
Citation: Zhou, M.; Qin, J.; Mei, G.;

Tipper, J.C. Simple and Robust

Boolean Operations for Triangulated

Surfaces. Mathematics 2023, 11, 2713.

https://doi.org/10.3390/

math11122713

Academic Editor: Shuai Liu

Received: 7 May 2023

Revised: 8 June 2023

Accepted: 12 June 2023

Published: 15 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Simple and Robust Boolean Operations for Triangulated Surfaces †

Meijun Zhou 1, Jiayu Qin 1,*, Gang Mei 1,2,* and John C. Tipper 3

1 School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China;
meijun.zhou@email.cugb.edu.cn

2 Engineering and Technology Innovation Center for Risk Prevention and Control of Major Project Geosafety, MNR,
Beijing 100083, China

3 Institute of Earth and Environmental Science, University of Freiburg, D-79104 Freiburg im Breisgau, Germany;
john.tipper@geologie.uni-freiburg.de

* Correspondence: jiayu.qin@cugb.edu.cn (J.Q.); gang.mei@cugb.edu.cn (G.M.)
† A preprint version of this paper is posted at https://arxiv.org/abs/1308.4434.

Abstract: Boolean operations on geometric models are important in numerical simulation and serve
as essential tools in the fields of computer-aided design and computer graphics. The accuracy of
these operations is heavily influenced by finite precision arithmetic, a commonly employed technique
in geometric calculations, which introduces numerical approximations. To ensure robustness in
Boolean operations, numerical methods relying on rational numbers or geometric predicates have
been developed. These methods circumvent the accumulation of rounding errors during computation,
thus preserving accuracy. Nonetheless, it is worth noting that these approaches often entail more
intricate operation rules and data structures, consequently leading to longer computation times. In
this paper, we present a straightforward and robust method for performing Boolean operations on
both closed and open triangulated surfaces. Our approach aims to eliminate errors caused by floating-
point operations by relying solely on entity indexing operations, without the need for coordinate
computation. By doing so, we ensure the robustness required for Boolean operations. Our method
consists of two main stages: (1) Firstly, candidate triangle intersection pairs are identified using an
octree data structure, and then parallel algorithms are employed to compute the intersection lines for
all pairs of triangles. (2) Secondly, closed or open intersection rings, sub-surfaces, and sub-blocks are
formed, which is achieved entirely by cleaning and updating the mesh topology without geometric
solid coordinate computation. Furthermore, we propose a novel method based on entity indexing to
differentiate between the union, subtraction, and intersection of Boolean operation results, rather
than relying on inner and outer classification. We validate the effectiveness of our method through
various types of Boolean operations on triangulated surfaces.

Keywords: Boolean operations; triangulated surfaces; computational geometry; geometrical robustness

MSC: 68U05

1. Introduction

Numerical modeling methods have garnered extensive usage within the engineering
domain. Ensuring the precision of these models necessitates the construction of accurate
geometric representations. The construction of geometric models commonly employs
various techniques such as boundary representation (B-Rep) [1], wireframe representa-
tion [2], and voxel representation [3]. Among these, B-Rep is the predominant method
employed for constructing geometric models, primarily relying on parametric surfaces such
as non-uniform rational basis spline (NURBS) surfaces or discrete surfaces. The discrete
surface represents the decomposition of a specific surface domain, with polygonal meshes,
particularly triangular meshes, emerging as the favored form of representation.

Mathematics 2023, 11, 2713. https://doi.org/10.3390/math11122713 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11122713
https://doi.org/10.3390/math11122713
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0026-5423
https://arxiv.org/abs/1308.4434
https://doi.org/10.3390/math11122713
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11122713?type=check_update&version=1

Mathematics 2023, 11, 2713 2 of 20

In the majority of cases, triangular meshes are typically expected to maintain manifold
characteristics. However, certain situations, such as dynamic collisions or extensive defor-
mations, may lead to the loss of this property. To restore manifoldness to such meshes, mesh
reconstruction becomes necessary [4]. Mesh reconstruction involves employing Boolean op-
erations, which aim to obtain the union, subtraction, and intersection of geometric models
in order to reconstruct the desired geometric models.

Boolean operations on geometric models are a core element in the field of computer-
aided design and graphics, and are the basic algorithms for constructing solid geometric
models. They are used in the construction industry [5], manufacturing industry [6,7],
computer vision [8–10], graphics [11,12], and other scientific research fields [13,14]. Boolean
operations are needed to combine and truncate geometric models to generate complex 3D
models; therefore, Boolean operations have important research significance.

Various implementations of Boolean operations can be found in the literature, which
can be broadly classified based on three main properties: the type of input data, the type
of computation, and the type of output data [15]. Input models encompass a range of
sources, including those generated by B-Rep based on NURBS surfaces [16,17], curved
surfaces [18], and polygonal meshes [15,19,20], which can be manifold or non-manifold [21].
Most methods focus on performing Boolean operations on manifold surfaces. In terms of
computation, Tayebi et al. [16] categorized them into four distinct categories: exact arith-
metic methods [19], approximate arithmetic methods [22], interval computation methods,
and volumetric methods [23,24]. Among these computation types, exact arithmetic meth-
ods and interval computation methods directly calculate Booleans on the initial surfaces,
while the other two methods employ indirect approaches.

During the implementation of direct Boolean operations for mesh models, two crucial
procedures significantly impact the effectiveness and efficiency of the overall algorithm.
The first procedure involves robustly obtaining intersection lines and loops of all inter-
sected entities in the quickest manner possible. The key aspect of this procedure lies in
accurately identifying all potentially intersected entities within a short timeframe to min-
imize computational costs. Numerous techniques have been developed to achieve this
objective, including binary space partitions (BSP) [19], octree [15], OBB trees [25], bipartite
graph structure [26], and tracking neighbors [18,27]. The second key procedure pertains
to correctly assembling and distinguishing the union, subtraction, and intersection of
intersected models. The most straightforward approach is to perform an inside/outside
classification [28], which involves examining the location of vertices or facets within the
resulting volumes. Different algorithms for direct Boolean operations devise their solutions
for addressing these two aforementioned challenges.

One of the primary challenges encountered in implementing Boolean operations is the
utilization of finite precision arithmetic. In geometric calculations, floating-point arithmetic
is commonly employed for computing point coordinates [29–31]. Nonetheless, owing
to the finite precision nature of floating-point arithmetic, the introduction of rounding
errors and loss of precision becomes inevitable [32,33]. Consequently, when calculating and
comparing intersection points, small errors may arise, leading to slight deviations from
the actual intersection position. These errors may accumulate and produce larger errors in
subsequent calculations, thus affecting the final result.

To address this issue, researchers have employed different approaches. One method
involves using rational numbers to represent point coordinates, enabling accurate represen-
tation of point locations and ensuring topological correctness of the calculation results [34].
For instance, Hu et al. [32] combined exact rational number calculations with geometric
tolerance to robustly solve problems such as self-intersections and gaps in Boolean opera-
tions. Trettner et al. [35] and Nehring-Wirxel et al. [36] introduced homogeneous integer
coordinates to ensure the accuracy of Boolean operations. However, it is important to note
that rational number calculations involve more complex arithmetic rules and data struc-
tures, resulting in slower computations compared to floating-point arithmetic, typically by
1 to 2 orders of magnitude. Another alternative approach is to use implicit representation,

Mathematics 2023, 11, 2713 3 of 20

where the position of a point is described based on specific properties and relationships
of the geometry, rather than directly representing the coordinate values. This approach
circumvents precision issues inherent in floating-point arithmetic. For example, Attene
et al. [37] and Diazzi et al. [38] employ the concept of indirect geometric predicates to
handle intersections, ensuring the robustness and speed of Boolean operations.

Many novel studies about Boolean operations on polygonal meshes have been pre-
sented. For example, Feito [39] introduced an efficient and robust approach for regularized
Boolean operations on triangular meshes, encompassing union, subtraction, and intersec-
tion operations. This method proves particularly useful in constructing computational
models with complex meshes. Gao [40] developed a rasterization-based algorithm, lever-
aging a many-core GPU, to perform Boolean operations on arbitrarily closed polygons.
The algorithm demonstrates higher computational efficiency when handling polygons
with a large number of vertices. Qin [41] proposed a fast method for triangle intersection
in Boolean operations involving geometric models with triangle meshes. This method,
based on the intersection distance criterion, finds utility in modeling underground space
engineering. Wang [42] constructed a complex geological model using a robust Boolean
operations method. The method prioritizes the robustness of geometric calculations, ad-
dressing calculation errors and data inaccuracies. Furthermore, the well-known library
CGAL [43] and various open-source packages such as MeshLab [44], OpenFlipper [45],
and MEPP [46], also offer robust implementations of Boolean operations. These resources
provide additional tools and functionality for reliably performing Boolean operations.

When devising algorithms to address specific problems, it is often the case that faster
and more efficient algorithms tend to possess higher complexity compared to slower ones.
This observation holds for Boolean operations performed on triangular meshes. In this paper,
we aim to strike a relative balance between efficiency and complexity in the algorithms we
propose. We seek to develop a simple and robust approach for Boolean operations that also
exhibits satisfactory efficiency. Here are several key highlights of our method:

(1) An octree-based method for locating and searching possible intersecting triangle pairs
is proposed, and a parallel algorithm is used to calculate the intersection lines of
candidate intersecting triangle pairs.

(2) An entity index-based method is proposed to obtain intersection rings of triangu-
lar surfaces, create sub-surfaces and sub-blocks, and distinguish between merging,
intersecting, and subtracting volumes of two intersecting surfaces.

(3) Through these techniques, we reduce computational effort, enhance robustness, and
cater to a wide range of triangulated surface Boolean operations.

The rest of this paper is organized as follows. Section 2 presents the details of the
proposed algorithm. Section 3 utilizes five examples to demonstrate the effectiveness of
the proposed method. Section 4 discusses the advantages and limitations of the proposed
method and future research directions. Section 5 summarizes the work of this paper.

2. The Proposed Method
2.1. Overview

In the context of Boolean operations, floating-point arithmetic is commonly used for
calculating intersection point coordinates. However, the finite precision of floating-point
arithmetic introduces rounding errors and loss of precision. This can result in calculated
results that slightly deviate from the actual intersection locations. The accumulation of
errors during subsequent calculations can impact the final results. To address this issue,
researchers have explored methods to reduce numerical approximation errors. Some
approaches involve using rational arithmetic and geometric predicates instead of floating-
point arithmetic. However, these alternative methods often involve complex arithmetic
procedures and data structures.

This paper presents a straightforward and reliable approach for performing Boolean
operations. The proposed method eliminates the need for geometric coordinate calculations
by utilizing entity indexing, thus mitigating the accumulation of numerical approximation

Mathematics 2023, 11, 2713 4 of 20

errors. By focusing on mesh topology elimination and updates, the method constructs
intersecting rings, generates sub-surfaces, assembles blocks, and distinguishes between
different types of volumes. It is specifically designed to handle Boolean operations on
triangulated surfaces, including open and closed surfaces, as well as surfaces that combine
both open and closed regions. It is important to note that the triangulated surfaces used in
the computation should be populated and free from self-intersections.

The proposed method can be summarized into six steps, as depicted in Figure 1. These
steps can be categorized into two distinct states: the first state involves computations for
entity coordinates, while the second state focuses on operations related to entity indexes. In
the first state, the method initially searches for intersected triangle pairs. Once identified, it
calculates the intersection lines for each pair of triangles. Subsequently, re-triangulation and
updates are performed on the resulting surface meshes. The second stage of the method
solely operates on the indexes of entities. It involves forming intersection loops, creating
sub-surfaces, and assembling and distinguishing sub-blocks based on the entity indexes.

Compute intersection and

re-triangulate

Merge and update

surface meshes

Form intersection

loops

Create sub-surfaces

Assemble sub-blocks and

distinguish

Output subsurfaces

or/and sub-blocks

Search intersected

triangle-pairs

Input two

surface meshes

Figure 1. Flowchart of the proposed method.

Step 1: The first step of the proposed method involves searching for candidate in-
tersected triangle pairs. To optimize computational efficiency, a robust and rapid search
algorithm is employed to identify potentially intersected triangles. In this study, we uti-
lize the octree structure [47], which enables efficient location and identification of these
candidate pairs.

Step 2: Once the candidate intersected triangle pairs have been identified, the next step
is to compute the intersection line for each pair. To achieve this, we adopt the algorithm
developed by Möller [48], known for its robustness and efficiency. In scenarios where
a large number of triangle pairs require intersection calculations, parallel computation
techniques based on OpenMP [49] are implemented to enhance performance.

Step 3: After calculating the intersection lines, the next task is to merge and renumber
all vertices, as well as update and clear the meshes. The intersection process generates
new vertices, while the intersected triangles undergo re-triangulation. To ensure a valid
topology, all vertices are merged and renumbered, and all triangles are updated accordingly.
This step guarantees the maintenance of a consistent and accurate mesh representation.

Step 4: The fourth step of the proposed method involves connecting the computed
intersection lines into closed or open loops. After computing the intersections for each pair
of triangles, a set of discrete edges is obtained. These edges need to be connected to form
closed or open-oriented loops. If there is no closed loop present on an intersected surface,
it indicates that no closed block bounded by triangular facets will be formed.

Mathematics 2023, 11, 2713 5 of 20

Step 5: The next step is to obtain sub-surfaces based on the closed loops. A sub-surface
comprises the closed loop and all of its incident triangles. The edges of a closed loop are
designated as the advancing front, and a new surface is “grown” based on the topology
until the number of faces in the sub-surface ceases to increase.

Step 6: Finally, the method proceeds to assemble and distinguish sub-blocks. Sub-blocks
can be easily created by assembling related sub-surfaces. Additionally, the boundary closed
loops generated in Step 4 can be utilized to represent sub-surfaces. Assembling and distin-
guishing operations are performed based on these boundary-closed loops.

2.2. Data Structure and Notation

In this section, we introduce notations for various geometric entities and define
additional properties, such as direction, for some of them.

Definition 1. Directed edge is a segment with a specified direction. It consists of two vertices,
where the first vertex is referred to as the head and the second vertex as the tail.

Definition 2. Orientated loop is a collection of connected directed edges that can be either closed or
open. It can also be represented as an ordered set of vertices. If two oriented loops have the same
vertices but in opposite order, they are defined as twins.

Definition 3. Normalized face is a coplanar polygon with a defined normal. In the context of this
paper, a normalized face refers to either a triangle or a polygon.

To facilitate the description of our algorithm in the subsequent sections, we adopt several
common geometric objects and allocate arrays to store the corresponding geometric entities.

The “m_aVerts” array comprises vertices representing the intersections and mergers
of triangle pairs. It is necessary to verify and renumber all the vertices in this array.

The “m_aEdges” array consists of edges that represent the intersection lines resulting
from the intersection of all triangle pairs. The head and tail attributes of each edge in this
array are updated following the merging and renumbering of all vertices.

The “m_aLoops” array stores closed or open intersection loops. The ordered set of
vertices within each loop must have their IDs updated to reflect the changes.

The “m_aPolys” array contains polygons that are the outcome of intersecting trian-
gle pairs. Each polygon in this array will be decomposed into new triangles through
polygon triangulation.

The “m_aTrgls” array is composed of triangles that have been updated through the
intersection and merging operations. These triangles originate from two sources: (1) the
original triangles that do not intersect with others, and (2) the newly generated triangles
resulting from re-triangulating the polygons obtained from intersecting triangle pairs.

The “m_aSurfs” array contains surfaces representing sub-surfaces that have been
created. Each sub-surface in this array is associated with one or more boundary sub-loops,
which are prepared for the assembly of sub-blocks.

The “m_aBlocks” array stores assembled sub-blocks, encompassing the collected
sub-surfaces.

2.3. Details of the Proposed Method

In this section, we will provide a comprehensive and detailed description of the six
steps involved in our approach. Each step will be discussed individually, highlighting its
purpose and methodology. Furthermore, we will explain several procedures, including
the clearing of the triangular mesh and the creation of sub-surfaces and sub-blocks. To
facilitate understanding and implementation, we will accompany these procedures with
pseudocode examples, illustrating the specific algorithms and logic employed.

Mathematics 2023, 11, 2713 6 of 20

2.3.1. Searching Intersected Triangle Pairs

Before calculating the intersection between any pair of triangles, it is essential to
identify which pairs have the potential to intersect. One straightforward but inefficient
approach is to conduct a bounding box intersection test between each triangle on a surface
and every other triangle. To enhance efficiency, we employ an octree data structure to
locate and identify candidate triangle pairs that may intersect.

Given two surface meshes, SA and SB, compute their smallest AABBs denoted as
BoxA and BoxB, respectively, and then calculate the intersection BoxAB of BoxA and BoxB
(BoxAB = BoxA∩BoxB); check each triangle of SA and SB whether it is outside of the volume
BoxAB, and divide SA and SB into two sub-arrays where SAout + SAin = SA, SBout + SBin = SB;
and then extend the volume BoxAB into a cube to be an AABB for the triangles from both
SAin and SBin (SAin∪SBin).

To construct the octree, we begin with a bounding cube as the root node. This root
node is then recursively subdivided into eight octants, creating a hierarchical structure. At
each interior node of the octree, we keep track of the number of triangles that intersect it
from two different sets, denoted as Na and Nb, corresponding to the triangles from SAin and
SBin, respectively. The recursion process continues until certain termination conditions are
met, at which point a node becomes a leaf node. The termination conditions are as follows:

(1) The depth of the node reaches a user-specified maximum depth;
(2) Both Na and Nb less than a given allowable number;
(3) Na or Nb is zero.

To determine whether a triangle from either SAin or SBin is contained within a node
of the octree, a straightforward approach is to conduct an intersection test between the
bounding box of the triangle and the node of the octree. If the bounding box and the
node intersect, it can be inferred that the triangle is inside the node. It is important
to note that a triangle may intersect multiple nodes within the octree. To mitigate the
computational cost of calculating the bounding box for each triangle individually, we
optimize the process by precomputing the bounding boxes for all triangles in SAin and SBin
beforehand. By calculating these bounding boxes in advance, we can reuse them when
necessary, eliminating the need for repeated computations during the intersection tests.

2.3.2. Intersecting of Triangles and Re-Triangulating

The intersection of triangles is a task that has been extensively studied, and Möller [48]
has developed a robust and efficient algorithm along with its corresponding code for
this purpose. In this paper, we directly utilize Möller’s work as our chosen method for
performing triangle intersection calculations.

Given the scenario where a substantial number of triangle pairs require intersection
calculations, it becomes crucial to employ an effective parallel strategy. In this step, the
intersection calculation for each pair of triangles is independent, enabling us to utilize the
OpenMP API [49] to parallelize the computations.

#pragma omp parallel for
for each pair of triangles pi {

Calculate the intersection of pi;
Save the intersection edge of pi if it exists;

}

Once the intersection calculation for all triangle pairs is completed, it is common
for individual intersected triangles to contain multiple intersection edges within them.
This occurs because a triangle may intersect with several other triangles, resulting in the
division of the original triangle into multiple sub-polygons along these intersection edges.
To generate these sub-polygonal faces for a given triangle, denoted as Ti, we follow a series
of steps. First, we identify all the intersection edges associated with Ti. Then, we connect
these edges to form one or more open or closed loops. Finally, we iteratively divide the

Mathematics 2023, 11, 2713 7 of 20

newly formed polygons using any remaining unused intersection loops until all loops of Ti
are utilized. This process is illustrated in Figure 2.

(a) (b) (c) (d)

0L

1L

2L

0P 1P
0P

1P

2P

3PA

B

C

Figure 2. Intersected triangle and the re-triangulation. (a) A triangle and its edge-loops. (b) Original
triangle divided into 2 polygons. (c) Original triangle divided completely. (d) Triangular partition of
the sub-polygons.

As mentioned above, the resulting polygonal faces from the intersection of triangles
need to be decomposed into triangles for easier manipulation of the surface mesh in
subsequent steps. This can be achieved using an ear-clipping algorithm [50]. However,
before applying the ear-clipping algorithm, it is necessary to perform some preprocessing
steps due to its validity for planar and counter-clockwise polygons. The partitioning of a
polygon P into triangles can be obtained through the following three steps:

Step 1: Compute the local coordinate system of P and transform P into its local
representation, denoted as P′;

Step 2: Determine the orientation of P′ by evaluating the order of its vertices as either
counterclockwise (CCW) or clockwise (CW). If the orientation is CW, reverse the order of
vertices in P′ to ensure it is CCW;

Step 3: Generate the polygon triangulation T′ of P′ via ear-clipping and then directly
obtain T for P according to P′, because the topologies of T and T′ are exactly the same
while the coordinates of vertices differ (Figure 2d).

2.3.3. Merging and Updating

After intersecting pairs of triangles, new vertices are generated, and the original
intersected triangles are replaced with re-triangulated triangles. To ensure a valid topology
for subsequent operations, the surfaces need to be merged and updated. The following
steps are performed to achieve this:

(1) All vertices are merged and renumbered;
(2) The vertex indexes are updated for each triangle and loop;
(3) Each triangle and loop are checked to identify if there are any vertices with the same index;
(4) The newly generated triangles are reversed (Figure 3).

After the clearing process, several requirements need to be satisfied: there should be
no duplicate vertices, no degenerate triangles, no identical vertices within a loop, and no
duplicate edges.

Apart from merging and renumbering vertices, clearing the topology is essential for
subsequent procedures such as connecting loops and creating sub-surfaces. In Figure 3,
(a) represents the original triangular meshes with three invalid faces that share edges with
their adjacent triangles, while (b) shows the cleared version after addressing these issues.

Mathematics 2023, 11, 2713 8 of 20

0T

1T

2T
0T

1T

2T

(a) (b)

Figure 3. Clear the topology of triangular meshes. (a) Original meshes with invalid triangles T0, T1,
and T2. (b) Cleared meshes without same edges.

2.3.4. Forming Intersection Loops

As defined in Section 2.2, Oriented loop is a set of connected directed edges, which can
be closed as a cycle or open as a polyline. An open loop is an intersection loop in which
either the first or the last vertex is shared only by one intersection edge, while each of the
other vertices is shared by two edges. A close loop is an intersection loop in which each
vertex is shared by at least two intersection edges. We classify the closed intersection loops
into hard closed and soft closed:

Hard closed loop is characterized by each vertex being shared exclusively by two
intersection edges. For example, Figure 4a exhibits six instances of hard closed loops.

Soft closed loop is identified by the first and last vertices being shared by more than
two intersection edges, while each intermediate vertex is shared by two edges. Figure 4b
illustrates four occurrences of soft closed loops.

Only closed intersection loops, which include both hard closed and soft closed loops,
are eligible for the creation of sub-surfaces, as mentioned in Section 2.3.5. Loops, whether
closed or open, can be formed by directly connecting the head of one edge with the tail of
another edge, or vice versa. The process of assembling these loops continues until no more
connected edges can be found. The resulting closed or open loops can be visualized as a
collection of edges and can also be represented as an ordered set of vertices. When working
with an original surface, multiple loops may be present. To determine whether a loop is closed
or open, one simply needs to compare the head of the first edge with the tail of the last edge.

(a) (b)
Figure 4. Illustration of the closed intersection loops. (a) Hard closed loop. (b) Soft closed loop.

2.3.5. Creating Sub-Surfaces

Assuming that there is at least one closed loop in the original surface, the process
of creating sub-surfaces begins by selecting a closed loop. Each sub-surface consists of
the closed loop and the triangles that are incident to it. The edges of the closed loop are
designated as the advancing edge front, which gradually expands or “grows” until the
number of faces in the sub-surface no longer increases. The growth of the advancing edge
front is guided by the topology of the updated surface. To determine the next face in the
growing process, a search is performed among the incident faces of the advancing front

Mathematics 2023, 11, 2713 9 of 20

edge. After each growth step, all advancing front edges must be updated to prepare for
the subsequent expansion until a complete sub-surface is formed. The growing process
continues until all closed loops have been utilized, at which point the growth terminates
(refer to Algorithm 1).

Algorithm 1 Create Sub-surfaces from Closed Loops

Input: A set of closed loops stored in m_aLoops and a triangular surface S
Output: A set of sub-surfaces stored in m_aSurfs

1: for loop Li in m_aLoops do
2: create a new empty surface newS f ;
3: copy and add Li as a boundary loop into newS f ;
4: while the number of triangles of newS f increases do
5: for edge ej of loop Li do
6: let egHead and egTail be the first and second vertices of ej;
7: for triangle Tk in m_aTrgls do
8: let nID[3] denote the 3 vertices of Tk;
9: if (nID[1] = egHead and nID[0] = egTail) or (nID[2] = egHead and

nID[1] = egTail) or (nID[0] = egHead and nID[2] = egTail) then
10: add 3 edges of Tk into loop Li as new advancing front;
11: add triangle Tk into newS f ; break;
12: end if
13: end for
14: update loop Li by removing any pair of opposite edges;
15: end for
16: end while
17: add newS f into m_aSurfs;
18: end for

In general, an original surface can give rise to multiple sub-surfaces, which can be
classified as either public or private.

Definition 4. Private sub-surface: a sub-surface is considered private when it contains only one
closed loop. In this case, the sub-surface is exclusively owned by that loop.

Definition 5. Public sub-surface: a sub-surface is deemed public when it contains more than one
closed loop. In such instances, multiple closed loops share the same sub-surface. It is worth noting
that if a public sub-surface is generated from an original open surface, it must also include a closed
boundary loop in addition to the intersecting closed loop(s).

Definition 6. Sub-surface owner: the sub-surface owner refers to either the single closed loop that
possesses a private sub-surface or the collection of multiple closed loops that share a public sub-surface.

Remark 1. There can be no more than one public sub-surface present.

Remark 2. There is always at least one private sub-surface in the overall structure.

2.3.6. Assembling and Distinguishing Sub-Blocks

(1) Assembling All Possible Sub-Blocks

After intersecting two original surfaces, SA and SB, a set of sub-surfaces is obtained.
Let us consider a sub-surface, SS, from the original surface SA, which consists of n closed
loops denoted as Li (i = 0, . . . , n− 1). This implies that there are n owners who share the
sub-surface SS. If we can identify n private surfaces from the original surface SB, with each
private sub-surface solely owned by the corresponding closed-loop Li, it becomes possible
to assemble a sub-block. This sub-block comprises the sub-surface SS from surface SA and
the n private surfaces from surface SB. The process of assembling sub-blocks is detailed

Mathematics 2023, 11, 2713 10 of 20

in Algorithm 2. Furthermore, several conclusions can be drawn regarding the assembly
of sub-blocks.

Algorithm 2 Create Sub-blocks From Sub-surfaces

Input: A set of sub-surfaces stored in m_aSurfs
Output: A set of sub-blocks stored in m_aBlocks

1: while all sub-surfaces in m_aSurfs are not tested completely do
2: find a untested sub-surface startSS as the starting one;
3: set startSS as being tested;
4: if startSS is a public sub-surface with boundary loop(s) then
5: continue;
6: end if
7: create a new empty sub-block newBlk;
8: add startSS into newBlk;
9: for the ith closed loop Li in startSS do

10: for each sub-surface SSi in m_aSurfs do
11: if (SSi is untested and also owned only by Li) and (SSi and startSS not come

from same surface) then
12: set SSi as being tested;
13: add SSi into newBlk; break;
14: end if
15: end for
16: end for
17: add newBlk into m_aBlocks;
18: end while

Remark 3. A private sub-surface can be utilized either once or twice in the process of assembling sub-blocks.

Remark 4. A public sub-surface, which does not include a boundary loop, can also be employed
once or twice in the assembly of sub-blocks.

Remark 5. A public sub-surface that includes a boundary loop, generated from an original open
surface, cannot be used to assemble sub-blocks. This is due to the inability to find a sub-surface that
is also owned by the boundary closed loop in the intersected original surface.

(2) Distinguishing

Based on Algorithm 2, we can generate all possible sub-blocks. Now, the question
arises: given two blocks BA and BB (Figure 5a), how do we differentiate between their
union, intersection, and subtraction? To address this problem, we have developed a novel
and straightforward method, which is outlined in Figure 6. The specific flow of this method
is presented to provide a solution.

Step 1: To determine the non-subtraction (union and intersection) between blocks, we
rely on the orientation of closed intersection loops during the assembly of sub-blocks.

However, at this stage, we can only identify whether sub-blocks are subtracted; we
cannot clearly distinguish whether they form a union or intersection.

Let us consider a sub-block SB, which consists of a total of n closed loops denoted
as Li (i = 0, . . . , n − 1). Each closed loop Li has two opposing versions: L+

i represents
the loop with its original orientation, while L−i represents the loop with the same vertices
as L+

i but with the opposite orientation (as illustrated in Figure 7). These two loops, L+
i

and L−i , are referred to as twins in Section 2.2. The loop Li either owns or shares two
sub-surfaces, denoted as SSA

Li
and SSB

Li
, originating from two different original surfaces, SA

and SB, respectively. To determine the sub-block SB, we can apply the following conditions:
Case 1: if SSA

Li
and SSB

Li
are owned or shared by L+

i and L−i , respectively, or if SSA
Li

and
SSB

Li
are owned or shared by L−i and L+

i , respectively, then the sub-block SB is union or
intersection volume.

Mathematics 2023, 11, 2713 11 of 20

Case 2: if both SSA
Li

and SSB
Li

are owned or shared by L+
i , or if both SSA

Li
and SSB

Li
are

owned or shared by L−i , then the sub-block SB is subtraction volume.

(a)

(b)

BA∪ B B BA － BBBA ∩ B B BB － BA

(c)
Figure 5. Boolean operations of a pair of blocks. (a) Original triangular blocks. (b) Sub-surfaces.
(c) Sub-blocks.

Union / Intersection Subtraction

Yes

Union

Yes

Intersection

 and are

in opposite directions

i i

A B

L LSS SS

max max

min min

 and

SB Total

SB Total

N N

N N

Obtain subsurface and

 /subblock SB

i i

A B

L LSS SS

Given two blocks

 B and BA B

The outer surface of the

sub-block belongs to BA

The inner surface of the

sub-block belongs to BA

B BA B B BB A B BA BB BB A

No

Yes Yes NoNoNo

Figure 6. A flowchart of the proposed method for determining whether a sub-block is a union, an
intersection, or a subtraction.

Mathematics 2023, 11, 2713 12 of 20

Figure 7. Opposite loops and their owned or shared sub-surfaces.

Step 2: To distinguish between the union and intersection operations, we follow the
following approach.

As previously mentioned, we denote (BA∪BB), (BA∩BB), (BA−BB), and (BB−BA)
as the union, intersection, and subtraction operations between a pair of blocks BA and
BB. It is evident that the relationship (BA∩BB) ≤ (BA∪BB) holds. The exception to this
relationship occurs only when BA and BB coincide, which can be identified and addressed
separately, and thus does not need to be considered at this stage. Consequently, we conclude
that (BA∩BB) < (BA∪BB). The aforementioned result establishes that the intersection
operation between two blocks is consistently smaller in size than their corresponding union
operation. Furthermore, it indicates that the minimum coordinates of all vertices within
the intersection are never smaller than those of the union, while the maximum coordinates
of the intersection are never larger than those of the union. Consequently, the minimum
and maximum coordinates of the vertices obtained from both the union and intersection
are precisely equal to those derived solely from the union.

Thus, we can distinguish the union and the intersection by following three sub-procedures.
Step 2-1: By sorting all vertices, we can easily obtain the maximum and minimum

coordinates of both the intersection and union, denoted as NTotal
max and NTotal

min , respectively,
(Figure 6). These coordinates can be stored during the merging and updating of vertices.

Step 2-2: To identify the union volume, we compare the maximum and minimum
coordinates of each candidate union sub-block, denoted as NSB

max and NSB
min, respectively

(Figure 6). If these coordinates match the values obtained in Step 2-1, then it signifies the
presence of only union volume (Figure 5c).

Step 2-3: The remaining sub-block(s) are considered to be the intersection volume
(Figure 5c).

It is important to note that these procedures are not applicable in special cases where
mesh BA is contained within BB or vice versa. These exceptional cases should be handled
separately during the preprocessing stage.

Step 3: Determine all subtractions
After classifying the union and intersection, the subtractions (BA−BB) and (BB−BA)

can be easily determined: define all sub-surfaces that comprise the only union volume
as outer ones, while those from the intersection volume(s) as inner, for each undistin-
guished sub-block,

(1) Identify the sub-surfaces within the sub-block. If any of the sub-surfaces belong to
the original block BA and are classified as outer surfaces, then the sub-block is considered
as part of the (BA−BB) subtraction operation. Otherwise, if the sub-surfaces belong to the
original block BB and are classified as outer surfaces, the sub-block is considered as part of
the (BB−BA) subtraction operation.

(2) Similarly, if any of the sub-surfaces within the sub-block are classified as inner
surfaces (part of the intersection volume), and they belong to the original block BA, then
the sub-block is considered as part of the (BB−BA) subtraction operation. Conversely, if the

Mathematics 2023, 11, 2713 13 of 20

inner sub-surface(s) belong to the original block BB, the sub-block is considered as part of
the (BA−BB) subtraction operation.

After distinguishing the subtractions, all triangles within the inner sub-surfaces of
the subtraction operations are reversed. This ensures a valid topology for the entire mesh
model and ensures that the normals of all facets are oriented outward.

3. Results

As outlined in Section 1, our objective is to execute Boolean operations on a pair of
surfaces. These surfaces can either be open or closed. In this section, we demonstrate the
Boolean operations for various pairs of surfaces, encompassing open-and-open scenarios
(Figure 8), open-and-closed scenarios (Figures 9 and 10), as well as closed-and-closed sce-
narios (Figures 11 and 12). Through these examples, we aim to showcase the effectiveness
of our approach.

The intersection of a pair of open triangulated surfaces is tested in Figure 8. Before
considering the boundary outer loops of the original surfaces, four open intersection loops
can be formed for each surface, and then the boundary loop is divided into five closed
loops; therefore, five corresponding sub-surfaces can be created for each surface.

(a) (b)
Figure 8. Intersection of a pair of open surfaces. (a) Original open surfaces. (b) Sub-surfaces.

Figure 9. A planar mesh and Chinese lion before dividing.

Figure 10. A planar mesh and Chinese lion after dividing.

Mathematics 2023, 11, 2713 14 of 20

To evaluate the Boolean operations between an open surface and a closed surface, we
conduct a division of a planar meshed surface using a triangulated Chinese lion model. The
Chinese lion model (Figure 9) is sourced from http://shapes.aim-at-shape.net/, accessed
on 1 June 2013. As depicted in Figure 9, three closed loops can be identified in both the
Chinese lion and the surface. Figure 10 illustrates the division results, where four sub-
surfaces are generated for each original surface, and the lion model is partitioned into
four sub-blocks. These outcomes demonstrate the successful execution of the Boolean
operations and the creation of distinct sub-surfaces and sub-blocks.

To test the Boolean operations on two closed surfaces, we provide examples of such
operations using a pair of cylinders (Figure 11) and a pair of toruses (Figure 12). When
computing the intersection edges of triangles for the cylinders, we observe the formation
of four soft closed intersection loops (as defined in Section 2.3.4). These soft closed loops
exhibit the characteristic that both the first and last vertices are shared by four intersection
edges. Utilizing these soft closed loops, we can create four sub-surfaces for each cylinder
and subsequently assemble and distinguish sub-blocks, including union, intersection, and
subtractions, based on the sub-surfaces. Figure 12 illustrates the Boolean operations per-
formed on a pair of toruses with identical inner radii. The process is similar to that of the
cylinders but slightly more intricate. In these examples, only soft closed loops are generated.
However, Figure 5 provides a simple example where hard closed loops are obtained.

(a) (b) (c)

(d) (e)
Figure 11. Boolean operations of a pair of cylinders. (a) Original cylinders. (b) Sub-surfaces of a
cylinder. (c) Intersection. (d) Union. (e) Subtractions.

http://shapes.aim-at-shape.net/

Mathematics 2023, 11, 2713 15 of 20

(a) (b) (c)

(d)
Figure 12. Boolean operations of a pair of torus. (a) Original pair of torus. (b) Union. (c) Intersection.
(d) Subtractions.

4. Discussion
4.1. Comparative Analysis with Other Methods
4.1.1. Advantages of the Proposed Algorithm

This paper presents a straightforward and reliable algorithm for conducting Boolean
operations on manifold triangulated surfaces, while the algorithm does not account for
self-intersecting meshes, it demonstrates its effectiveness in handling diverse types of
triangulated surfaces. The proposed algorithm offers several notable advantages, including
simplicity, improved computational efficiency, and enhanced robustness. It introduces
a dependable approach for executing Boolean operations and finds applicability across
various scenarios involving triangulated surfaces. The subsequent analysis provides a com-
prehensive comparison highlighting the specific improvements achieved by the proposed
algorithm in contrast to commonly employed algorithms.

(1) The proposed algorithm offers reduced computational effort and improved compu-
tational efficiency for Boolean operations on geometric models. Traditionally, obtaining
the intersection lines and intersection rings of intersecting entities is a crucial step. In this
paper, an octree-based method is employed to locate and search intersecting triangle pairs,
while a parallel algorithm is used to compute the intersection lines of these pairs.

Compared to algorithms based on BSP [19], the octree algorithm addresses the effi-
ciency problem caused by unnecessary partitioning during BSP tree construction. Addition-
ally, the octree algorithm overcomes the limitation of BSP trees, which can only perform
Boolean operations on two models. The proposed method leverages the octree algorithm
to reduce the overall computational effort required for Boolean operations when obtaining
candidate intersecting triangle pairs of triangulated surfaces. Furthermore, the use of a
parallel algorithm enhances the computational efficiency when calculating the intersection
lines of intersecting triangle pairs.

(2) The proposed algorithm enhances the robustness of Boolean operations by ad-
dressing the correct assembly and differentiation of merge, subtraction, and intersection
regions in intersecting models. Once the intersection lines of triangulated surfaces are

Mathematics 2023, 11, 2713 16 of 20

obtained, the subsequent task is to accurately determine these regions. In this paper, a solid
index-based method is introduced to create sub-surfaces, sub-blocks, and other entities
by manipulating the mesh topology through elimination and updates. Building upon this
approach, the direction of directed rings on the newly generated sub-surfaces is utilized
to identify the merge, intersection, and subtraction regions resulting from the Boolean
operation. A previously proposed method, called BoolSurf, by Riso et al. [51], enables
Boolean operations between shapes bounded by freely intersecting curves on any surface,
including open surfaces. However, BoolSurf relies on standard floating-point arithmetic,
which introduces numerical approximation errors during computation. Additionally, it
employs traditional inner and outer classification methods to distinguish the outcomes of
merging, intersecting, and subtracting operations.

In contrast, our method improves the Boolean operation process by introducing an
entity index-based approach that eliminates the need for coordinate calculations, thereby
avoiding numerical approximation errors and enhancing the robustness of Boolean oper-
ations. Moreover, the entity index-based method is employed to accurately differentiate
between merge, intersection, and subtraction regions, eliminating the requirement for
an extensive point or face calculations based on the position of the entity model using
traditional classification methods of inner and outer regions.

(3) The proposed method achieves a balance between computational efficiency and
computational accuracy. The widely recognized computational geometry library CGAL
utilizes rational number arithmetic for exact computations, ensuring high robustness by
avoiding rounding errors in floating-point arithmetic [43,52]. However, the reliance on
rational number arithmetic introduces complexity to the computation process. Additionally,
CGAL requires the input model to be converted to Nef polygons, which involves a complex
data structure and imposes a substantial memory footprint at runtime [53].

In contrast, our method improves upon the necessity of rational number arithmetic for
computing intersection coordinates, thereby enhancing robustness. Instead of relying on
rational number arithmetic, we employ the entity indexing method for Boolean operations.
Notably, our method does not impose any additional requirements on the input model and
avoids the need for excessive preprocessing. As a result, our approach strikes a favorable
balance between computational efficiency and computational accuracy.

(4) The proposed algorithm extends the range of geometric models to which Boolean
operations can be applied. Diazzi et al. [38] introduced a method that utilizes indirect
geometric predicates to generate a convex polyhedral mesh representing the internal
volume of a triangular input surface. This method explicitly defines the solid model
based on the geometric properties of the input polygons. Employing an implicit approach
avoids the need for coordinate calculations during Boolean operations and minimizes the
occurrence of numerical approximation errors. However, this method is limited in its ability
to handle Boolean operations on open surfaces.

In contrast to the Boolean method based on indirect geometric predicates proposed
by Diazzi et al. [38], our proposed method is not restricted to specific surface types or
combinations. The algorithm we present is effective and applicable regardless of whether
it involves open surfaces, closed surfaces, or a combination of both. This versatility is
particularly valuable in fields such as computational and aided design, computer graphics,
and numerical simulation, where complex geometric processing and analysis are required.
By extending the applicability of Boolean operations to a wider range of geometric models,
our method offers increased flexibility and utility in various domains.

4.1.2. Disadvantages of the Proposed Algorithm

Although the triangulated surface Boolean algorithm proposed in this paper shows
good robustness in handling various types of flow triangulated surfaces, it is necessary to
acknowledge its drawbacks and challenges.

(1) The proposed method introduces a complex data structure and involves numerous
judgments and checks during the computation process. In contrast to the floating-point

Mathematics 2023, 11, 2713 17 of 20

arithmetic-based method BoolSurf [51], the entity index-based Boolean operation presented
in this paper necessitates the construction and management of intricate data structures to
represent surface relationships. Consequently, this leads to computational and memory
overheads. Although coordinate computation is not required for creating sub-surfaces and
sub-blocks, determining the merge, intersection, and subtraction regions of the model after
Boolean operations entail a substantial amount of judgment and checking.

(2) The proposed method has difficulties in dealing with models with defective inputs.
In comparison to Boolean methods based on indirect geometric predicates [38], the entity
index-based approach may encounter difficulties when dealing with complex geometric
scenarios or inputs that contain defects. These defects include self-intersecting surfaces,
non-manifold surfaces, and surfaces with voids or gaps. Ensuring the correctness of
Boolean operations in such cases may require additional processing and repair steps. These
additional steps introduce complexity and implementation challenges to the algorithm.

(3) The entity index-based Boolean operation method may face performance and
scalability challenges as the size of geometric data increases. When dealing with high-
resolution grids, the proposed method requires significant memory and computational
resources for constructing and maintaining data structures. The judgment and checking
processes performed on a large number of triangular surfaces contribute to increased
execution time. To address performance challenges, researchers have proposed various
techniques. For instance, Cherchi et al. [33] introduced an improved mesh arrangement
method and a new internal and external classification system based on exact ray projection.
This approach aimed to enhance the efficiency of triangular mesh Boolean operations,
particularly for interactive applications. However, it still exhibits limitations when applied
to very high-resolution meshes, typically exceeding 200K triangles. In light of the rapid
development of computer technology, parallel strategies utilizing multicore GPUs hold
significant potential in improving computational efficiency. For example, Xiao et al. [54]
developed a multi-core GPU-based triangle intersection algorithm capable of detecting
around 1.5 billion triangle pairs in less than 0.5 s.

4.2. Outlook and Future Work

Boolean operations on triangulated surfaces play a crucial role in computer-aided
design, computer vision and graphics, and numerical simulation. These operations enable
the manipulation of complex geometries by performing merging, intersection, and subtrac-
tion operations. The application of Boolean operations has a significant impact on various
industries, including aerospace, automotive, architecture, medical, agricultural, and enter-
tainment. By leveraging Boolean operations, designers and engineers can enhance their
design capabilities and create intricate and customized objects. This, in turn, contributes
to improved product design and development processes. Overall, Boolean operations on
triangulated surfaces offer numerous benefits across various fields, enabling advanced
design capabilities, cost-effective manufacturing processes, sophisticated simulations, and
a deeper understanding of real-world phenomena.

Although the proposed algorithm in this paper exhibits good robustness, it also has
some limitations and areas for further improvement. In future research, the focus will be on
enhancing the proposed method by simplifying the data structure and reducing the com-
putational overhead caused by numerous judgments and checks, while still maintaining
the robustness of Boolean operations. Additionally, further research is needed to address
specific challenges associated with trigonometric surfaces, such as complex topological
relationships, self-intersections, defects, and other special cases that commonly occur in
practical applications. Developing strategies to handle these scenarios will enhance the
algorithm’s versatility and make it more applicable in real-world situations.

Furthermore, it is crucial to explore the integration of the proposed algorithms with
existing efficient data structures, parallel algorithms, and optimization techniques. This
integration can significantly improve the computational efficiency and scalability of the al-
gorithm, particularly when dealing with large-scale triangulated surfaces or high-resolution

Mathematics 2023, 11, 2713 18 of 20

models. The ability to process such data in real-time and interactive applications is essential
for practical implementation.

In conclusion, future research endeavors will focus on simplifying the algorithm,
addressing complex geometric scenarios, and integrating it with efficient data structures,
parallel algorithms, and optimization techniques. These advancements will contribute to
improving the overall performance and scalability of the proposed method, thus enhancing
its applicability in various domains.

5. Conclusions

This paper presents simple and robust algorithms for Boolean operations in geometric
modeling. The proposed algorithms are validated using various pairs of surfaces, including
open–open, open–closed, and closed–closed cases. Our approach utilizes exact arithmetic
methods for computation and employs octree for efficient triangle location and intersection
detection. Furthermore, a parallel algorithm is utilized to calculate the intersection lines of
triangles. We classify intersection loops into open, hard closed, and soft closed categories, and
use them to create sub-surfaces by expanding from the closed intersection loops. Sub-blocks
are then easily assembled based on the boundary loops of sub-surfaces and distinguished
by comparing the minimum and maximum coordinates of the updated vertices.

Our approach consists of two stages. The first stage involves calculating intersection
lines for triangles and subsequently merging and updating the resulting surfaces. This
stage requires coordinate calculations to handle geometric entities. In the second stage,
we focus on forming intersection loops, creating sub-surfaces, assembling sub-blocks, and
distinguishing between them. Unlike the first stage, this stage operates solely on the cleared
and updated topology of triangular meshes without involving coordinate computations
of geometric entities. We have demonstrated the effectiveness of our approach through
several test examples.

While the proposed triangular surface Boolean algorithm demonstrates robustness in
handling a wide range of triangular surfaces without self-intersection, such as open and
closed surfaces, it may encounter challenges when dealing with complex geometric prob-
lems or defective inputs. Additionally, as geometric data scales up, Boolean methods based
on entity indexes may experience performance and scalability issues. Future research will
focus on addressing Boolean operations for triangulated surfaces with complex topological
relations, self-intersections, defects, and other special cases. This will involve incorporating
efficient data structures, parallel computing, and optimization algorithms to enhance the
computational efficiency and scalability of the proposed algorithms.

Author Contributions: Conceptualization, G.M. and J.C.T.; methodology, G.M. and J.C.T.; software,
G.M. and J.C.T.; validation, G.M. and J.C.T.; formal analysis, G.M. and J.C.T.; investigation, M.Z.,
J.Q., and G.M.; resources, M.Z. and G.M.; data curation, G.M. and J.C.T.; writing—original draft
preparation, M.Z., J.Q., and G.M.; writing—review and editing, M.Z. and G.M.; visualization, M.Z.
and G.M.; supervision, G.M.; project administration, G.M.; funding acquisition, G.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by the PhD scholarship of the China Scholarship Council (CSC).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the editor and the reviewers for their contributions.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2023, 11, 2713 19 of 20

Abbreviations
B-Rep Boundary Representation
NURBS Non-uniform Rational Basis Spline
BSP Binary Space Partitions
OBB Oriented Bounding Box
CGAL Computational Geometry Algorithms Library
GPU Graphics Processing Unit
AABB Axially Aligned Bounding Box
CCW Counter-Clockwise
CW Clockwise

References
1. Hoffmann, C. Geometric and Solid Modeling; Morgan Kaufmann: San Mateo, CA, USA, 1989.
2. Xu, N.; Tian, H. Wire frame: A reliable approach to build sealed engineering geological models. Comput. Geosci. 2009,

35, 1582–1591. [CrossRef]
3. Young, G. Multi-Level Voxel Representation for GPU-Accelerated Solid Modeling. Ph.D. Thesis, Iowa State University, Ames, IA,

USA, 2017.
4. Zaharescu, A.; Boyer, E.; Horaud, R. Topology-adaptive mesh deformation for surface evolution, morphing, and multiview

reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 823–837. [CrossRef]
5. Li, Z.; Shan, J. RANSAC-based multi primitive building reconstruction from 3D point clouds. ISPRS J. Photogramm. Remote Sens.

2022, 185, 247–260. [CrossRef]
6. Yin, G.; Xiao, X.; Cirak, F. Topologically robust CAD model generation for structural optimisation. Comput. Methods Appl. Mech.

Eng. 2020, 369, 113102. [CrossRef]
7. Li, B.; Shen, C. Solid Stress-Distribution-Oriented Design and Topology Optimization of 3D-Printed Heterogeneous Lattice

Structures with Light Weight and High Specific Rigidity. Polymers 2022, 14, 2807. [CrossRef]
8. Sharma, V.; Tripathi, A.K.; Mittal, H.; Parmar, A.; Soni, A.; Amarwal, R. WeedGan: A novel generative adversarial network for

cotton weed identification. Vis. Comput. 2022. [CrossRef]
9. Sharma, V.; Tripathi, A.K.; Mittal, H. Technological Advancements in Automated Crop Pest and Disease Detection: A Review &

Ongoing Research. In Proceedings of the 2022 International Conference on Computing, Communication, Security and Intelligent
Systems (IC3SIS), Kochi, India, 23–25 June 2022; pp. 1–6. [CrossRef]

10. Sharma, V.; Tripathi, A.K.; Mittal, H. DLMC-Net: Deeper lightweight multi-class classification model for plant leaf disease
detection. Ecol. Inform. 2023, 75, 102025. [CrossRef]

11. Sharma, G.; Goyal, R.; Liu, D.; Kalogerakis, E.; Maji, S. Neural Shape Parsers for Constructive Solid Geometry. IEEE Trans. Pattern
Anal. Mach. Intell. 2022, 44, 2628–2640. [CrossRef]

12. Wu, C.T.; Yang, Y.H.; Chang, Y.Z. Three-dimensional deep learning to automatically generate cranial implant geometry. Sci. Rep.
2022, 12, 2683. [CrossRef]

13. Sharma, V.; Tripathi, A.K. A systematic review of meta-heuristic algorithms in IoT based application. Array 2022, 14, 100164.
[CrossRef]

14. Sharma, V.; Tripathi, A.K.; Mittal, H. Technological revolutions in smart farming: Current trends, challenges & future directions.
Comput. Electron. Agric. 2022, 201, 107217. [CrossRef]

15. Pavic, D.; Campen, M.; Kobbelt, L. Hybrid booleans. Comput. Graph. Forum 2010, 29, 75–87. [CrossRef]
16. Tayebi, A.; Gómez Pérez, J.; González, D.I.; Cátedra, F. Boolean operations implementation over 3D parametric surfaces to be

included in the geometrical module of an electromagnetic solver. In Proceedings of the 5th European Conference on Antennas
and Propagation (EUCAP), Rome, Italy, 11–15 April 2011; pp. 2137–2141.

17. Yang, P.; Qian, X. Direct boolean intersection between acquired and designed geometry. Comput.-Aided Des. 2009, 41, 81–94.
[CrossRef]

18. Lo, S.; Wang, W. Finite element mesh generation over intersecting curved surfaces by tracing of neighbours. Finite Elem. Anal.
Des. 2005, 41, 351–370. [CrossRef]

19. Campen, M.; Kobbelt, L. Exact and robust (self-)intersections for polygonal meshes. Comput. Graph. Forum 2010, 29, 397–406.
[CrossRef]

20. Schifko, M.; Juttler, B.; Kornberger, B. Industrial application of exact Boolean operations for meshes. In Proceedings of the 26th
Spring Conference on Computer Graphics, Budmerice, Slovakia, 13–15 May 2010; pp. 165–172.

21. Pereira, A.; de Arruda, M.; Miranda, A.; Lira, W.; Martha, L. Boolean operations on multi-region solids for mesh generation. Eng.
Comput. 2011, 28, 225–239. [CrossRef]

22. Smith, J.; Dodgson, N. A topologically robust algorithm for Boolean operations on polyhedral shapes using approximate
arithmetic. Comput.-Aided Des. 2007, 39, 149–163. [CrossRef]

23. Chen, Y. Robust and accurate boolean operations on polygonal models. In Proceedings of the DETC’07, Las Vegas, NV, USA, 4–7
September 2007.

http://doi.org/10.1016/j.cageo.2009.01.002
http://dx.doi.org/10.1109/TPAMI.2010.116
http://dx.doi.org/10.1016/j.isprsjprs.2021.12.012
http://dx.doi.org/10.1016/j.cma.2020.113102
http://dx.doi.org/10.3390/polym14142807
http://dx.doi.org/10.1007/s00371-022-02742-5
http://dx.doi.org/10.1109/IC3SIS54991.2022.9885605
http://dx.doi.org/10.1016/j.ecoinf.2023.102025
http://dx.doi.org/10.1109/TPAMI.2020.3044749
http://dx.doi.org/10.1038/s41598-022-06606-9
http://dx.doi.org/10.1016/j.array.2022.100164
http://dx.doi.org/10.1016/j.compag.2022.107217
http://dx.doi.org/10.1111/j.1467-8659.2009.01545.x
http://dx.doi.org/10.1016/j.cad.2008.12.006
http://dx.doi.org/10.1016/j.finel.2004.07.002
http://dx.doi.org/10.1111/j.1467-8659.2009.01609.x
http://dx.doi.org/10.1007/s00366-011-0228-8
http://dx.doi.org/10.1016/j.cad.2006.11.003

Mathematics 2023, 11, 2713 20 of 20

24. Wang, C. Approximate Boolean operations on large polyhedral solids with partial mesh reconstruction. IEEE Trans. Vis. Comput.
Graph. 2011, 17, 836–849. [CrossRef] [PubMed]

25. Jing, Y.; Wang, L.; Bi, L.; Chen, J. Boolean Operations on Polygonal Meshes Using OBB Trees. In Proceedings of the International
Conference on Environmental Science and Information Application Technology, Wuhan, China, 4–5 July 2009; pp. 619–622.

26. Severn, A.; Samavati, F. Fast intersections for subdivision surfaces. In Proceedings of the 6th International Conference on
Computational Science and Its Applications, Glasgow, UK, 8–11 May 2006; pp. 91–100.

27. Guo, K.; Zhang, L.; Wang, C. Boolean operations of STL models based on loop detection. Int. J. Adv. Manuf. Technol. 2007,
33, 627–633. [CrossRef]

28. Chen, M.; Chen, X.; Tang, K.; Yuen, M. Efficient boolean operation on manifold mesh surfaces. Comput.-Aided Des. Appl. 2010,
7, 405–415. [CrossRef]

29. Landier, S. Boolean operations on arbitrary polygonal and polyhedral meshes. Comput.-Aided Des. 2017, 85, 138–153. [CrossRef]
30. Milenkovic, V.; Sacks, E. Geometric rounding and feature separation in meshese. Comput.-Aided Des. 2019, 108, 12–18. [CrossRef]
31. Hu, Y.; Schneider, T.; Wang, B.; Zorin, D.; Panozzo, D. Fast Tetrahedral Meshing in the Wild. ACM Trans. Graph. 2020, 39, 117.

[CrossRef]
32. Hu, Y.; Zhou, Q.; Gao, X.; Jacobson, A.; Zorin, D.; Panozzo, D. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 2018, 37, 60.

[CrossRef]
33. Cherchi, G.; Pellacini, F.; Attene, M.; Livesu, M. Interactive and Robust Mesh Booleans. ACM Trans. Graph. 2022, 41, 248.

[CrossRef]
34. Mei, G.; Tipper, J.C. Simple and robust boolean operations for triangulated surfaces. arXiv 2013, arXiv:1308.4434.
35. Trettner, P.; Nehring-Wirxel, J.; Kobbelt, L. EMBER: Exact Mesh Booleans via Efficient & Robust Local Arrangements. ACM Trans.

Graph. 2022, 41, 39. [CrossRef]
36. Nehring-Wirxel, J.; Trettner, P.; Kobbelt, L. Fast Exact Booleans for Iterated CSG using Octree-Embedded BSPs. Comput.-Aided

Des. 2021, 135, 103015. [CrossRef]
37. Attene, M. Indirect Predicates for Geometric Constructions. Comput.-Aided Des. 2020, 126, 102856. [CrossRef]
38. Diazzi, L.; Attene, M. Convex polyhedral meshing for robust solid modeling. ACM Trans. Graph. 2021, 40, 259. [CrossRef]
39. Feito, F.R.; Ogayar, C.J.; Segura, R.J.; Rivero, M.L. Fast and accurate evaluation of regularized Boolean operations on triangulated

solids. Comput.-Aided Des. 2013, 45, 705–716. [CrossRef]
40. Gao, Y.; Luo, J.; Hangping, Q.; Tang, B.; Wu, B.; Duan, W. A GPU-based rasterization algorithm for boolean operations on

polygons. IEICE Trans. Inf. Syst. 2018, E101D, 234–238. [CrossRef]
41. Qin, Y.; Luo, Z.; Wen, L.; Feng, C.; Zhang, X.; Lan, M.; Liu, B. Research and application of Boolean operation for triangular mesh

model of underground space engineering—Boolean operation for triangular mesh model. Energy Sci. Eng. 2019, 7, 1154–1165.
[CrossRef]

42. Wang, H.; Kan, S.; Zhang, X.; Lu, X.; Zhou, L. Robust Boolean operations algorithm on regularized triangular mesh and
implementation. Multimed. Tools Appl. 2018, 79, 5301–5320. [CrossRef]

43. The CGAL Project. 2012. Available online: http://www.cgal.org/ (accessed on 1 June 2013).
44. Cignoni, P.; Callieri, M.; Corsini, M. MeshLab: An open-source mesh processing tool. In Proceedings of the 6th Eurographics

Italian Chapter Conference, Salerno, Italy, 2–4 July 2008.
45. Mobius, J.; Kobbelt, L. OpenFlipper: An open source geometry processing and rendering framework. In Proceedings of the 7th

International Conference on Curves and Surfaces, Avignon, France, 24–30 June 2010; pp. 488–500.
46. Lavoue, G.; Tola, M.; Dupont, F. MEPP-3D mesh processing platform. In Proceedings of the International Conference on

Computer Graphics Theory and Applications(GRAPP), Rome, Italy, 24–26 February 2012.
47. Ericson, C. The Internet of Things: A Survey; Morgan Kaufmann: San Francisco, CA, USA, 2005.
48. Moller, T. A fast triangle-triangle intersection test. J. Graph. Tools 1997, 2, 25–30. [CrossRef]
49. OpenMP. Available online: http://www.openmp.org/ (accessed on 1 June 2013).
50. Held, M. FIST: Fast industrial-strength triangulation of polygons. Algorithmica 2001, 30, 563–596. [CrossRef]
51. Riso, M.; Nazzaro, G.; Puppo, E.; Jacobson, A.; Zhou, Q.; Pellacini, F. BoolSurf: Boolean Operations on Surfaces. ACM Trans.

Graph. 2022, 41, 247. [CrossRef]
52. Wang, B.; Mei, G.; Xu, N. Method for generating high-quality tetrahedral meshes of geological models by utilizing CGAL.

MethodsX 2020, 7, 101061. [CrossRef] [PubMed]
53. Hachenberger, P.; Kettner, L.; Mehlhorn, K. Boolean operations on 3D selective Nef complexes: Data structure, algorithms,

optimized implementation and experiments. Comput. Geom. 2007, 38, 64–99. [CrossRef]
54. Xiao, L.; Mei, G.; Cuomo, S.; Xu, N. Comparative investigation of GPU-accelerated triangle-triangle intersection algorithms for

collision detection. Multimed. Tools Appl. 2020, 8, 3165–3180. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TVCG.2010.106
http://www.ncbi.nlm.nih.gov/pubmed/20714023
http://dx.doi.org/10.1007/s00170-006-0487-5
http://dx.doi.org/10.3722/cadaps.2010.405-415
http://dx.doi.org/10.1016/j.cad.2016.07.013
http://dx.doi.org/10.1016/j.cad.2018.10.003
http://dx.doi.org/10.1145/3386569.3392385
http://dx.doi.org/10.1145/3197517.3201353
http://dx.doi.org/10.1145/3550454.3555460
http://dx.doi.org/10.1145/3528223.3530181
http://dx.doi.org/10.1016/j.cad.2021.103015
http://dx.doi.org/10.1016/j.cad.2020.102856
http://dx.doi.org/10.1145/3478513.3480564
http://dx.doi.org/10.1016/j.cad.2012.11.004
http://dx.doi.org/10.1587/transinf.2017EDL8119
http://dx.doi.org/10.1002/ese3.335
http://dx.doi.org/10.1007/s11042-018-6479-2
http://www.cgal.org/
http://dx.doi.org/10.1080/10867651.1997.10487472
 http://www.openmp.org/
http://dx.doi.org/10.1007/s00453-001-0028-4
http://dx.doi.org/10.1145/3550454.3555466
http://dx.doi.org/10.1016/j.mex.2020.101061
http://www.ncbi.nlm.nih.gov/pubmed/33005570
http://dx.doi.org/10.1016/j.comgeo.2006.11.009
http://dx.doi.org/10.1007/s11042-020-09066-3

	Introduction
	The Proposed Method
	Overview
	Data Structure and Notation
	Details of the Proposed Method
	Searching Intersected Triangle Pairs
	Intersecting of Triangles and Re-Triangulating
	Merging and Updating
	Forming Intersection Loops
	Creating Sub-Surfaces
	Assembling and Distinguishing Sub-Blocks

	Results
	Discussion
	Comparative Analysis with Other Methods
	Advantages of the Proposed Algorithm
	Disadvantages of the Proposed Algorithm

	Outlook and Future Work

	Conclusions
	References

