recognition.

Overall, the AVS demonstrates superior performance and alignment with the prin-
ciples of the visual system compared to CNNs, particularly in the realm of orientation
detection for biometric recognition.

Finally, based on the above experiments in order to compare the noise immunity
of CNN and AVS, we remove the restriction on noise in the previous experiments and
observe their noise immunity. Table 3 presents a summary of the noise resistance results for
CNN and AVS. Notably, when 5% of noise was added, the recognition accuracy of CNN
decreased to 90%, while AVS exhibited a slightly higher accuracy of 96%. As the amount of
noise increased to 30%, the recognition accuracy of CNN significantly declined, reaching as
low as 35%. In contrast, the single-layer perceptron AVS maintained a recognition accuracy
of 43%, demonstrating remarkable noise resistance.

Table 3. Compare the recognition accuracy of the learned CNN and AVS when responding to
unconditional noise.

Noises Level 0 5% 10% 15% 20% 25% 30%

CNN 99.887% 90.682% 74.433% 59.112% 47.563% 39.864% 35.351%
AVS 100% 96.571% 85.562% 71.490% 59.716% 49.924% 43.452%

These results clearly highlight the superior noise immunity of the single-layer per-
ceptron system compared to CNN. Even in the presence of substantial noise, the AVS
model managed to preserve a substantial portion of its recognition accuracy, showcasing
its robustness in challenging conditions.

5. Conclusions

This paper introduces local plane orientation detection neurons to calculate the lo-
cal plane orientation and describes a global plane orientation detection mechanism for
Greyscale Images along with a global plane orientation judgment scheme based on local
plane orientation information. The local plane azimuth detection algorithm is used in
the local receiving field to extract basic visual features such as plane orientation, which
are then passed to the next layer to detect higher-order features, such as global plane
orientation. The proposed mechanism exhibits desirable properties that render it a valuable
component of any visual sensory system. Furthermore, it appears to play a crucial role in
the human visual system. The proposed mechanism is not only useful for the detection of
local orientation information but can also be applied to many other basic visual perceptual
phenomena, such as the perception of movement direction and speed, as well as binocular
perception. It also sheds light on how functions are partitioned among different elements
of the visual circuit. Based on this, we developed an artificial vision system, specifically
for Greyscale Images. We conducted plane orientation detection experiments using AVS
without learning and CNN with learning to compare the performance of AVS and CNN.
Our findings revealed that AVS outperforms CNN in accuracy and noise resistance, as well
as other aspects. AVS has the potential to be easily applied to other visual perceptions.
Therefore, we anticipate that AVS is likely to surpass CNN in the future. Since the proposed
model is highly simplified, it still requires further optimization and research to cope with
complex image recognition. This will be the focus of our future work, with the aim of
achieving more effective applications in complex and color images. Although based on a
highly simplified model, the proposed mechanism and AVS provides a mechanism that
can quantitatively explain many known neurobiological visuals and could lead to further
exploration of neurophysiology and neuroanatomy to review their observation and find
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the corresponding function and structure. Furthermore, advances in biological science may
lead to a elaborate and modified mechanism.
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