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Abstract: This paper is devoted to investigating a class of neutral-type integral differential equations
arising in an epidemic model. By using Mawhin’s continuation theorem and the properties of neutral-
type operators, we obtain the existence conditions for positive periodic solutions of the considered
neutral-type integral differential equation. Compared with previous results, the existence conditions
in this paper are less restricted, thus extending the results of the existing literature. Finally, two
examples are given to show the effectiveness and merits of the main results of this paper. Our
results can be used to obtain the existence of a positive periodic solution to the corresponding
non-neutral-type integral differential equation.
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1. Introduction

In this paper, we consider the following two classes of neutral-type integral differential
equations arising in an epidemic model:

u(t) = au(t− σ) + b
∫ t

t−σ
f (s, u(s), u′(s))ds (1)

and

u(t) = au(t− τ(t)) + b
∫ t

t−τ(t)
f (s, u(s), u′(s))ds. (2)

For Equation (1), u(t) represents the population of infectious individuals at time t,
a > 0 is the effective contraction rate, b ∈ R represents the impact rate of the external
environment, f (t, u(t), u′(t)) ∈ C(R×R+×R, (0, ∞)) is the instantaneous rate of infection,
and f (t, u(t), u′(t))dt is the fraction of individuals infected within the period [t, t + dt]. The
constant delay σ can be interpreted as the duration of an infection. The number of all
infected individuals is the total number of infections between t− σ and t. The meanings
of u, a, b and f in Equation (2) are similar to the corresponding ones in Equation (1). The
time-varying delay τ(t) ∈ C1(R,R) is a ω−periodic function that represents the duration
of infectivity, and the number of all infected individuals is the total number of infections
between t− τ(t) and t. Time delay is an inherent feature of the equation and becomes
one of the main sources for causing existence and stability. Particularly, when the delay is
a constant, Equation (1) is equivalent to Equation (7), and we can use Lemma 1 to study
Equation (7). In addition, when the delay is time-varying, Equation (2) is equivalent to
Equation (30), and we can use Lemma 2 to study Equation (30). Therefore, the research
methods for different types of time delays are completely different.
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Models similar to Equations (1) and (2) have been extensively studied. In 1990, Fink
and Gatica [1] firstly studied the following equation:

u(t) =
∫ t

t−σ
f (s, u(s))ds (3)

where the delay σ is a constant. The existence results of positive almost periodic solutions
to (3) have been obtained. When the delay σ in (3) is a time-varying σ(t), related research
can be found in [2–5]. Specially, for the existence of a positive pseudo almost periodic
solution, see [2,6]; for the existence of a positive almost periodic solution, see [3,5]; for
the existence of a positive almost automorphic solution, see [4,7,8]. For σ in (3) as a state-
dependent delay σ(x(t)), Torrejón [9] dealt with the positive almost periodic solution of
(3). In [10], the authors studied the synchronization problem for an epidemic system with
a Neumann boundary value under delayed impulse. Stability analysis of multi-point
boundary conditions for a fractional differential equation with a non-instantaneous integral
impulse was considered in [11]. Zhao and Zhu [12] investigated stabilization of stochastic
highly nonlinear delay systems with a neutral term. Wang and Yao [13] studied a class
impulsive stochastic food chain system with time-varying delays and obtained practical
exponential stability conditions. For more results about functional differential and integral
equations, see, e.g., [14–18].

This article focuses on neutral-type nonlinear integral equations arising in an epidemic
model. In [19], the authors considered the existence of positive almost automorphic
solutions to the neutral-type integral differential equation as follows:

u(t) = au(t− τ) + (1− a)
∫ t

t−τ
f (s, u(s))ds,

where 0 ≤ a < 1, τ > 0 is a constant. Furthermore, in [20], they studied the following
neutral-type integral differential equation with time-varying delay:

u(t) = au(t− τ(t)) + (1− a)
∫ t

t−τ(t)
f (s, u(s), u′(s))ds,

where 0 ≤ a < 1, τ(t) is a time-varying delay. We note that the research method in the
above papers is based on the fixed point theorem. In this article, we use Mawhin’s continuity
theorem to study the existence of positive periodic solutions for Equations (1) and (2). The
existence conditions obtained in this article are easy to verify, thus promoting the study of
Equations (1) and (2).

The main contributions are summarized in the following two aspects:

(1) We extend the scope of the parameter a from 0 < a < 1 to |a| 6= 1 with a > 0
and obtain sufficient conditions for the existence of a positive periodic solution to
Equations (1) and (2).

(2) We innovatively use Mawhin’s continuation theorem to study the existence of positive
periodic solutions for Equations (1) and (2).

The following sections are organized as follows: Section 2 gives some preliminar-
ies. We obtain the existence of positive periodic solutions for Equations (1) and (2) in
Sections 3 and 4, respectively. Section 5 discusses two examples that show the feasibility of
our results. Finally, Section 6 concludes the paper.

2. Preliminaries

Lemma 1 ([21,22]). Let:

D : Pω → Pω, [Du](t) = u(t)− au(t− τ), ∀t ∈ R,

where Pω is a ω−periodic continuous function space, and a and τ > 0 are constants. If |a| 6= 1,
then the operator D has a continuous inverse D−1 on Pω satisfying:
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(1) [D−1u](t) =
{

∑n≥0 anu(t− nτ), for |a| < 1, ∀u ∈ Pω,
∑n≥0 a−n−1u(t + nτ), |a| > 1, ∀u ∈ Pω,

(2) |[D−1u](t)| ≤ 1
|1−|a|| |u(t)|, ∀u ∈ Pω,

(3)
∫ ω

0 |[D
−1u](t)|dt ≤ 1

|1−|a||
∫ ω

0 |u(t)|dt, ∀u ∈ Pω.

Lemma 2 ([23]). Let:

D : Pω → Pω, [Du](t) = u(t)− δ(t)u(t− γ(t)), ∀t ∈ R,

where Pω is an ω−periodic continuous function space, and δ(t) and γ(t) are ω−periodic continu-
ous functions. If |δ(t)| 6= 1, then operator D has a continuous inverse D−1 on Pω satisfying:

(1) [D−1u](t) =


u(t) + ∑∞

j=1 ∏
j
i=1 δ(Ai)u(t−∏

j
i=1 γ(Ai)), for |δ(t)| < 1, ∀u ∈ Pω,

− u(t+γ(t))
δ(t+γ(t)) −∑∞

j=1
u(t+γ(t)+∑

j
i=1 γ(A′i))

δ(t+γ(t))Πj
i=1δ(A′i)

, for |δ(t)| > 1, ∀u ∈ Pω,

(2) ||D−1u|| ≤
{

1
1−δ0
||u(t)||, for δ0 < 1, ∀u ∈ Pω,

1
δ1−1 ||u(t)||, for δ1 > 1, ∀u ∈ Pω,

(3)
∫ ω

0 |[D
−1u](t)|dt ≤

{
1

1−δ0

∫ ω
0 |u(t)|dt, for δ0 < 1, ∀u ∈ Pω,

1
δ1−1

∫ ω
0 |u(t)|dt, for δ1 > 1, ∀u ∈ Pω,

where:

δ0 = max
t∈[0,ω]

|δ(t)|, δ1 = min
t∈[0,ω]

|δ(t)|, D1 = t, Dj+1 = t−
j

∑
i=1

γ(Di), j = 1, 2, · · · .

Now, we give the famous Mawhin’s continuation theorem.

Lemma 3 ([24]). Let A and B be two Banach spaces. Let F : Dom(F) ⊂ A→ B, be a Fredholm
operator with index zero, where Dom(F) is the domain of F. Furthermore, Θ ⊂ A is an open
bounded set and G : Θ̄→ B is L-compact on Θ̄. If the following conditions hold:

(1) Fu 6= λGu, ∀u ∈ ∂Ω ∩ D(F), ∀µ ∈ (0, 1),
(2) Gu /∈ ImF, ∀u ∈ ∂Θ ∩ KerF,
(3) deg{RG, Θ ∩ KerF, 0} 6= 0,

then equation Fu = Gu has a solution on Θ̄ ∩ Dom(F).

Remark 1. In Lemm 1, when a is a constant in the D−operator (neutral-type operator) and the
delay τ is a constant, the authors obtained the properties of the D−operator. In Lemm 2, when a is a
continuous function a(t) in the D−operator (neutral-type operator) and the delay τ is a continuous
function τ(t), the authors obtained the properties of the D−operator. Obviously, Lemm 2 extends
the results of Lemma 1 and has wider applications. Lemma 3 is the famous Mawhin’s continuation
theorem that has been widely used to study the periodic solution problem of functional differential
equations.

In the present paper, we need the following assumptions:

(A1) |a| 6= 1 with a > 0.
(A2) There exist positive constants k1, k2, k3 and k4 such that:

| f (t, u1, v1)− f (s, u2, v2)| ≤ k1|u1−u2|+ k2|v1− v2| for all t, s, v1, v2 ∈ R, u1, u2 ∈ R+

and
f (t, u, v) ≤ k3u− k4 for all t, v ∈ R, u ∈ R+.
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(A3) There exist positive constants c and M such that:

b
(

f (t, c, 0)− f (t− σ, c, 0)
)
6≡ 0 for all t ∈ R, c > M.

(A4) There exist positive constants c and M such that:

b
(

f (t, c, 0)− (1− τ′(t)) f (t− τ(t), c, 0)
)
6≡ 0 for all t ∈ R, c > M.

For obtaining the existence of positive periodic solutions to Equation (1), we need the
assumptions A1,A2 and A3; for obtaining the existence of positive periodic solutions to
Equation (2), we need the assumptions A1,A2 and A4.

3. Positive Periodic Solution for Equation (1)

Theorem 1. Assume that (A1)–(A3) hold. Then Equation (1) has at least one positive ω-periodic
solution if:

|1− |a||(1− k2|b|) > k2|b(a− 1)|, (4)

|1− |a||(1− k1ω|b|) > k1ω|ba|+ |b|σk3, (5)

(|1− |a||k1|b|) + k1|b(a− 1)|
|1− |a||(1− k2|b|)− k2|b(a− 1)|

(|1− |a||k2ω|b|) + k2ω|ba|
|1− |a||(1− k1ω|b|)− |b|σk3 − k1ω|ba| < 1. (6)

Proof. Taking the derivative on both sides of Equation (1) yields:(
u(t)− au(t− σ)

)′
= b f (t, u(t), u′(t))− b f (t− σ, u(t− σ), u′(t− σ)). (7)

Since Equation (1) is equivalent to Equation (7), we only need to consider the existence
of positive periodic solutions for Equation (7). Let (Du)(t) = u(t)− au(t− σ) in (7); then:

(Du)′(t) = b f (t, u(t), u′(t))− b f (t− σ, u(t− σ), u′(t− σ)). (8)

Let:
F : D(F) ⊂ Pω → Pω, (Fu)(t) = (Du)′(t) (9)

and

G : Pω → Pω, (Gu)(t) = b f (t, u(t), u′(t))− b f (t− σ, u(t− σ), u′(t− σ)). (10)

Then Equation (8) can be represented by:

(Fu)(t) = (Gu)(t),

where F and G are defined by (9) and (10), respectively. Set:

Θ1 = {u|u ∈ Dom(F), Fu = µGu, µ ∈ (0, 1)}.

For each u ∈ Θ1, we have:

(Du)′(t) = bµ f (t, u(t), u′(t))− bµ f (t− σ, u(t− σ), u′(t− σ)). (11)

From (A2), Lemm 1 and (11), we have:
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|(Du)′(t)| ≤ k1|b||u(t)− u(t− σ)|+ k2|b||u′(t)− u′(t− σ)|
≤ k1|b||(Du)(t)|+ k1|b(a− 1)||u(t− σ)|+ k2|b||(Du)′(t)|+ k2|b(a− 1)||u′(t− σ)|

≤ k1|b||(Du)(t)|+ k1|b(a− 1)|
|1− |a|| |(Du)(t− σ)|+ k2|b||(Du)′(t)|+ k2|b(a− 1)|

|1− |a|| |(Du)′(t− σ)|.
(12)

In view of (12) and (4), we get:

||(Du)′|| ≤ |1− |a||k1|b|+ k1|b(a− 1)|
|1− |a|||(1− k2|b|)− k2|b(a− 1)| ||Du||. (13)

We note that Equation (7) is equivalent to the following equation:

(Du)(t) = bµ
∫ t

t−σ
f (s, u(s), u′(s))ds. (14)

Let t = 0 in (14); then:

(Du)(0) = bµ
∫ 0

−σ
f (s, u(s), u′(s))ds

and
|(Du)(0)| ≤ |b|σk3|u|+ |b|σk4

≤ |b|σk3

|1− |a|| |Du|+ |b|σk4.
(15)

Integrate both sides of (7) on [0, t]; then:

(Du)(t) = (Du)(0) +
∫ t

0
bµ

(
f (s, u(s), u′(s))− f (s− σ, u(s− σ), u′(s− σ))

)
ds. (16)

In view of (15), (16), (A2) and Lemm 1, we get:

||Du|| ≤ |b|σk3

|1− |a|| ||Du||+ |b|σk4 + k1ω|b|||Du||+ k1ω|ba|
|1− |a|| ||Du||+ k2ω|b|||(Du)′||+ k2ω|ba|

|1− |a|| ||(Du)′||. (17)

By (5) and (17), we have:

||Du|| ≤ |b|σk4|1− |a||
|1− |a||(1− k1ω|b|)− |b|σk3 − k1ω|ba| +

(|1− |a||k2ω|b|) + k2ω|ba|
|1− |a||(1− k1ω|b|)− |b|σk3 − k1ω|ba| ||(Du)′||. (18)

In view of (13) and (18), we get:

||(Du)′|| ≤ λ1 + λ2||(Du)′||, (19)

where:

λ1 =
(|1− |a||k1|b|) + k1|b(a− 1)|
|1− |a||(1− k2|b|)− k2|b(a− 1)|

|b|σk4|1− |a||
|1− |a||(1− k1ω|b|)− |b|σk3 − k1ω|ba| ,

λ2 =
(|1− |a||k1|b|) + k1|b(a− 1)|
|1− |a||(1− k2|b|)− k2|b(a− 1)|

(|1− |a||k2ω|b|) + k2ω|ba|
|1− |a||(1− k1ω|b|)− |b|σk3 − k1ω|ba| .

Using (19) and (6), we get:

||(Du)′|| ≤ λ1

1− λ2
. (20)
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Obviously, we have:

(Du)(t) = (Du)(0) +
∫ t

0
(Du)′(s)ds

and
||Du|| ≤ |(Du)(0)|+ ω||(Du)′||. (21)

It follows by (15), (20) and (21) that:

||Du|| ≤ |b|σk3

|1− |a|| ||Du||+ |b|σk4 +
λ1ω

1− λ2
. (22)

Using (5), (22) and Lemma 1, we have:

||Du|| ≤ |b|σk4|1− |a||
|1− |a|| − |b|σk3

+
λ1ω|1− |a||

(1− λ2)(|1− |a|| − |b|σk3)

and

||u|| ≤ |b|σk4

|1− |a|| − |b|σk3
+

λ1ω

(1− λ2)(|1− |a|| − |b|σk3)
. (23)

From (A2), we have:

||u|| ≥ k3

k4
. (24)

Due to (23) and (24), Θ1 is a bounded set. In view of (9), we have KerF = R and
ImF = {u : u ∈ Pω,

∫ ω
0 u(s)ds = 0}. Thus, F is a Fredholm operator with index zero.

Define the operators by:
S : A→ KerF, Su = u(0)

and
R : B→ ImF, Rv =

1
ω

∫ ω

0
v(s)ds.

Let:
FP : Dom(F) ∩ KerS→ ImF.

Then FP has a continuous inverse F−1
P defined by:

(F−1
P v)(t) = D−1

( ∫ ω

0
Γ(t, s)v(s)ds

)
for v ∈ ImL, (25)

where:

Γ(t, s) =
{ s−ω

ω for 0 ≤ t < s ≤ ω
s
ω for 0 ≤ s ≤ t ≤ ω.

Set Θ2 = {u|u ∈ KerF, Gu ∈ ImF}. For each u ∈ Θ2, we have u = c and

f (t, c, 0)− f (t− σ, c, 0) = 0.

Using assumption (A3), we see that Θ2 is also bounded. Therefore, conditions (1)
and (2) in Lemma 3 hold. Set Θ ⊃ Θ1 ∪Θ2. From (10) and (25), it is easy to see that G is
L−compact on Θ̄. Define Φ on Pω × [0, 1] by:

Φ(u, λ) = λu +
(1− λ)b

ω

∫ ω

0

(
f (s, u(s), u′(s))− f (s− σ, u(s− σ), u′(s− σ))

)
ds
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By assumptions (A3) for u ∈ ∂Θ ∩ KerF and λ ∈ [0, 1], we have Φ(u, λ) 6= 0. Hence,

deg {RG, Θ ∩ KerF, 0} = deg {Φ(·, 0), Θ ∩ KerF, 0}
= deg {Φ(·, 1), Θ ∩ KerF, 0}
= deg {I, Θ ∩ KerF, 0}
6= 0

and condition (3) of Lemma 3 holds. Using Lemma 3, we obtain that Equation (7) has at
least one ω-periodic solution u(t), i.e., Equation (1) has at least one ω-periodic solution
u(t).

4. Positive Periodic Solution for Equation (2)

Theorem 2. Assume that (A1), (A2) and (A4) hold. Then Equation (2) has at least one positive
ω-periodic solution if:

|a||1− τ′(t)|0 + 2k2|b| < 1, (26)

|a|+ |b||τ|0k3 + λ3ω < 1, (27)

where:
|1− τ′(t)|0 = max

t∈R
|1− τ′(t)|, |τ|0 = max

t∈R
|τ(t)|,

λ3 =
1

1− |a||1− τ′(t)|0 − 2k2|b|

(
|b||τ|0k3

1− a
+ 2k1|b|

)
|b||τ|0k3 for a < 1 (28)

or

λ3 =
1

1− |a||1− τ′(t)|0 − 2k2|b|

(
|b||τ|0k3

a− 1
+ 2k1|b|

)
|b||τ|0k3 for a > 1. (29)

Proof. Taking the derivative on both sides of Equation (2) yields:(
u(t)− au(t− τ(t))

)′
= b f (t, u(t), u′(t))− b(1− τ′(t)) f (t− τ(t), u(t− τ(t)), u′(t− τ(t))). (30)

Let (Du)(t) = u(t)− au(t− τ(t)) in (30); then:

(Du)′(t) = b f (t, u(t), u′(t))− b(1− τ′(t)) f (t− τ(t), u(t− τ(t)), u′(t− τ(t))).

Let:
F : D(F ) ⊂ Pω → Pω, (Fu)(t) = (Du)′(t) (31)

and

G : Pω → Pω, (Gu)(t) = b f (t, u(t), u′(t))− b(1− τ′(t)) f (t− τ(t), u(t− τ(t)), u′(t− τ(t))). (32)

Set:
Ω1 = {u|u ∈ Dom(F ), Fu = µGu, µ ∈ (0, 1)},

where F and G are defined by (31) and (32), respectively. For each u ∈ Ω1, we have:

(Du)′(t) = bµ f (t, u(t), u′(t))− b(1− τ′(t))µ f (t− τ(t), u(t− τ(t)), u′(t− τ(t))). (33)

If a < 1, from (A2), Lemm 2 and (33), we have:
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|u′(t)| ≤ |a||1− τ′(t)|0||u′||+ |b|| f (t, u(t), u′(t))− f (t− τ(t), u(t− τ(t)), u′(t− τ(t)))|
+ |b||τ|0k3||u||+ |b||τ|0k4

≤ |a||1− τ′(t)|0||u′||+ k1|b||u(t)− u(t− τ(t))|+ k2|b||u′(t)− u′(t− τ(t))|
+ |b||τ|0k3||u||+ |b||τ|0k4

≤ |a||1− τ′(t)|0||u′||+ k1|b||(Du)(t)|+ k1|b(a− 1)||u(t− τ(t))|+ 2k2|b|||u′||
+ |b||τ|0k3||u||+ |b||τ|0k4

≤ |a||1− τ′(t)|0||u′||+ 2k1|b|||Du||+ 2k2|b|||u′||

+
|b||τ|0k3

1− a
||Du||+ |b||τ|0k4.

(34)

Using (34) and (27), we have:

||u′|| ≤ 1
1− |a||1− τ′(t)|0 − 2k2|b|

(
|b||τ|0k3

1− a
+ 2k1|b|

)
||Du||+ |b||τ|0k4

1− |a||1− τ′(t)|0 − 2k2|b|
. (35)

We note that Equation (33) is equivalent to the following equation:

(Du)(t) = bµ
∫ t

t−τ(t)
f (s, u(s), u′(s))ds. (36)

In view of (A2) and (36), we have:

||Du|| ≤ |b||τ|0k3||u||+ |b||τ|0k4. (37)

From (35) and (37), we have:

||u′|| ≤ λ3||u||+ λ4, (38)

where λ3 is defined by (28),

λ4 =
1

1− |a||1− τ′(t)|0 − 2k2|b|

(
|b||τ|0k3

1− a
+ 2k1|b|

)
|b||τ|0k4

+
|b||τ|0k4

1− |a||1− τ′(t)|0 − 2k2|b|
.

Set t = 0 in (36); by (A2), then:

u(0) = au(−τ(0)) + bµ
∫ 0

−τ(0)
f (s, u(s), u′(s))ds

and
|u(0)| ≤

(
|a|+ |b||τ|0k3

)
||u||+ |b||τ|0k4. (39)

We note that:

u(t) = u(0) +
∫ t

0
u′(s)ds. (40)

From (27), (39) and (40), we have:

|u(t)| ≤ |u(0)|+ ω||u′||
≤
(
|a|+ |b||τ|0k3

)
||u||+ |b||τ|0k4 + ω||u′||

and

||u|| ≤ ω

1−
(
|a|+ |b||τ|0k3

) ||u′||+ |b||τ|0k4

1−
(
|a|+ |b||τ|0k3

) . (41)
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Using (38), (41) and (27), we get:

||u′|| ≤ λ3||u||+ λ4

≤ λ3ω

1−
(
|a|+ |b||τ|0k3

) ||u′||+ λ3|b||τ|0k4

1−
(
|a|+ |b||τ|0k3

) + λ4

and

||u′|| ≤ λ3|b||τ|0k4

1−
(
|a|+ |b||τ|0k3

)
− λ3ω

+
1−

(
|a|+ |b||τ|0k3

)
λ4

1−
(
|a|+ |b||τ|0k3

)
− λ3ω

:= N1. (42)

From (41) and (42), we have:

||u|| ≤ ω

1−
(
|a|+ |b||τ|0k3

)N1 +
|b||τ|0k4

1−
(
|a|+ |b||τ|0k3

) := N2. (43)

If a > 1, let:

λ4 =
1

1− |a||1− τ′(t)|0 − 2k2|b|

(
|b||τ|0k3

a− 1
+ 2k1|b|

)
|b||τ|0k4

+
|b||τ|0k4

1− |a||1− τ′(t)|0 − 2k2|b|
.

(44)

Similar to the above proof, we get:

||u′|| ≤ λ3||u||+ λ4,

where λ3 and λ4 are defined by (29) and (44), respectively. Furthermore, similar to the
proof of (42) and (43), there exists N3 > 0 such that:

||u|| ≤ N3. (45)

From (A2), we have:

||u|| ≥ k3

k4
. (46)

Due to (45) and (46), Ω1 is a bounded set. Thus, condition (1) in Lemma 3 holds.
Similar to the proof of Theorem 1, it is easy to see that F is a Fredholm operator with index
zero and G is L-compact on Ω̄.

Set Ω2 = {u|u ∈ KerF , Gu ∈ ImF}. For each u ∈ Ω2, we have u = c, where c > M
is a constant, and

f (t, c, 0)− (1− τ′(t)) f (t− τ(t), c, 0) = 0.

Using assumption (A4), we see that Ω2 is also bounded. Therefore, condition (2) in
Lemma 3 holds. Set Ω ⊃ Ω1 ∪Ω2. Similar to the proof of Theorem 1, it is easy to see that F
is a Fredholm operator with index zero and G is L−compact on Ω̄. Define Ψ on Pω × [0, 1]
by:

Ψ(u, λ) = λu+
(1− λ)b

ω

∫ ω

0

(
f (s, u(s), u′(s))− (1− τ′(s)) f (s−σ, u(s−σ), u′(s−σ))

)
ds

By assumptions (A4) for u ∈ ∂Ω ∩ KerF and λ ∈ [0, 1], we have Ψ(u, λ) 6= 0. Hence,

deg {RG, Ω ∩ KerF , 0} = deg {Ψ(·, 0), Ω ∩ KerF , 0}
= deg {Ψ(·, 1), Ω ∩ KerF , 0}
= deg {I, Ω ∩ KerF , 0}
6= 0
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and condition (3) of Lemma 3 holds. Using Lemma 3, we obtain that Equation (30) has at
least one ω-periodic solution u(t), i.e., Equation (2) has at least one ω-periodic solution
u(t).

Remark 2. In [19], the authors showed a fixed point theorem for a mixed monotone operator. When
0 < a < 1 in Equation (1), they used this fixed point theorem to obtain the existence of positive
almost automorphic solutions for Equation (1). In [20], when 0 < a < 1, the authors used Perov’s
fixed point theorem to obtain the existence and the uniqueness of a positive periodic solution for
Equation (2). In the preset paper, we obtain the existence of a positive periodic solution for Equations
(1) and (2) under |a| 6= 1 with a > 0 that generalize the results in [19,20].

5. Examples

Example 1. Consider the following equation:

u(t) =
1
2

u(t− 0.1) + 0.01×
∫ t

t−0.1

(
u(s) + cos u′(s) + sin s− 3

)
ds, (47)

where:
a =

1
2

, b = 0.01, σ = 0.1, ω = 2π,

f (t, u, v) = u + cos v + sin t− 3.

Obviously,

| f (t, u1, v1)− f (s, u2, v2)| ≤ |u1 − u2|+ |v1 − v2| for all t, s, v1, v2 ∈ R, u1, u2 ∈ R+

and
f (t, u, v) ≤ u− 1 for all t, v ∈ R, u > 1

where k1 = k2 = k3 = k4 = 1,

b
(

f (t, c, 0)− f (t− σ, c, 0)
)
= 0.01 sin t− 0.01 sin(t− 0.1) 6≡ 0.

Hence, assumptions A1-A3 hold. Furthermore,

|1− |a||(1− k2|b|)− k2|b(a− 1)| = 0.49 > 0,

|1− |a||(1− k1ω|b|)− k1ω|ba|+ |b|σk3 = 0.1536 > 0,

(|1− |a||k1|b|) + k1|b(a− 1)|
|1− |a||(1− k2|b|)− k2|b(a− 1)|

(|1− |a||k2ω|b|) + k2ω|ba|
|1− |a||(1− k1ω|b|)− |b|σk3 − k1ω|ba| ≈ 0.003 < 1.

Thus, conditions (4)–(6) hold. Therefore, all conditions of Theorem 1 hold and Equation (47)
has a positive 2π-periodic solution.

Example 2. Consider the following equation:

u(t) =
1
2

u(t− 0.1 sin t) + 0.01×
∫ t

t−0.1 sin t

(
u(s) + cos u′(s) + sin s− 3

)
ds, (48)

where:
a =

1
2

, b = 0.01, τ(t) = 0.1 sin t

f (t, u, v) = u + cos v + sin t− 3.
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Obviously,

| f (t, u1, v1)− f (s, u2, v2)| ≤ |u1 − u2|+ |v1 − v2| for all t, s, v1, v2 ∈ R, u1, u2 ∈ R+

and
f (t, u, v) ≤ u− 1 for all t, v ∈ R, u > 1

where k1 = k2 = k3 = k4 = 1,

b
(

f (t, c, 0)− (1− τ′(t)) f (t− τ(t), c, 0)
)
= 0.01 sin t− 0.01 sin(t− cos t) 6≡ 0.

Hence, assumptions A1, A2 and A4 hold. Furthermore, we get:

|a||1− τ′(t)|0 + 2k2|b| = 0.57 < 1

and
|a|+ |b||τ|0k3 + λ3ω ≈ 0.0026 < 1.

Thus, conditions (26) and (27) hold. Therefore, all conditions of Theorem 2 hold and Equation (48)
has a positive 2π-periodic solution. Figure 1 shows that for Equation (47) there exists a positive
2π-periodic solutions when the delay is a constant. The parameters a, b and the function f in
Equation (47) are different from the corresponding ones in [25]. Therefore, our results are more
general than those in [25] and have a wider range of applications. Furthermore, when the delay is
time-varying, Figure 1 also shows that for Equation (48) there exists a positive 2π-periodic solution
that greatly improves the existing results; see [4,26,27].

0 5 10 15 20
0.5

1

1.5

2

2.5

3

3.5

4

t

u
(t

)

solution of (47)

  solution of (48)

Figure 1. Positive periodic solutions of Equations (47) and (48).

Remark 3. In [27], Cooke and Kaplan studied Equation (47) for the case of a = 0, b = 1 and
f (t, u(t), u′(t)) = f (t, u(t)). They proved that if the delay σ is large enough, there exists a positive
periodic solution with period equal to the period of f . The considered equation in [1] is a special case
of Equation (47); furthermore, the existence of a positive periodic solution for Equation (47) does not
require a sufficiently large delay. In [20], Bellour and Dads studied Equation (48) for the case of
a = 0, b = 1 and f (t, u(t), u′(t)) = f (t, u(t)). They obtained the existence and the uniqueness
of a positive periodic solution by using Perov’s fixed point theorem in generalized metric spaces.
Obviously, the considered equation in [2] is a special case of Equation (48). Figure 1 shows that
there exists a positive periodic solution for Equations (47) and (48) for the case of a 6= 0, b 6= 1.
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6. Conclusions and Discussions

In this paper, we obtain some sufficient conditions that guarantee the existence of
positive periodic solutions for Equations (1) and (2). It should be pointed out that our
results do not depend on monotonicity of the function f (t, ·, ·). The research methods of
Equations (1) and (2) are based on the fixed point theorem and the theory for Hilbert’s
projective metric; see [19,20,26]. In general, Mawhin’s continuity theorem can be used to
conveniently study the existence of periodic solutions for delay equations; see, e.g., [28–32].
However, few scholars use this theorem to study the existence of positive periodic solutions.
Actually, the study of positive periodic solutions of differential equations can be traced
back to the 18th century; see, e.g., [33,34]. In this article, we developed Mawhin’s continuity
theorem to study the existence of positive periodic solutions. In future work, we will
consider using Mawhin’s continuity theorem to investigate the existence of an almost
periodic solution, a pseudo almost periodic solution and an almost automorphic solution
for Equations (1) and (2). The theoretical findings are verified by two examples that show
their correctness, effectiveness and feasibility.

The domain of Equations (1) and (2) offers potential for further studies. For example,
the methods from this paper can be used for studying Equations (1) and (2) with random
perturbations, impulses, different time scales, etc. We can also further study dynamical
behavior for Equations (1) and (2), such as progressive stability, exponential stability,
synchronization, etc.
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