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Abstract: In this paper, a new four-dimensional (4D) hyperchaotic biplane system is designed and
presented. The dynamical properties of this new system are studied by means of tools such as
bifurcation diagrams, Lyapunov exponents and phase diagrams. The Hopf bifurcation and periodic
solutions of this hyperchaotic system are solved analytically. In addition, a new hyperchaotic control
strategy is applied, and a comparative analysis of the controlled system is performed.
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1. Introduction

In 1979, Rössler discovered and studied the first hyperchaotic system—the Rössler
system [1]. It is known that the minimum dimension of the phase space in which the
hyperchaotic attractor is embedded should exceed three. It means that hyperchaos is a more
complex dynamical phenomenon than chaos. Later, many four-dimensional hyperchaotic
systems were discovered and studied [2,3], specifically four-dimensional hyperchaotic
Lorenz-type systems [4,5]. Jia [6] constructed a hyperchaotic Lorenz-type system using
state feedback control and studied its associated dynamics using Lyapunov exponents
and bifurcation diagrams. Wang et al. [7] characterized a-new-uniform-four-dimensional-
uniform-hyperchaotic-Lorenz-type system, employing a bifurcation method and Lyapunov
stability theory. Compared to ordinary chaotic systems, hyperchaotic systems have more
potential applications in information security [8–12], finance [13,14], lasers [15–17], and
circuits [18–21]. Due to their higher dimensionality, hyperchaotic systems are accompanied
by a vast amount of randomness and unpredictability. To the best of our knowledge, the
complexity of the dynamics of hyperchaotic systems is yet to be fully grasped. There are
only a few studies on the dynamics of hyperchaotic systems.

More effective methods must be used to analyze and study the complex dynam-
ics of high-dimensional hyperchaotic systems. Moreover, it is necessary to study new
high-dimensional hyperchaotic systems and investigate their hyperchaotic properties.
Pecora [22] proposed that high-dimensional hyperchaotic systems are safer than chaotic
systems because of their increased randomness and higher unpredictability. From a practi-
cal application and engineering point of view, hyperchaotic systems should have a higher
level of complexity [23]. Although analytical tools and techniques are available in the
literature for bifurcation and stability analysis [24,25], no such analytical tools are available
for attractors, so we must rely on some graphical tools. Mahmoud et al. [26] constructed a
new hyperchaotic complex Lorentz system by extending the idea of adding state feedback
control and introducing complex periodic forces.
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Similarly, a new 4D four-wing memristor hyperchaotic system was presented by
incorporating a magnetron memristor with a linear memristor in the four-wing Chen
system [27]. Moreover, a hyperchaotic system of a 4D generalized Lorenz first state equation
was proposed by introducing a linear state feedback control [28]. Mezatio et al. proposed
hyperchaos and the coexistence of infinite hidden attractors in a six-dimensional system [29].
In one study, the dynamical richness of the hyperchaotic systems and their increased
complexity were recognized with the addition of nonlinear controllers [30]. Furthermore,
some scholars succeeded in constructing hyperchaotic systems [31,32]. These systems have
significantly broadened the study of hyperchaos and provided some control strategies and
research methods.

It is difficult for mathematicians and engineers to fully understand the behavior of
hyperchaotic systems because the associated dynamics of hyperchaotic systems exist in
higher dimensions simultaneously. The main components of the hyperchaotic system are
two positive Lyapunov exponents, Hopf bifurcation and the attractor. Hopf bifurcation
and chaotic attractors are both richly developed on the basis of chaos theory [33–35]. Hopf
bifurcation is critical in analyzing the stability of equilibrium points of the hyperchaotic
system in high dimensions, and it is used to study the dynamical behavior of hyperchaotic
systems [36–38] and to control hyperchaos [39–41] for various applications.

This paper is structured as follows. The first part of this work describes the numerical
simulation results of the proposed new system. Then, the output of MATLAB codes is
presented that graphically represents the system. In this study, the Runge–Kutta algorithm
was mainly utilized for the numerical simulations. Moreover, the analysis of the system
characteristics, such as chaos and hyperchaos, is numerically verified using a bifurcation
diagram, Phase diagram, Lyapunov exponents spectrum, and Poincaré maps. The condi-
tions for the Hopf bifurcation of the new chaotic system are obtained in the second part of
this work. In the third part, the stability of the bifurcation period solution and the Hopf
bifurcation direction formula of the system are calculated using the normal form theory [42].
In addition, two examples were used to test and verify the theoretical results. In the fourth
part, hyperchaotic control is investigated [43]. The results show that the linear feedback
control method can control the system reasonably if appropriate feedback coefficients are
chosen. In Section 6, the outcomes of the study are summarized.

2. Description of the Model

In 1994, Sprott obtained 19 third-order quadratic systems that exhibit chaotic behavior
via a computational search method [44]. This assumption is of great theoretical and practical
significance for studying some systems. In 2010, Wei [45] obtained a new generalized Sprott
C system and proposed methods to improve a similar system proposed by Zhang et al. [46]
and Jafari et al. [47,48]. The new chaotic system proposed in this study is as follows:

.
x = a(y− x),
.
y = cy− xz,
.
z = −bz + y2.

(1)

The following new four-dimensional hyperchaotic system is introduced by adding a
linear controller to the system of equations given in (1):

.
x = a(y− x),
.
y = cy− xz + p,
.
z = −bz + y2,
.
p = −e(x + y).

(2)

where x, y, z and p are state variables, a, b, c and e are system parameters, and also e is the
main control parameter of System (2).

In this subsection, some characteristics of System (2) are discussed, and more simula-
tion results are present from the numerical methods. The dynamics of System (2) can be
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characterized by its Lyapunov exponents using the real constants a = 40, b = 2, c = 22.
The corresponding bifurcation diagram is given in Figure 1. We apply the Jacobi method
to calculate the Lyapunov exponent. The Lyapunov exponent spectrum of System (2) is
shown in Figure 2.
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Figure 1. Bifurcation diagram of System (2) with a = 40, b = 2 and c = 22.
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Figure 2. Lyapunov−exponent spectrum of System (2) with a = 40, b = 2 and c = 22.

According to the correspondence of Figures 1 and 2, when the parameter e = 0.5, the
Lyapunov exponent of the new 4D System (2) is L1 = 16.9402, L2 = −3.4133, L3 = 0, and
L4 = 6.9890. It can be seen that L1 > 0, L4 > 0 and L3 = 0. Thus, System (2) is hyperchaotic
at parameters a = 40, b = 2, c = 22 and e = 0.5. In this case, System (2) has a hyperchaotic
attractor, as shown in Figure 3. Moreover, the Poincaré maps in the x− y and z− p planes
are given in Figure 4.

In general, the above results show that System (2) has complex and interesting dynam-
ical behavior, including hyperchaos and chaos.
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3. Stability Analysis and the Existence of Hopf Bifurcation
3.1. Equilibrium Stability

The equilibria of System (2) can be found by solving the following equations simulta-
neously: 

a(y− x) = 0,
cy− xz + p = 0,
−bz + y2 = 0,
−e(x + y) = 0.

(3)

A simple analysis makes it easy to obtain the unique equilibrium at E0(0, 0, 0, 0) for
System (2).

The Jacobian matrix of System (2) at E0(0, 0, 0, 0) is given by the following matrix:

J(E0) =


−a a 0 0
0 c 0 1
0 0 −b 0
−e −e 0 0

, (4)
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The following determinant can be obtained from the Jacobian matrix:

|λE− J(E0)| =

∣∣∣∣∣∣∣∣
λ + a −a 0 0

0 λ− c 0 −1
0 0 λ + b 0
e e 0 λ

∣∣∣∣∣∣∣∣. (5)

The characteristic equation is therefore given below:

f (λ) = (λ + b)(λ3 + (a− c)λ2 + (e− ac)λ + 2ae)
= λ4 + (a + b− c)λ3 + (e− ac− bc + ab)λ2 + (2ae + be− abc)λ + 2abe = 0.

(6)

The following relation can be obtained using the Routh–Hurwitz discriminant condi-
tion [49]:

f (λ) = P0λ4 + P1λ3 + P2λ2 + P3λ + P4 = 0. (7)

A one-to-one correspondence between Equations (6) and (7) can be obtained by con-
sidering the following coefficients:

P0 = 1, P1 = a + b− c, P2 = e− ac− bc + ab, P3 = 2ae + be− abc, P4 = 2abe.

The following determinant is obtained by substituting the P0, P1, P2, P3 and P4.

D =

∣∣∣∣∣∣∣∣
P1 P3 0 0
P0 P2 P4 0
0 P1 P3 0
0 P0 P2 P4

∣∣∣∣∣∣∣∣. (8)

It can be seen that the necessary and sufficient conditions for the real parts to be
negative for all eigenvalues of the system are given in the following inequalities:

D1 = P1 = a + b− c > 0, (9)

D2 =

∣∣∣∣P1 P3
P0 P2

∣∣∣∣ = P1P2 − P0 P3 > 0, (10)

D3 = P3D2 − P4P2
1 > 0, (11)

D4 = D = P4D3 > 0. (12)

From Equations (9)–(12), we have the following conditions.

b > 0, e > ac, a > c, ae > 0, ac2 − a2c + ae− ce > 0

Therefore, the system will bifurcate when e = ac(c − a)
a + c . So, e is a critical value and is

referred to as e = e0.

3.2. Existence of a Hopf Bifurcation

Assume that System (2) of equations has a pure imaginary root λ = ωi (ω ∈ R+).
From Equation (6), the following relation can be obtained:

ω = ω0 =
√

e− ac, e = e0 =
ac(c− a)

a + c
.

Substituting e = e0 into Equation (6), the following relationships are derived:

λ1 = −b, λ2 = c− a, λ3 = iω0, λ4 = −iω0.
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Hence, System (2) satisfies the first condition of the Hopf bifurcation theorem. By
differentiating the characteristic equations of the equilibrium point E0 with respect to e, the
following differential equation is acquired:

3λ2 dλ

de
+ 2(a− c)λ

dλ

de
+ (e− ac)

dλ

de
+ 2a + λ = 0, (13)

and
λ′(e) =

dλ

de
= − 2a + λ

3λ2 + 2(a− c)λ + e− ac
. (14)

Substituting the bifurcation value and eigenvalues into the above equation gives the
following results:

α′(0) = Re(λ′(e0))
∣∣
λ=
√

e−aci =
(a + c)2

4ac2 + 2(a− c)2(a + c)
> 0, (15)

ω′(0) = Im(λ′(e0))
∣∣
λ=
√

e−aci =
2a2 − ac− c2

8ac3 + 4c(a + c)(a− c)2

√
2a(a + c) 6= 0. (16)

Hence, the second condition of the Hopf bifurcation theorem is satisfied.
The proposed chaotic system thus satisfies both conditions of the Hopf bifurcation

theorem [50]. When e = e0, the system shows Hopf bifurcations at the equilibrium point E0.

4. Direction and Stability of Bifurcating Periodic Solutions

The primary purpose of this section is to find the direction and stability of the periodic
solutions of the Hopf bifurcations in System (2). An approach based on the normal form
theory and center manifold theorem is used [42].

First, the eigenvectors of the matrix are solved by setting the following solution
equations: 

(λ + a)u1 − au2 = 0,
(λ− c)u2 − u4 = 0,

(λ + b)u3 = 0,
eu1 + eu2 + λu3 = 0.

(17)

Let v1, v2 and v3 represent the eigenvectors that correspond to the eigenvalues
λ1 = −b, λ2 = c − a and λ3 = iω0, respectively. It can be shown that the following
relations hold:

v1 =


0
0
1
0

, v2 =


a
c
1
0
−a

, v3 =


− ac

e + c
e
√

e− aci
1
0

−c +
√

e− aci

.

A matrix Q can then be defined using the acquired expressions for the eigenvectors as
follows:

Q = (Rev3,−Imv3, v1, v2) =


− ac

e − c
e
√

e− ac 0 a
c

1 0 0 1
0 0 1 0
−c −

√
e− ac 0 −a

. (18)

Considering the following transformation,
x
y
z
p

 = Q


x1
y1
z1
p1

, (19)
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a relationship between x, y, z, p and x1, y1, z1, p1 can be obtained in the following manner:
x
y
z
p

 =


− ac

e x1 − c
e
√

e− acy1 +
a
c p1

x1 + p1
z1

−cx1 −
√

e− acy1 − ap1

. (20)

By taking the derivative of Equation (20) and substituting the results into System (2), a
new system expression is obtained, which is given below:

.
x1 = −

√
e− acy1 + F1(x1, y1, z1, p1),.

y1 =
√

e− acx1 + F2(x1, y1, z1, p1),.
z1 = −bz1 + F3(x1, y1, z1, p1),.
p1 = (c− a)p1 + F4(x1, y1, z1, p1).

(21)

where,

F1(x1, y1, z1, p1) = −k( ac
e x1z1 +

c
e
√

e− acy1z1 − a
c z1 p1),

F2(x1, y1, z1, p1) = [(c− a)k− a]( ac
e x1z1 +

c
e
√

e− acy1z1 − a
c z1 p1),

F3(x1, y1, z1, p1) = x1
2 + p1

2 + 2x1 p1,
F4(x1, y1, z1, p1) = (k + 1)( ac

e x1z1 +
c
e
√

e− acy1z1 − a
c z1 p1),

k = ae+ac2

c3−ae−2ac2 .

Then, using formulas reported in the literature [42], the following expressions related
to the bifurcation at e = e0 and (x1, y1, z1, p1) = (0, 0, 0, 0) can be obtained:

g11 = 1
4 [

∂2F1
∂x2

1
+ ∂2F1

∂y2
1
+ i( ∂2F2

∂x2
1
+ ∂2F2

∂y2
1
)] = 0,

g02 = 1
4 [

∂2F1
∂x2

1
− ∂2F1

∂y2
1
− 2 ∂2F2

∂x1∂y1
+ i( ∂2F2

∂x2
1
− ∂2F2

∂y2
1
+ 2 ∂2F1

∂x1∂y1
)] = 0,

g20 = 1
4 [

∂2F1
∂2x2

1
− ∂2F1

∂2y2
1
+ 2 ∂2F2

∂x1∂y1
+ i( ∂2F2

∂2x2
1
− ∂2F2

∂2y2
1
− 2 ∂2F1

∂x1∂y1
)] = 0,

G21 = 1
8 [

∂3F1
∂x3

1
+ ∂3F1

∂x1∂y2
1
+ ∂3F2

∂x2
1∂y1

+ ∂3F2
∂y3

1
+ i( ∂3F2

∂x3
1
+ ∂3F2

∂x1∂y2
1
− ∂3F1

∂x2
1∂y1
− ∂3F1

∂y3
1
)] = 0.

From the dimension n = 4 > 2, we calculate the following variables:

h1
11 = 1

4 (
∂2F3
∂x2

1
+ ∂2F3

∂y2
1
) = 1

4 , h2
11 = 1

4 (
∂2F4
∂x2

1
+ ∂2F4

∂y2
1
) = 0,

h1
20 = 1

4 (
∂2F3
∂x2

1
− ∂2F3

∂y2
1
− 2i ∂2F3

∂x1∂y1
) = 1

4 , h2
20 = 1

4 (
∂2F4
∂x2

1
− ∂2F4

∂y2
1
− 2i ∂2F4

∂x1∂y1
) = 0.

By solving the following equations,

Dw11 = −h11, (D− 2iω0 I)w20 = −h20,

where

h11 =

(
h1

11
h2

11

)
, h20 =

(
h1

20
h2

20

)
,

We obtain the following relations:

w11 =

(
w1

11
w2

11

)
=

( b
4
0

)
, w20 =

(
w1

20
w2

20

)
=

(
c−a

4 −
√

e−ac
2 i

0

)
.



Mathematics 2023, 11, 2699 8 of 14

Furthermore,

G1
110 = 1

2 [
∂2F1

∂x1∂z1
+ ∂2F2

∂y1∂z1
+ i( ∂2F2

∂x1∂z1
− ∂2F1

∂y1∂z1
)]

= ack
2e (i− 1) + c

√
e−ac
2e [k(c− a)− a](i + 1),

G2
110 = 0,

G2
101 = 0,

G1
101 = 1

2 [
∂2F1

∂x1∂z1
− ∂2F2

∂y1∂z1
+ i( ∂2F2

∂x1∂z1
+ ∂2F1

∂y1∂z1
)]

= ack
2e (−i− 1) + c

√
e−ac
2e [k(c− a)− a](i− 1),

g21 = G21 +
2
∑

n=1
(2Gn

110wn
11 + Gn

101wn
20)

= − 2abc+ac(c−a)+2ac
√

e−ac
8e k + 2bc−c2+ac+2c

8e
√

e− ac[k(c− a)− a]

+ (2bc+c2−ac)
√

e−ac+2c(e−ac)
8e [k(c− a)− a]i

+ 2abc−ac(c−a)+2ac
√

e−ac
8e ki.

Based on these calculations and analyses, we obtain the following results:

C1(0) =
i

2ω0
[g20g11 − 2|g11|2 −

1
3
|g02|2] +

1
2

g21 =
1
2

g21 (22)

µ2 = −ReC1(0)
α′(0)

, (23)

β2 = 2ReC1(0), (24)

τ2 = − ImC1(0) + µ2ω′(0)
ω0

. (25)

The following conclusions can also be drawn:

(i) If µ2 > 0(< 0), the Hopf bifurcation is supercritical (subcritical), and for e > e0(< e0),
the bifurcation has a periodic solution;

(ii) If β2 < 0(> 0), the bifurcating periodic solutions are stable (unstable) on their orbits;
(iii) If τ2 > 0(< 0), the period of bifurcating periodic solutions increases or decreases.

For the verification of the above theoretical analysis, it is assumed that

a = 3, b = 2, c = −1

Then, e0 = 6, and the following values are calculated:

µ2 = 5.13, β2 = −0.54, τ2 ≈ 0.35147

Therefore, when the parameter e is at its critical value, the Hopf bifurcation of the
system at the equilibrium point E0(0, 0, 0, 0) is supercritical. Moreover, the bifurcation
direction is e < e0 = 6. The bifurcation period solution of the system is stable, as shown in
Figure 5. e > e0 = 6 as shown in Figure 6.
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5. Hyperchaos Control

In many cases, chaos is generally harmful and needs to be suppressed. Therefore,
scholars have paid extensive attention to controlling it. Scholars have developed many
valuable methods for chaos control, such as the hybrid control c-strategy [51] and the
ultimate boundedness [52]. The equation of the controlled system is as follows:

.
x = a(y− x) + r1x,
.
y = cy− xz + p + r2y,
.
z = −bz + y2 + r3z,
.
p = −e(x + y) + r4 p,

(26)
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where r1, r2, r3 and r4 are feedback coefficients. The Jacobian matrix of System (26) at the
zero-equilibrium point is the following:

Jr =

∣∣∣∣∣∣∣∣
−a + r1 a 0 0

0 c + r2 0 1
0 0 −b + r3 0
−e −e 0 r4

∣∣∣∣∣∣∣∣, (27)

The following determinant can be obtained from the Jacobian matrix:

|λE− Jr| =

∣∣∣∣∣∣∣∣
λ + a− r1 −a 0 0

0 λ− c− r2 0 −1
0 0 λ + b− r3 0
e e 0 λ− r4

∣∣∣∣∣∣∣∣. (28)

The characteristic equation can be found in the following:

fr(λ) = R4λ4 + R3λ3 + R2λ2 + R1λ + R0, (29)

where,

R0 = 2abe + acr4 − 2aer3 − ber1 + er1r3 + abr2r4 − bcr1r4 − acr3r4
−ar2r3r4 + br1r2r4 + cr1r3r4 − r1r2r3r4,

R1 = 2ae− be− abc− er1 + er3 + bcr1 + bcr4 − abr2 − abr4 + acr3 + acr4 + ar2r4 + ar2r3
+ar3r4 + br1r2 ++br1r4 − cr1r3 − cr1r4 − cr3r4 + r1r2r4 ++r1r2r3 − r1r3r4 − r2r3r4,

R2 = ab− ac− bc− e− ar2 − ar3 − ar4 − br1 − br2 − br4
+cr1 + cr3 + cr4 + r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4,

R3 = a + b− c− r1 − r2 − r3 − r4,
R4 = 1.

According to the Routh–Hurwitz discriminant condition [49], the real parts of eigen-
values are negative if and only if,

R3R2 − R1 > 0, R3(R1R2 − R3R0)− R2
1 > 0, R3 > 0, R0 > 0.

Case 1:
When a = 40, b = 2, c = 22 and e = 1, we assume r1,2,3,4 = −25. The corresponding

Lyapunov exponents for System (2) are as follows:

L1 = 18.2980, L2 = −4.0706, L3 = 0, L4 = 8.0878.

Then, the corresponding Lyapunov exponents for System (26) are as follows:

L1 = −3.2103, L2 = −13.5230, L3 = −23.3526, L4 = −22.5437.

So, the zero-equilibrium point is asymptotically stable.
Case 2:
When a = 40, b = 2, c = 22 and e = 3, we assume r1,2,3,4 = −30. The corresponding

Lyapunov exponents for System (2) are as follows:

L1 = 19.5457, L2 = −4.1972, L3 = 0, L4 = 8.9684.

Then, the corresponding Lyapunov exponents for System (26) are the following:

L1 = −8.3379, L2 = −16.6337, L3 = −29.2114, L4 = −27.8364.

Hence, the zero-equilibrium point is asymptotically stable.
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For the two cases above, the time-domain waveforms of the hyperchaotic System (2) and
the controlled System (26) are shown in Figures 7 and 8. By choosing appropriate feedback
coefficients, the controlled System (26) is asymptotically stable at the zero-equilibrium point.
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6. Conclusions

This paper obtains a novel four-dimensional hyperchaotic system based on the gener-
alized Sprott C system. This system has two nonlinear terms and seven linear terms. The
system has Hopf bifurcation and can be solved to obtain explicit formulas for the direction
and stability of the bifurcation periodic solutions. Additionally, we show the phase diagram
of the bifurcation periodic solutions stability versus direction in Figures 5 and 6. We mainly
use the Runge–Kutta algorithm for the numerical simulations in this paper. The results
show that the new 4D hyperchaotic system has complex dynamical behavior.

In addition, we also performed linear feedback control on the new 4D hyperchaotic
system. This new control strategy is novel and effective regarding hyperchaotic phenomena
in control systems, as shown in Figures 7 and 8.

In the future, we will study more complex high-dimensional hyperchaotic systems
and apply different methods. Five- and even six-dimensional hyperchaotic systems have
rich and exciting properties and should be studied in depth.
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