
Citation: García, J.; Leiva-Araos, A.;

Crawford, B; Soro, R; Pinto, H.

Exploring Initialization Strategies for

Metaheuristic Optimization: Case

Study of the Set-Union Knapsack

Problem. Mathematics 2023, 11, 2695.

https://doi.org/10.3390/

math11122695

Academic Editor: Petr Stodola

Received: 25 May 2023

Revised: 7 June 2023

Accepted: 9 June 2023

Published: 14 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Exploring Initialization Strategies for Metaheuristic
Optimization: Case Study of the Set-Union Knapsack Problem
José García 1,* , Andres Leiva-Araos 2,* , Broderick Crawford 3 , Ricardo Soto 3 and Hernan Pinto 1

1 Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso,
Avenida Brasil 2241, Valparaíso 2362804, Chile; hernan.pinto@pucv.cl

2 Facultad de Ingeniería, Centro de Transformación Digital, Universidad del Desarrollo,
Santiago 7610658, Chile

3 Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241,
Valparaíso 2362807, Chile; broderick.crawford@pucv.cl (B.C.); ricardo.soto@pucv.cl (R.S.)

* Correspondence: jose.garcia@pucv.cl (J.G.); andresleiva@udd.cl (A.L.-A)

Abstract: In recent years, metaheuristic methods have shown remarkable efficacy in resolving
complex combinatorial challenges across a broad spectrum of fields. Nevertheless, the escalating
complexity of these problems necessitates the continuous development of innovative techniques
to enhance the performance and reliability of these methods. This paper aims to contribute to
this endeavor by examining the impact of solution initialization methods on the performance of
a hybrid algorithm applied to the set union knapsack problem (SUKP). Three distinct solution
initialization methods, random, greedy, and weighted, have been proposed and evaluated. These
have been integrated within a sine cosine algorithm employing k-means as a binarization procedure.
Through testing on medium- and large-sized SUKP instances, the study reveals that the solution
initialization strategy influences the algorithm’s performance, with the weighted method consistently
outperforming the other two. Additionally, the obtained results were benchmarked against various
metaheuristics that have previously solved SUKP, showing favorable performance in this comparison.

Keywords: combinatorial optimization; machine learning; metaheuristics; set-union knapsack
problem; initialization operators

MSC: 90C27

1. Introduction

Over the past few years, metaheuristic methods have emerged as powerful tools in
addressing complex problems, particularly those pertaining to the realm of combinatorial
challenges. A wide array of applications across various fields, including biology [1,2],
logistics [3], civil engineering [4,5], machine learning [6], and many more, serve as com-
pelling evidence of their effectiveness in problem-solving.

These methods have garnered considerable attention owing to their capacity to effec-
tively navigate extensive search spaces and identify near-optimal solutions within relatively
brief timeframes. This characteristic has demonstrated its particular value in addressing
the immense scale and complexity inherent in numerous combinatorial problems. The
ability to find satisfactory solutions for complex problems in a time-efficient manner has
solidified the importance of these methods in the field of optimization.

However, as the intricacy of such problems continues to grow, the challenges associ-
ated with efficiently solving them also intensify. Consequently, there is a pressing need
for innovative techniques and strategies that can enhance the performance of these meth-
ods, ensuring that they remain relevant and effective when confronted with increasingly
complex optimization tasks. The development of advanced algorithms and the integration

Mathematics 2023, 11, 2695. https://doi.org/10.3390/math11122695 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11122695
https://doi.org/10.3390/math11122695
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3126-8352
https://orcid.org/0000-0002-2480-3022
https://orcid.org/0000-0001-5500-0188
https://orcid.org/0000-0002-5755-6929
https://orcid.org/0000-0002-3968-0475
https://doi.org/10.3390/math11122695
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11122695?type=check_update&version=1


Mathematics 2023, 11, 2695 2 of 20

of novel approaches in the initialization process can contribute to overcoming these ob-
stacles, ultimately bolstering the performance and reliability of these methods in tackling
large-scale, intricate combinatorial problems.

In response to these challenges, researchers have focused on the development and
application of diverse approaches aimed at enhancing and fortifying metaheuristic algo-
rithms. One notable example involves hybrid techniques, which amalgamate the strengths
of various metaheuristic algorithms. By integrating complementary methods and harness-
ing their synergies, these hybrid techniques have demonstrated success in augmenting the
overall performance, accuracy, and efficiency of the underlying metaheuristic algorithms.
Another intriguing aspect to explore is the examination of the forms and parameters of
solution initialization.

The significance of initialization operators lies in the fact that the diversity and nature
of the initial population have an impact on the algorithm’s performance, potentially leading
to enhanced solutions and improved convergence rates. Furthermore, the sensitivity of the
algorithms is problem-dependent, signifying that the choice of an initialization method
can have a substantial influence on the performance for certain problems. In addition, the
population size and the number of iterations also play a role in the algorithms’ performance,
necessitating an appropriate population size and a sufficient number of iterations to achieve
optimal solutions. Lastly, the effectiveness of initialization methods varies depending
on the specific metaheuristic optimizer employed, making it crucial to comprehend the
relationship between initialization methods and optimizers in order to select the most
suitable combination for specific problems. In summary, good population diversity and an
adequate number of iterations, combined with an appropriate initialization method, are
likely to lead to optimal solutions.

In the literature exploration, it has been observed that studies such as [7] compare
the effects of population size, maximum iterations, and eleven initialization methods on
the convergence and accuracy of metaheuristic optimizers. Results have indicated that
sensitivity to initialization schemes varies among algorithms and is problem-dependent.
Furthermore, performance has been found to rely on population size and the number of
iterations, with greater diversity and a suitable quantity of iterations being more likely to
produce optimal solutions. In a study by [8], a systematic comparison of 22 initialization
methods was conducted, analyzing their impact on the convergence and accuracy of
five optimizers: DE, PSO, CS, ABC, and GA. The findings revealed that 43.37% of DE
functions and 73.68% of PSO and CS functions were significantly affected by initialization
methods. Population size, number of iterations, and certain probability distributions also
influenced performance.

In the study by [9], a reliability-analysis-based structural shape optimization formu-
lation was proposed, incorporating Latin hypercube sampling (LHS) as the initialization
scheme. The investigation focused on the relationship between geometry and fatigue life in
structural component design. The extended finite element method (XFEM) and level set
description were utilized, and nature-inspired optimization techniques were employed to
solve the problems. Results indicated that proper shape changes can enhance the service
life of structural components subjected to fatigue loads, with the location and orientation
of initial imperfections significantly affecting optimal shapes. Finally, in [10], the authors
provided an extensive review of diverse initialization strategies designed to improve the
performance of metaheuristic optimization algorithms. Emphasizing the crucial role of
initialization, various distribution schemes, population sizes, and iteration numbers have
been investigated by researchers in pursuit of optimal solutions. Notable schemes encom-
pass random numbers, quasirandom sequences, chaos theory, probability distributions,
hybrid algorithms, Lévy flights, and more. Additionally, the paper evaluated the influ-
ence of population size, maximum iterations, and ten distinct initialization methods on
three prominent population-based metaheuristic optimizers: bat algorithm (BA), grey wolf
optimizer (GWO), and butterfly optimization algorithm (BOA).



Mathematics 2023, 11, 2695 3 of 20

Aligning with the process of solution initialization, this paper proposes various strate-
gies for initializing solutions, incorporating these strategies into a discrete hybrid algorithm
detailed in [11]. This algorithm merges the concept of k-means with metaheuristics and is
applied to the set union knapsack problem (SUKP). The SUKP [12] is an extended version
of the traditional knapsack problem and has attracted considerable research interest in
recent years [13–15]. This attention is primarily due to its intriguing applications [16,17],
coupled with the complexity and challenge involved in solving it efficiently.

In the context of the SUKP, an assortment of items is identified, each with a specific
profit value attributed. Additionally, a correspondence is established between each item and
a group of elements, with each carrying a weight that impacts the knapsack constraint. A
scrutiny of the existing body of literature reveals that the SUKP is predominantly addressed
using advanced metaheuristics, with outcomes provided within acceptable time limits.
However, when conventional metaheuristics are utilized in the SUKP, issues including
instability and diminished effectiveness are exposed as the instance size increases. For
instance, a variety of transfer functions were deployed and evaluated within small to
medium SUKP instances, as documented in [18]. A reduction in effectiveness was noted
when these algorithms were applied to standard SUKP instances. Adding to the complexity,
a new series of benchmark problems have been recently introduced, as noted in [19].

Given these considerations, it becomes imperative to explore solution initialization
techniques to assess the algorithm’s performance. The following are the significant contri-
butions of this study:

1. Three solution initialization strategies are proposed.
2. The initialization solutions are integrated with the SIN-COS metaheuristic and the

k-means technique, following the strategy proposed in [20].
3. The three initialization strategies are evaluated using medium-sized and large-sized

SUKP problems, with the latter being proposed in [19].

The structure of this paper is organized as follows: Section 2 delivers a comprehensive
examination of the set-union knapsack problem and its related applications. In Section 3,
the k-means sine cosine search algorithm and the initialization operator are thoroughly
described. Section 4 expounds on the numerical experiments undertaken and the result-
ing comparisons. Finally, Section 6 presents concluding insights and explores potential
directions for future research.

2. Advancements in Solving the Set-Union Knapsack Problem

The SUKP represents an extended model of a knapsack, which is defined as follows.
A set of n elements, denoted as U, is assumed to exist, with each element j ∈ U possessing
a positive weight wj. Assumed also is a set of m items, named V, where each item i ∈ V
is a subset of elements Ui ⊆ U and holds a profit pi. Given the presence of a knapsack
with a capacity C, the aim of SUKP is to identify a subset of items S ⊆ V that allows
the maximization of the total profit of S, while ensuring that the combined weight of
the components belonging to S does not exceed the capacity C of the knapsack. The
decision variables of the problem are identified as the elements belonging to the set S. It
is noteworthy that an element’s weight is considered only once, even if it corresponds to
multiple chosen items in S. The mathematical depiction of SUKP is presented subsequently:

Maximize P(S) = ∑
i∈S

pi. (1)

subject to:
W(S) = ∑

j∈∪i∈SUi

wj ≤ C, S ⊆ V. (2)

In the research work, interesting applications of SUKP are identified, such as the
one introduced in [16]. The aim of this application is the enhancement of robustness and
scalability within cybernetic systems. The consideration is given to a centralized cyber



Mathematics 2023, 11, 2695 4 of 20

system with a fixed memory capacity, which hosts an assortment of profit-generating
services (or requests), each inclusive of a set of data objects. The activation of a data object
consumes a particular amount of memory; however, recurring utilization of the same data
object does not incur additional memory consumption (a pivotal condition of SUKP). The
objective involves the selection of a service subset from the pool of available candidates,
with the intention to maximize the total profit of these services, whilst keeping the total
memory required by the linked data objects within the cyber system’s memory capacity.
The SUKP model, in which an item symbolizes a service with its profit and an element
represents a data object with its memory usage (element weight), fittingly structures this
application. Consequently, the determination of the optimal solution to the resulting SUKP
problem parallels the resolution of the data allocation problem.

An additional application worth mentioning relates to the real-time rendering of
animated crowds, as noted in [21]. In this study, a method is introduced by the authors
to hasten the visualization process for large gatherings of animated characters. A caching
system is implemented that permits the reuse of skinned key-poses (elements) in multi-pass
rendering, across multiple agents and frames, while endorsing an interpolative approach for
key-pose blending. Within this context, each item symbolizes a member of the crowd. More
applications are evident in data stream compression using bloom filters, as reported in [17].

SUKP is an NP-hard problem [12], and various methods have been employed to
address it. Theoretical studies using greedy approaches or dynamic programming are
presented in [12,22]. In [23], an integer linear programming model was developed and
applied to small instances comprising 85 and 100 items, yielding optimal solutions.

Metaheuristic algorithms have been employed to tackle SUKP in various studies.
In [24], the authors utilize an artificial bee colony technique to address SUKP, integrating
a greedy operator to manage infeasible solutions. An enhanced moth search algorithm is
developed in [25], incorporating a differential mutation operator to boost efficiency. The
Jaya algorithm, along with a differential evolution technique, is applied in [26] to enhance
exploration capability. A Cauchy mutation is used to improve exploitation ability, while an
enhanced repair operator is designed to rectify infeasible solutions.

In [18], the efficacy of various transfer functions is examined for binarizing moth meta-
heuristics. A local search operator is devised in [27] and applied to large-scale instances of
SUKP. The study proposes three strategies in line with the adaptive tabu search framework,
enabling efficient solutions for new SUKP instances. In [28], the grey wolf optimizer (GWO)
algorithm is adapted to tackle binary problems. Instead of traditional binarization meth-
ods, the study employs a multiple parent crossover with two distinct dominance tactics,
replicating GWO’s leadership hierarchy technique. Furthermore, an adaptive mutation
featuring an exponentially decreasing step size is employed, aiming to inhibit premature
convergence and establish a balance between intensification and diversification.

In [29], the authors merge machine learning and metaheuristics to devise a Q-learning
reinforcement strategy for binary optimization problems, using PSO, genetic algorithm,
and gbPSO as optimizers. Enhanced optimizers incorporate initial solution generation
and a random immigrants mechanism, while a mutation procedure fosters intensified
search. This approach is applied to the set-union knapsack problem, producing promising
outcomes. Meanwhile, [30] investigates the impact of integrating a backtracking strategy
into population-based approaches for the same problem. The proposed method features
swarm optimization, an iterative search operator, and a path-relinking strategy for obtaining
high-quality solutions. Performance evaluation using benchmark instances demonstrates
promising results when compared to existing methods.

3. Initialization, Metaheuristic, and Search Operators

This section outlines a comparison of three distinct initialization operators: a random
operator, a greedy operator, and a weighted operator based on a specific indicator. The
overall functioning of the proposed algorithm is depicted in Figure 1, with subsequent
sections delving into detailed descriptions of each operator. These initialization operators



Mathematics 2023, 11, 2695 5 of 20

are further elaborated in Section 3.1. Additionally, we discuss the hybrid operator, a unique
blend of machine learning techniques and metaheuristics, which is tasked with executing
movements. For this study, we implemented a hybrid SCA, as detailed in Section 3.2.
Finally, we examine the local search operator, which is utilized to refine the results obtained.
This operator is discussed in Section 3.3.

Is the exit 
condition 

met?

Weight/Greedy/Random 
 initialization

End

Start

Execute SCAYes No

get a new better 
value?

Execute local 
search operator

Yes

No

Execute MLBA

Figure 1. MLSCABA flow chart.

3.1. Initialization Operators

The aim of these operators is to construct the initial solutions that will initiate the search
process. To achieve this, items are sorted according to the ratio defined in Equation (3). The
operators take sortItems as input, which consists of elements arranged in descending order
based on their r values. The output is a valid solution, denoted as Sol.

r =
item profit

sum of element weights
(3)

In the case of the greedy operator, Algorithm 1, at line 4, Sol is initialized with a
random element, and this element is removed from the sortItems list. Subsequently, at line
6, the knapsack constraint is checked; if the condition is met, the while loop is entered.
Within the loop, a new item is assigned based on Equation (3), and it is removed again
from sortItems. Once the knapsack is full, the solution requires cleaning in line 10, as
its weight is greater than or equal to knapsackSize. If the weights are equal, no action is
taken. However, if the weight is greater, the items in Sol must be sorted using the r value
defined in Equation (3), and removed in ascending order while checking the constraint
after each removal. Once the constraint is satisfied, the procedure halts, and the solution
Sol is returned.

In the context of the random operator, Algorithm 2, at line 4, a random item is used to
initialize Sol, and this item is subsequently removed from the sortItems list. Following this,
the knapsack constraint is evaluated at line 6. If the condition is fulfilled, the program enters
the while loop. Within this loop, a new item is randomly selected without considering the
greedy condition and is promptly removed from sortItems. When the knapsack is filled,
the solution requires adjustment at line 10 as its weight equals or exceeds knapsackSize. If
the weights are identical, no action is required. However, if the weight of Sol surpasses
knapsackSize, the items in G must be arranged in accordance with the r-value defined in
Equation (3) and are removed in ascending order, with the constraint being evaluated after
each removal. The procedure concludes once the constraint is met, returning the solution
Sol as the output.



Mathematics 2023, 11, 2695 6 of 20

Algorithm 1 Greedy initialization operator.

1: Function initGreedySolutions(sortItems)

2: Input sortItems
3: Output Sol
4: Sol ← getRandom()

5: sortItems← removeFromSortItems(Item)

6: while (weightSol < knapsackSize) do

7: Sol ← addSortItem(sortItems)

8: sortItems← removeFromSortItems(Item)

9: end while

10: Sol ← cleanSol(Sol)
11: return Sol

Algorithm 2 Random initial operator.

1: Function initRandomSolutions(sortItems)

2: Input sortItems
3: Output Sol
4: Sol ← getRandom()

5: sortItems← removeFromSortItems(Item)

6: while (weightSol < knapsackSize) do

7: Sol ← addRandomItem(sortItems)

8: sortItems← removeFromSortItems(Item)

9: end while

10: Sol ← cleanSol(Sol)
11: return Sol

In the case of the weighted operator, Algorithm 3, the selection process differs in
that items are chosen randomly but with a probability governed by Equation (3). In this
approach, a normalized probability is constructed for each item, where the sum of all
probabilities equals 1. Subsequently, the random selection of items is performed, taking
into account the probability assigned to each of them.

Algorithm 3 Weighted initial operator.

1: Function initWeightedSolutions(sortItems)

2: Input sortItems
3: Output Sol
4: Sol ← getRandom()

5: sortItems← removeFromSortItems(Item)

6: while (weightSol < knapsackSize) do

7: Sol ← addWeightedItem(sortItems)

8: sortItems← removeFromSortItems(Item)

9: end while

10: Sol ← cleanSol(Sol)
11: return Sol

3.2. Machine Learning Binarization Operator

The binarization process relies heavily on the machine learning binarization algo-
rithm (MLBA). This algorithm receives the list of solutions lSol from the prior iteration,
the metaheuristic (MH)—in this scenario, SCA, the optimal solution achieved thus far
(bestSol), and the transition probability for each cluster, transProbs, as input. In line 4, the



Mathematics 2023, 11, 2695 7 of 20

metaheuristic MH is utilized on the list lSol; in this specific situation, it corresponds to
SCA. The absolute values of velocities vlSol are extracted from the result of applying MH
to lSol. These velocities symbolize the transition vector obtained through the application of
the metaheuristic to the solution list. In line 5, k-means is used to cluster the entire set of
velocities (getKmeansClustering); in this particular instance, K is designated as 5. It should
be emphasized that the Algorithm 4 in conjunction with Algorithm 5 were proposed in the
context of [11].

Algorithm 4 Machine learning binarization operator (MLBA).

1: Function MLBA(lSol, MH, transProbabs, bestSol)
2: Input lSol, MH, transProbabs
3: Output lSol, bestSol
4: vlSol ← getAbsValueVelocities(lSol, MH)

5: lSolClust← getKmeansClustering(vlSol, K)

6: for (each Soli in lSolClust) do

7: for (each dimSoli,jl in Soli) do

8: dimSolProbi,j = getClusterProbability(dimSol, transProbabs)

9: if dimSolProbi,j > r1 then

10: Update lSoli,j considering the best.

11: else

12: Do not update the item in lSoli,j
13: end if

14: end for

15: Soli ← cleanSol(Soli)
16: end for

17: tempBest← getBest(lSol)
18: if cost(tempBest) > cost(bestSol) then

19: tempBest← execLocalSearch(tempBest)
20: bestSol ← tempBest
21: end if
22: return lSol, bestSol

Algorithm 5 Local search.

1: Function LocalSearch(bestSol)
2: Input bestSol
3: Output bestSol
4: lsol Items, lsolNoItems← getItems(bestSol)
5: i = 0
6: while (i < T) do
7: tempSol ← swap(lsol Items, lsolNoItems)
8: if pro f it(tempSol) > pro f it(bestSol) and knapsack(tempSol) <= knapsackSize then
9: bestSol ← tempSol

10: end if
11: i += 1
12: end while
13: return bestSol



Mathematics 2023, 11, 2695 8 of 20

For each solution Soli and dimension j, a cluster assignment is made, and every
cluster is linked with a transition probability (transProbabs), organized based on the
value of the cluster centroid. In this situation, the transition probabilities employed are
[0.1, 0.2, 0.4, 0.5, 0.9]. The set of points that belongs to the cluster with the smallest centroid,
depicted by the green color in Figure 2, is connected with a transition probability of 0.1.
For the collection of blue points with the highest centroid value, a transition probability of
0.9 is associated. The smaller the value of the centroid, the lower the related transProbs.

Continuos 
space

Discrete 
space

Figure 2. K-means binarization procedure.

In line 8, for each lSoli,j, a transition probability dimSolProbi,j is allocated and subse-
quently contrasted with a random number r1 in line 9. If dimSolProbi,j > r1, the solution
undergoes an update considering the best value in line 10; otherwise, no update occurs, as
indicated in line 12. After all solutions have been refreshed, a cleanup process, explained
in Section 3.1, is applied. If a new best value emerges, a local search operator is executed
in line 19. The details of this local search operator are provided in the following section.
Ultimately, the revised list of solutions lSol and the optimal solution bestSol are returned.

3.3. Local Search Operator

The local search operator is invoked whenever a new best value is uncovered by the
metaheuristic. This operator accepts the new best values (bestSol) as input and, for its
initial step, leverages them to ascertain the items that are included and excluded from
bestSol, as displayed in line 4 of Algorithm 5. These two lists of items undergo an iteration
T = 200 times, effectuating a nonrepetitive swap, as exhibited in line 7 of Algorithm 5.
Upon the completion of the swap, two conditions are assessed: whether the profit has
improved and if the weight of the knapsack is less than or equal to knapsackSize. If both
conditions are met, bestSol is updated with tempSol, and, ultimately, the refreshed bestSol
is returned.

4. Results

This section introduces the experiments performed using MLBA in combination with
the sine cosine metaheuristic, aiming to assess the efficacy and contribution of the proposed
algorithms when deployed for anNP-hard combinatorial problem. This specific variant of
MLBA, which employs the sine cosine algorithm, will be referred to as MLSCABA. The
SUKP was elected as a benchmark problem due to its extensive addressal by numerous
algorithms and its presentation of nontrivial challenges when it comes to resolving small,
medium, and large instances. It should be emphasized that the MLBA binarization tech-
nique is highly adaptable to other optimization algorithms. The optimization algorithm of
choice was SCA, given its absence of a requirement for parameter tuning and its wide use
in solving a variety of optimization problems.



Mathematics 2023, 11, 2695 9 of 20

The algorithm was implemented using Python 3.8 and executed on a Windows 10 PC
equipped with a Core i7 processor and 32 GB of RAM. To evaluate the statistical significance
of the differences, the Wilcoxon signed-rank test was applied with a significance level of
0.05. This test was selected following the methodology delineated in [31]. The Shapiro–Wilk
normality test is utilized first in this process. If one of the populations does not adhere
to a normal distribution and both populations have an identical number of points, the
Wilcoxon signed-rank test is suggested for identifying the difference. In the experiments,
the Wilcoxon test was employed to contrast the MLSCABA results with other variants
or algorithms used in pairs. A comprehensive list of results was consistently employed
for comparisons. The tests were constructed using the statsmodels and scipy libraries in
Python. Each instance was solved 30 times to gather the best value and average indicators.
Moreover, the average time (in seconds) necessary for the algorithm to discover the optimal
solution is documented for each instance.

The initial set of instances, employed during the first phase of this study, were intro-
duced in [32]. These instances encompass between 85 and 500 items and elements. They are
distinguished by two parameters. The first parameter, µ = (∑m

i=1 ∑n
j=1 Rij)/(mn), signifies

the density in the matrix, where Rij = 1 denotes that item i is included in element j. The
second parameter, ν = C/(∑n

j=1 wj), denotes the capacity ratio C over the total weight of
the elements. As a result, an SUKP instance is labeled as m_n_µ_ν. The secondary group
of instances was proposed in [19] and ranges between 585 and 1000 items and elements.
These instances were assembled following the same framework as the preceding set.

4.1. Parameter Setting

The parameter selection was guided by the methodology delineated in [20,33]. This
technique draws upon four metrics, encapsulated in Equations (4)–(7), to facilitate ju-
dicious parameter selection. We generated values through instances 100_85_0.10_0.75,
100_100_0.15_0.85, and 85_100_0.10_0.75, with each parameter combination undergoing a
tenfold validation. The parameters examined and subsequently chosen are documented
in Table 1. To identify the optimal configuration, the polygonal area derived from the
four-metric radar chart was computed for each setting. The configuration yielding the most
expansive area was subsequently selected. Regarding transition probabilities, variation
was exclusively confined to the probability of the fourth cluster, assessed at values of
[0.5, 0.6, 0.7], while maintaining the rest at a constant level.

1. The percentage difference between the best value achieved and the best known value:

bSolution = 1− KnownBestValue− BestValue
KnownBestValue

(4)

2. The percentage difference between the worst value achieved and the best known value:

wSol = 1− KnownBestValue−WorstValue
KnownBestValue

(5)

3. The percentage deviation of the obtained average value from the best known value:

aSol = 1− KnownBestValue− AverageValue
KnownBestValue

(6)

4. The convergence time utilized during the execution:

nTime = 1− convergenceTime−minTime
maxTime−minTime

(7)



Mathematics 2023, 11, 2695 10 of 20

Table 1. Parameter setting for the MLSCABA.

Parameters Description Value Range

N Number of solutions 10 [5, 10, 20]
K Clusters number 5 [4, 5]

T Maximum local search
iterations 200 [100,200,400]

Transition probability Transition probability [0.1, 0.2, 0.4, 0.5, 0.9] [0.1, 0.2, 0.4, [0.5, 0.6, 0.7], 0.9]

4.2. Insight into Binary Algorithm

The objective of this section is to have the performance of various initialization opera-
tors assessed and compared, specifically random, weighted, and greedy, when applied to
two sets of data. In order to carry out this comparison, several key performance indicators
were considered, including best value achieved, average value, average execution time, and
standard deviation. Valuable insights into the efficiency, effectiveness, and consistency of
each initialization operator can be offered by these metrics. To ensure the reliability of the
findings, each instance was executed 30 times, providing a more comprehensive evaluation
of the performance of the operators across multiple runs.

For the analysis of the results, comparative tables are generated to present quantitative
data, box plots are created to facilitate visual comparisons of the performance distributions
of the operators, and convergence graphs for selected instances are illustrated to depict the
progress of each operator over time. By utilizing these various data visualization techniques,
a thorough understanding of the strengths and weaknesses of each initialization operator
can be provided, enabling more informed decisions when selecting the most suitable
operator for a specific problem or dataset.

The findings from an experimental study on medium-sized instances of the set-union
knapsack problem are delineated in Table 2, with accompanying visualizations depicted in
Figures 3 and 4. Three distinct initialization operators—random, greedy, and weighted—were
examined in this study. We investigated three different initialization operators, namely,
random, greedy, and weighted. The table is formatted in such a way that the first column
provides the designation of the instance being analyzed, followed by the column depicting
the optimum known solutions for the respective instances. The subsequent four columns
illustrate the findings associated with the random initialization operator, including the
best-found solution, the average solution, computational time measured in seconds, and
the standard deviation of obtained values. In a similar format, the next four columns
present the results derived from the weighted operator, while the final quartet of columns
elaborate on the outcomes resulting from the application of the greedy operator.

From Table 2, it can be inferred that the best values obtained are associated with the
weighted operator, both in terms of best value and average. Additionally, it can be observed
that the average convergence times are quite similar among the three operators. The exact
number of instances in which the weighted operator outperformed the other two operators
in terms of best value was counted, and it was found to be superior in five instances,
the random operator in one instance, and the greedy operator in three instances. When
the average indicator was analyzed, the weighted initialization operator was observed
to outperform the others in 16 instances, while the random operator excelled in seven
instances and the greedy operator in seven instances. This further demonstrated the
consistent superiority of the weighted operator compared to the others. In the significance
analysis, the weighted operator was indicated to be significantly superior to the other two
initialization operators, both in terms of best value and average.



Mathematics 2023, 11, 2695 11 of 20

1 2 3 4 5 6 7
Percentage Gap

Gap Random

Gap Weighted

Gap Greedy

Figure 3. Box plot of percentage gap for random, weighted, and greedy initialization operators for
medium-sized instances.

Figure 4. Convergence chart for random, weighted, and greedy initialization operators for selected
medium-sized instances.



Mathematics 2023, 11, 2695 12 of 20

Table 2. Comparison of initialization operators: random, weighted, and greedy for the medium-sized instance set.

Random Weighted Greedy

Instances Best Known Best Value Average Time (s) Std Best Value Average Time (s) Std Best Value Average Time (s) Std

85_100_0.10_0.75 12,045.00 12,045.00 11,835.33 1.37 193.72 12,045.00 11,866.07 1.22 206.93 12,045.00 11,864.57 1.24 177.94
85_100_0.15_0.85 12,369.00 12,369.00 12,009.37 2.32 392.59 12,369.00 12,043.53 2.52 328.86 12,369.00 11,938.57 2.17 361.75

100_100_0.10_0.75 14,044.00 14,044.00 13,926.97 2.39 92.88 14,044.00 13,882.30 2.34 109.28 14,044.00 13,894.90 3.64 134.65
100_100_0.15_0.85 13,508.00 13,508.00 13,116.07 3.90 239.47 13,508.00 13,174.17 5.46 267.75 13,498.00 12,998.70 3.60 429.24

100_85_0.10_0.75 13,283.00 13,283.00 13,021.87 3.01 154.09 13,283.00 13,029.03 2.42 169.84 13,283.00 12,992.83 3.84 138.88
100_85_0.15_0.85 12,479.00 12,273.00 12,044.77 4.71 203.24 12,479.00 12,015.00 5.96 340.24 12,348.00 12,034.60 3.18 228.98

185_200_0.10_0.75 13,696.00 13,696.00 13,582.93 3.90 101.97 13,696.00 13,559.10 4.64 113.68 13,696.00 13,593.77 5.54 82.97
185_200_0.15_0.85 11,298.00 11,298.00 10,908.87 4.90 248.28 11,298.00 10,923.50 5.64 278.47 11,298.00 10,821.30 4.87 255.41
200_185_0.10_0.75 13,521.00 13,502.00 13,284.00 6.97 176.37 13,502.00 13,287.40 6.56 143.38 13,502.00 13,348.80 7.92 99.57
200_185_0.15_0.85 14,215.00 13,993.00 13,243.17 10.40 479.60 14,215.00 13,234.83 12.84 477.21 13,993.00 13,282.67 9.08 387.88
200_200_0.10_0.75 12,522.00 12,522.00 12,309.57 4.22 183.46 12,522.00 12,262.77 4.37 117.00 12,522.00 12,266.13 7.26 150.87
200_200_0.15_0.85 12,317.00 12,238.00 11,809.53 7.54 230.21 12,317.00 11,842.53 7.00 214.42 12,167.00 11,838.73 11.66 182.89
285_300_0.10_0.75 11,568.00 11,568.00 11,468.43 2.98 86.28 11,568.00 11,495.17 2.54 69.00 11,568.00 11,479.57 3.39 73.66
285_300_0.15_0.85 11,802.00 11,802.00 11,372.00 5.77 205.83 11,802.00 11,411.33 8.18 243.88 11,763.00 11,342.50 6.26 241.63
300_285_0.10_0.75 11,563.00 11,559.00 11,314.17 10.06 143.55 11,563.00 11,346.00 9.05 179.31 11,563.00 11,338.93 7.24 170.56
300_285_0.15_0.85 12,607.00 12,380.00 12,062.07 10.79 300.21 12,402.00 12,084.53 8.04 258.47 12,411.00 12,034.73 10.49 216.47
300_300_0.10_0.75 12,817.00 12,817.00 12,634.20 5.41 93.43 12,817.00 12,652.27 4.83 87.31 12,817.00 12,620.90 4.08 97.47
300_300_0.15_0.85 11,585.00 11,425.00 11,322.17 6.46 140.24 11,425.00 11,288.09 7.88 212.76 11,448.00 11,317.23 7.32 133.51
385_400_0.10_0.75 10,600.00 10,490.00 10,344.23 3.49 74.43 10,600.00 10,357.73 4.69 82.10 10,483.00 10,359.40 4.15 67.64
385_400_0.15_0.85 10,506.00 10,506.00 10,164.50 7.07 153.88 10,506.00 10,175.87 6.72 211.36 10,506.00 10,131.30 7.25 205.12
400_385_0.10_0.75 11,484.00 11,484.00 11,391.97 2.57 89.49 11,484.00 11,409.57 2.82 88.97 11,484.00 11,410.73 2.49 87.33
400_385_0.15_0.85 11,209.00 11,209.00 10,774.00 10.52 292.21 11,209.00 10,725.40 8.82 292.55 11,209.00 10,805.53 11.31 299.81
400_400_0.10_0.75 11,665.00 11,665.00 11,495.67 10.54 141.49 11,665.00 11,501.20 4.21 157.25 11,665.00 11,451.63 4.84 132.43
400_400_0.15_0.85 11,325.00 11,325.00 10,907.23 10.47 422.52 11,325.00 10,976.20 9.24 404.47 11,325.00 10,930.60 8.70 441.57
485_500_0.10_0.75 11,321.00 11,115.00 10,890.13 6.47 106.07 11,260.00 10,885.77 7.73 175.53 11,186.00 10,860.70 7.95 112.53
485_500_0.15_0.85 10,220.00 10,208.00 9835.43 7.70 234.49 10,208.00 9871.23 9.36 215.29 10,208.00 9936.11 7.67 220.54
500_485_0.10_0.75 11,771.00 11,729.00 11,523.77 8.68 151.08 11,729.00 11,504.10 8.64 139.31 11,698.00 11,480.53 8.08 159.68
500_485_0.15_0.85 10,238.00 10,059.00 9834.57 7.23 139.18 10,059.00 9856.20 7.54 111.32 10,086.00 9840.10 7.25 141.35
500_500_0.10_0.75 11,249.00 11,217.00 10,887.07 6.35 120.34 11,123.00 10,854.37 6.08 113.86 11,078.00 10,840.97 6.08 97.11
500_500_0.15_0.85 10,381.00 10,203.00 9931.93 9.08 185.66 10,381.00 9953.77 8.68 261.38 10,381.00 9885.10 7.00 235.07

Average 11,897.07 11,621.47 6.56 185.36 11,928.21 11,627.12 6.51 197.69 11,901.07 11612.11 6.52 186.60
Wilcoxon p-value 0.02 0.02 0.01 0.009

The values highlighted in bold represent the optimal outcomes obtained. It’s important to note that these are only marked when the best result is exclusive to a single algorithm. If there
are two algorithms yielding identical optimal values, that instance will not be emphasized.



Mathematics 2023, 11, 2695 13 of 20

In Figure 3, the % gap of average value, defined in Equation (8), is compared with
respect to the best-known value for the different variants developed in this experiment.
The comparison is made through box plots. In the figure, it can be observed that visually,
the three box plots are similar; however, the median is relatively better for the weighted
operator. On the other hand, it is observed that both random and weighted operators have
one outlier each. In both cases, it occurred for the same instance, sukp-200-185-0.15-0.85.
The dispersion in the case of the greedy operator was greater than that of the other two,
even though it is not apparent in the average.

The convergence patterns for four instances are delineated in Figure 4. On initial obser-
vation, all plots exhibit analogous trends of convergence, yet certain distinctions arise when
delving into the specifics. Notably, the greedy operator demonstrates slower convergence
rates in the cases of graphs ’a’ and ’c’ compared to the other two operators. However, this
pattern is intriguingly inverted in the context of graph ’d’. Such variations indicate that, on
average, the performance disparities among the operators tend to counterbalance across
different instances.

%− Gap = 100 ∗ BestknownValue− AverageValue
BestknownValue

(8)

Experimental findings derived from large-sized instances of the set-union knapsack
problem are presented in Table 3 and further elucidated by the illustrative graphics in
Figures 5 and 6. From the data in Table 3, it can be seen that superior results for both
average and best value metrics were achieved on average by ’weighted’. Upon detailed
inspection of individual instances, it was found that 14 ’best values’ were obtained by
the ’weighted’ initialization operator, followed by ’random’ and ’greedy’, each achieving
three. In terms of ’average’ values, a similar pattern was seen, with 19 optimal averages
being obtained by ’weighted’, followed by ’greedy’ with six, and ’random’ with five. These
observations suggest that the final outcome of the optimization process can be influenced
by the method used for initializing the solutions. This is further confirmed by significance
tests, which indicate a statistically significant difference.

Upon examining the box plots, a favorable trend towards better values for the
’weighted’ initialization operator is also discernible within the interquartile range. The
dispersion of results appears more controlled, and the median value also demonstrates
superior performance. Furthermore, when analyzing convergence times in conjunction
with the graphs, it is observed that there is generally no significant difference among
them, with very similar timings being recorded across all three operators. The convergence
graphs, likewise, exhibit a comparable pattern.

Based on the findings from the experimental study, it can be concluded that superior
performance was exhibited by the weighted initialization operator when compared to the
random and greedy operators in solving medium to large-sized instances of the set-union
knapsack problem. Although the average convergence times were found to be similar
across all three operators, the most optimal solutions were consistently achieved by the
weighted operator, along with superior average performance. These assertions were further
corroborated by the significance analysis, in which superior performance in terms of best
value and average was shown by the weighted operator. However, it must be noted that in
certain instances, superior performance was achieved by the random and greedy operators
over the weighted operator, indicating that the choice of initialization operator may be
contingent upon the unique characteristics of each problem instance.



Mathematics 2023, 11, 2695 14 of 20

0 2 4 6 8
Percentage Gap

Gap Random

Gap Weighted

Gap Greedy

Figure 5. Box plot of percentage gap for random, weighted, and greedy initialization operators for
large instances.

Figure 6. Convergence chart for random, weighted, and greedy initialization operators for selected
large-sized instances.



Mathematics 2023, 11, 2695 15 of 20

Table 3. Comparison of initialization operators: random, weighted, and greedy for the large-sized instance set.

Random Weighted Greedy

Instances Best Known Best Value Average Time (s) Std Best Value Average Time (s) Std Best Value Average Time (s) Std
1000_1000_0.10_0.75 9544 8985.00 8429.47 7.15 365.16 9084.00 8428.63 5.41 259.40 9046.00 8347.77 5.75 270.27
1000_1000_0.15_0.85 8474 8129.00 7524.07 7.56 369.28 8165.00 7616.43 8.34 341.37 8079.00 7550.73 9.61 338.77
1000_985_0.10_0.75 9668 8776.00 8165.17 4.39 336.53 9170.00 8318.83 5.46 390.16 8788.00 8221.97 5.15 320.91
1000_985_0.15_0.85 8453 8159.00 7528.70 5.50 379.77 8159.00 7528.70 5.50 379.77 8159.00 7741.67 6.58 351.04

585_600_0.10_0.75 10,393 10,334.00 9932.16 9.26 146.26 10,334.00 9959.27 8.15 146.26 10,233.00 9880.33 8.95 156.26
585_600_0.15_0.85 9256 9256.00 8802.11 6.57 164.13 9256.00 8812.53 6.57 164.13 9256.00 8827.27 7.69 155.69
600_585_0.10_0.75 9914 9741.00 9680.72 3.04 41.50 9741.00 9681.61 3.15 41.50 9914.00 9676.73 4.91 65.38
600_585_0.15_0.85 9357 9357.00 9052.14 10.01 137.27 9357.00 9054.07 9.86 137.27 9258.00 9042.67 7.96 95.32
600_600_0.10_0.75 10524 10,469.00 10,350.58 6.57 101.44 10,490.00 10,384.70 6.70 91.87 10,469.00 10,354.77 6.00 74.25
600_600_0.15_0.85 9062 9024.00 8847.17 5.47 73.51 9024.00 8857.09 6.67 80.37 8976.00 8834.93 5.91 67.09
685_700_0.10_0.75 10,121 9827.00 9420.17 8.16 235.36 9926.00 9548.40 10.38 182.61 9786.00 9472.53 8.89 201.18
685_700_0.15_0.85 9256 8990.00 8699.40 10.20 148.28 9110.00 8779.23 9.04 124.60 9110.00 8727.57 8.12 140.91
700_685_0.10_0.75 9881 9635.00 9397.32 8.69 196.04 9736.00 9452.77 8.07 226.74 9695.00 9410.73 7.39 147.66
700_685_0.15_0.85 9163 9106.00 8811.93 8.24 158.98 9135.00 8790.23 9.75 171.42 9106.00 8718.53 10.97 176.12
700_700_0.10_0.75 9786 9585.00 9138.30 9.88 357.45 9467.00 9171.78 10.02 235.85 9637.00 9307.93 10.76 145.67
700_700_0.15_0.85 9229 8886.00 8582.13 7.68 147.98 8924.00 8602.87 8.70 172.41 9143.00 8664.43 7.13 219.65
785_800_0.10_0.75 9384 9096.00 8640.27 9.71 266.71 9077.00 8603.40 9.95 353.37 9124.00 8627.97 8.71 214.81
785_800_0.15_0.85 8746 8355.00 8062.07 7.87 238.44 8572.00 8159.53 9.64 181.67 8366.00 8095.37 10.11 186.26
800_785_0.10_0.75 9837 9525.00 9091.67 11.18 324.68 9577.00 9060.83 12.39 297.77 9343.00 8955.30 9.54 314.30
800_785_0.15_0.85 9024 8679.00 8456.63 7.12 142.71 8907.00 8555.93 7.13 145.52 8907.00 8498.40 7.31 152.91
800_800_0.10_0.75 9932 9607.00 9309.73 10.26 227.54 9786.00 9372.37 10.36 216.12 9661.00 9413.87 9.43 171.85
800_800_0.15_0.85 9101 8864.00 8389.17 8.97 287.13 8841.00 8395.37 8.11 275.12 8804.00 8381.90 8.17 242.94
885_900_0.10_0.75 9318 9058.00 8656.77 7.97 304.85 9019.00 8596.40 7.31 282.41 9030.00 8653.27 7.73 228.28
885_900_0.15_0.85 8425 8125.00 7669.23 9.88 297.90 8027.00 7568.77 8.21 318.22 8120.00 7620.40 9.08 325.51
900_885_0.10_0.75 9725 9177.00 8859.87 8.70 346.50 9464.00 8953.63 9.16 327.09 9305.00 8861.33 7.85 315.26
900_885_0.15_0.85 8620 8385.00 7814.57 7.69 327.92 8427.00 7902.33 9.38 324.41 8385.00 7872.33 7.71 342.64
900_900_0.10_0.75 9745 9467.00 8989.50 8.50 323.26 9499.00 8870.77 7.41 406.92 9465.00 8949.40 9.28 437.68
900_900_0.15_0.85 8990 8510.00 7747.23 5.13 522.61 8647.00 7908.00 7.73 438.39 8647.00 7888.37 6.44 479.86

985_1000_0.10_0.75 9193 8703.00 8106.17 6.42 323.15 8931.00 8076.70 7.06 436.63 8665.00 8062.87 5.70 327.51
985_1000_0.15_0.85 8528 8143.00 7546.13 6.16 294.45 8143.00 7571.37 5.42 281.91 8134.00 7506.23 5.61 332.20

Average 9354.97 9065.10 8658.00 7.80 252.89 9133.17 8686.06 8.07 247.71 9087.03 8672.25 7.85 233.27
Wilcoxon p-value 0.002 0.01 0.02 0.03

The values highlighted in bold represent the optimal outcomes obtained. It’s important to note that these are only marked when the best result is exclusive to a single algorithm. If there
are two algorithms yielding identical optimal values, that instance will not be emphasized.



Mathematics 2023, 11, 2695 16 of 20

4.3. Comparisons

This section endeavors to contrast the proposed algorithm with a variety of optimiza-
tion strategies, particularly focusing on BABC [24], binDE [24], gPSO [14], intAgents [34],
and DH-Jaya [26]. The gPSO algorithm commences by creating a randomly populated
binary set. By employing crossover and gene selection mechanisms, it generates new
particles based on the current, personal, and globally optimal solutions. After the solutions
are evaluated and updated accordingly, the algorithm perpetuates iterations until a des-
ignated termination criterion is reached. Furthermore, an optional mutation procedure is
integrated as needed to preclude premature convergence. The binary artificial bee colony
(BABC) is an optimization algorithm that draws inspiration from the foraging practices of
honeybees. It incorporates three categories of bees: employed, onlooker, and scout bees.
The employed bees actively seek food sources and relay their discoveries to the onlooker
bees. Subsequently, the onlookers choose a food source predicated upon its perceived
quality. Meanwhile, scout bees traverse uncharted territories in search of superior food
sources. The algorithm operates in an iterative manner, continuously refining the food
sources until it satisfies a predetermined stopping criterion.

The binary differential evolution (BinDE) algorithm is a population-based optimiza-
tion strategy. It employs the differential evolution operator to generate novel candidate
solutions. The algorithm sustains a population of potential solutions, iteratively updating
them by crafting new ones via the differential evolution operator. This operator constructs
a new solution by amalgamating two existing solutions with a third, randomly chosen one.
Subsequently, the algorithm opts for the superior solution from among the new and existing
ones to revamp the population. The algorithm culminates upon reaching a termination
criterion, such as attaining a maximum number of iterations or a minimal enhancement in
the objective function. The IntAgents algorithm is a swarm-based optimization strategy
tailored to solve binary optimization problems. It comprises artificial search agents, each
possessing unique cognitive intelligence that enables individual learning within the prob-
lem space. While these agents display varied search characteristics, they periodically share
information about promising regions. Guided by a central swarm intelligence, these inde-
pendent agents make use of adaptive information-sharing techniques. These techniques
allow the search agents to learn across generations, mitigating the issues of premature
convergence and local optima as effectively as possible.

The results are presented in Table 4. The table indicates that MLSCABA uniquely
achieved the optimal values in 19 instances, underscoring its robust performance. Neverthe-
less, in other situations, at least two algorithms jointly attained the best values, highlighting
a competitive landscape. When considering average values, both DH-Jaya and MLSCABA
exhibited superior results, with DH-Jaya outperforming in 7 instances and MLSCABA in
23. Notably, while MLSCABA generally yields commendable outcomes, its performance is
influenced by the process of solution initialization, indicating that its robustness may be
tempered by these initial conditions.



Mathematics 2023, 11, 2695 17 of 20

Table 4. Comparative analysis of MLSCABA and various algorithms in solving SUKP for medium-sized instances.

Best Known Best Value Average Value

Instance BABC binDE gPSO intAgents DH-jaya MLSCABA BABC binDE gPSO intAgents DH-jaya MLSCABA

85_100_0.10_0.75 12045 11,664 11,352 12,045 12,045 12,045 12,045 11,182.7 11,075 11,486.95 11,419.75 11,570.6 11,866.1
85_100_0.15_0.85 12,369 12,369 12,369 12,369 12,369 12,369 12,369 12,081.6 11,875.9 11,994.36 11,885.21 12,318 12,043.5

100_100_0.10_0.75 14,044 13,860 13,814 14,044 14,044 14,044 14,044 13,734.9 13,675.9 13,854.71 13,767.23 13,912.5 13,882.3
100_100_0.15_0.85 13,508 13,508 13,407 13,508 13,508 13,508 13,508 13,352.4 13,212.8 13,347.58 13,003.62 13,439.1 13,174.2
100_85_0.10_0.75 13,283 13,251 13,044 13,283 13,283 13,283 13,283 13028.5 12,991 13,050.53 13,061.02 13,076 13,029.0
100_85_0.15_0.85 12,479 12,238 12,274 12,274 12,274 12,274 12,479 12,155 12,123.9 12,084.82 12,074.84 12,192.5 12,015.0

185_200_0.10_0.75 13,696 13,047 13,024 13,696 13,696 13,696 13,696 12,522.8 12,277.5 13,204.26 13,084.52 13,350.2 13,559.1
185_200_0.15_0.85 11,298 10,602 10,547 11,298 11,298 11,298 11,298 10,150.6 10,085.4 10,801.41 10,780.14 10,828.9 10,923.5
200_185_0.10_0.75 13,521 13,241 13,241 13,405 13,502 13,405 13,502 13,064.4 12,940.7 13,286.56 13,226.28 13,306.6 13,287.4
200_185_0.15_0.85 14,215 13,829 13,671 14,044 14,044 14,215 14,215 13,359.2 13,110 13,492.6 13,441.06 13,660.2 13,234.8
200_200_0.10_0.75 12,522 11,846 11,535 12,522 12,522 12,522 12,522 11,194.3 10,969.4 11,898.73 11,586.26 12,171.6 12,262.8
200_200_0.15_0.85 12,317 11,521 11,469 12,317 11,911 12,187 12,317 10,945 10,717.1 11,584.64 11,288.25 11,746 11,842.5
285_300_0.10_0.75 11,568 11,158 11,152 11,568 11,568 11,568 11,568 10,775.9 10,661.3 11,317.99 11,205.72 11,327.7 11,495.2
285_300_0.15_0.85 11,802 10,528 10,528 11,517 11,517 11,401 11,802 9897.92 9832.32 10,899.2 10,747.33 11,025.9 11,411.3
300_285_0.10_0.75 11,563 10,428 10,420 11,335 11,335 10,934 11,563 9994.76 9899.24 10,669.51 10,576.1 10,703.2 11,346.0
300_285_0.15_0.85 12,607 12,012 11,661 12,245 12,247 12,245 12,402 10,902.9 10,499.4 11,607.1 11,490.26 12,037.5 12,084.5
300_300_0.10_0.75 12,817 12,186 12,304 12,695 12,695 12,695 12,817 11,945.8 11,864.4 12,411.27 12,310.19 12,569.3 12,652.3
300_300_0.15_0.85 11,585 10,382 10,382 11,425 11,425 11,113 11,425 9859.69 9710.37 10,568.41 10,384 10,701.9 11,288.1
385_400_0.10_0.75 10,600 10,085 9883 10,483 10,326 10,414 10,600 9537.5 9314.57 10,013.43 9892.17 10,017 10,357.7
385_400_0.15_0.85 10,506 9456 9352 10,338 10,131 10,302 10,506 9090.03 8846.99 9524.98 9339.67 9565.72 10,175.9
400_385_0.10_0.75 11,484 10,766 10,576 11,484 11,484 11,337 11,484 10,065.2 9681.46 10,915.87 10,734.62 11,062 11,409.6
400_385_0.15_0.85 11,209 9649 9649 10,710 10,710 10,431 11,209 9135.98 9020.87 9864.55 9735 10,017.9 10,725.4
400_400_0.10_0.75 11,665 10,626 10,462 11,531 11,531 11,310 11,665 10,101.1 9975.8 10,958.96 10,756.92 10,914.8 11,501.2
400_400_0.15_0.85 11,325 9541 9388 10,927 10,927 10,915 11,325 9032.95 8768.42 9845.17 9608.07 9969.9 10,976.2
485_500_0.10_0.75 11,321 10,823 10,728 11,094 11,094 10,971 11,260 10,483.4 10,159.4 10,687.62 10,603.53 10,754.8 10,885.8
485_500_0.15_0.85 10,220 9333 9218 10,104 10,104 9715 10,208 9085.57 8919.64 9383.28 9259.36 9467.8 9871.2
500_485_0.10_0.75 11,771 10,784 10,586 11,722 11,722 11,722 11,729 10,452.2 10,363.8 11,184.51 11,111.63 11,269.4 11,504.1
500_485_0.15_0.85 10,238 9090 9191 10,022 10,059 9770 10,059 8857.89 8783.99 9299.56 9165.26 9354.28 9856.2
500_500_0.10_0.75 11,249 10,755 10,546 10,888 10,960 10,960 11,123 10,328.5 10,227.7 10,681.46 10,610.53 10,703.5 10,854.4
500_500_0.15_0.85 10,381 9318 9312 10,194 10,381 10,176 10,381 9180.74 9096.13 9703.62 9578.89 9801.5 9953.8

Average 11,956.9 11,209.4 11,120.1 11,809.8 11,796.4 11,729.0 11,946.8 10,794.1 10,633.2 11,290.8 11,157.9 11,391.0 11,649.0

The values highlighted in bold represent the optimal outcomes obtained. It’s important to note that these are only marked when the best result is exclusive to a single algorithm. If there
are two algorithms yielding identical optimal values, that instance will not be emphasized.



Mathematics 2023, 11, 2695 18 of 20

5. Discussion

The findings of this study indicate that the weighted initialization operator tends to
outperform the random and greedy operators in most instances of the medium- and large-
sized SUKP. This is evident both in terms of the best value obtained and the average value.
In particular, the weighted operator achieved the best value in more instances than the other
two operators in both datasets. Furthermore, the weighted operator also outperformed
the other two operators in terms of the average value in most instances. These results
suggest that the weighted operator is more efficient and effective in initializing solutions
for this problem.

However, it is important to note that the average execution time was similar among the
three operators. This suggests that, although the weighted operator may produce higher-
quality solutions, it does not necessarily do so faster than the other operators. Additionally,
the convergence plots show that, although all three operators tend to converge to a solution
over time, there are some differences in their convergence patterns. For instance, the
greedy operator showed a slower convergence rate in some cases, but in other cases, its
convergence rate was faster. These differences may be due to the specific characteristics of
the problem instances.

In summary, the results suggest that the weighted initialization operator is generally
the most effective for the set-union knapsack problem. However, it is also important to
consider other factors, such as execution time and the specific characteristics of the problem,
when selecting an initialization operator. The results obtained from the comparison of the
gPSO, BABC, binDE, intAgents, DH-Jaya, and MLSCABA algorithms in solving the SUKP
reveal a variety of strengths and weaknesses in each approach.

The gPSO algorithm, which uses a swarm optimization approach and an iterative
process of crossover and gene selection, proved capable of finding optimal solutions in
several instances. However, its average performance was surpassed by MLSCABA and
DH-Jaya, suggesting it may struggle to maintain consistent performance across multiple
iterations. On the other hand, BABC, which draws inspiration from the behavior of bees
to search for and improve solutions, achieved the best value in some instances, but its
average performance was inferior to that of MLSCABA and DH-Jaya. This may indicate
that, although BABC’s approach can be effective in finding optimal solutions, it may not be
as effective in maintaining consistent performance across multiple iterations.

The intAgents algorithm, which uses a swarm-based optimization strategy with ar-
tificial search agents, achieved the best value in several instances, but its average results
were inferior to those of MLSCABA and DH-Jaya. This may indicate that, although intA-
gents’ approach can be effective in finding optimal solutions, it may struggle to maintain
consistent performance across multiple iterations.

DH-Jaya showed solid performance both in terms of the best values and average
results. Although it did not achieve the best value in as many instances as MLSCABA, it
surpassed MLSCABA in terms of average results in several instances. This suggests that
DH-Jaya may be a viable option for this problem, especially in situations where the average
quality of the solution is more important than achieving the best possible value. Finally,
the proposed algorithm, MLSCABA, achieved the best value in most instances and also
showed solid performance in terms of average results. However, its performance may be
affected by the initial conditions of the solution, suggesting that the selection of a good
initialization operator may be crucial for its performance.

6. Conclusions

In the context of this research, three solution initialization methods were developed
and evaluated: random, greedy, and weighted. These methods were integrated and tested
in relation to a sine cosine algorithm that uses k-means as a binarization procedure. Tests
were conducted with medium- and large-sized instances, and the results show that the
solution initialization method significantly impacts the performance of the algorithm.



Mathematics 2023, 11, 2695 19 of 20

Specifically, it was observed that the weighted method, which introduces some control
over the weight of each item while also incorporating a random component, exhibits
superior performance compared to the greedy method. The latter focuses its attention on
the quality of items based on a specific heuristic, but does not introduce random elements
into the process.

In addition, the weighted method was proven to perform better than the completely
random method (random), which does not consider any heuristic for the construction of
functions. Regarding convergence times, no significant differences were observed among
the methods. However, an improvement in terms of the quality of the solutions obtained
was noted, which reiterates the importance of the initialization strategy on the effectiveness
of the algorithm.

This study, while concentrating on the set union knapsack problem, unveils initializa-
tion methods with potentially broader applicability to a diverse range of combinatorial
problems. These might encompass challenges as varied as the traveling salesman problem
(TSP), vehicle routing problem (VRP), job shop scheduling problem (JSSP), and quadratic as-
signment problem (QAP). Each of these problems presents its own unique set of challenges,
thus creating a plethora of opportunities for more in-depth examination and investigation
in future studies.

Moreover, we believe that there is an opportunity to enhance the solution initialization
process further. In this regard, one promising avenue for future research involves the
development of adaptive initialization methods. Such methods, with the ability to modulate
their behavior based on either the specific characteristics of the problem instance or the
algorithm’s progress, could potentially contribute to a more refined, efficient, and effective
problem-solving approach.

Author Contributions: Conceptualization, J.G.; Methodology, J.G.; Software, J.G.; Validation, J.G.;
Formal analysis, J.G.; Investigation, J.G.; Data curation, J.G.; Writing—original draft, J.G.; Writing—
review & editing, J.G. and A.L.-A.; Funding acquisition, B.C., R.S. and H.P. All authors have read and
agreed to the published version of the manuscript.

Funding: José Gracía was supported by PROYECTO DI Regular 039.300/2023. Broderick Crawford
was supported by the grant Broderick Crawford is supported by Grant CONICYT/FONDECYT/
REGULAR/1210810.

Data Availability Statement: The results obtained can be accessed at the following Google Drive
link: https://drive.google.com/drive/folders/19D-vuV55a19MVjNZCEGCnFtKV2RiHC04?usp=
sharing, accessed on 8 June 2023.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ma, L.; Shao, Z.; Li, L.; Huang, J.; Wang, S.; Lin, Q.; Li, J.; Gong, M.; Nandi, A.K. Heuristics and metaheuristics for biological

network alignment: A review. Neurocomputing 2022, 491, 426–441. [CrossRef]
2. Guo, H.; Liu, B.; Cai, D.; Lu, T. Predicting protein–protein interaction sites using modified support vector machine. Int. J. Mach.

Learn. Cybern. 2018, 9, 393–398. [CrossRef]
3. Gholizadeh, H.; Goh, M.; Fazlollahtabar, H.; Mamashli, Z. Modelling uncertainty in sustainable-green integrated reverse logistics

network using metaheuristics optimization. Comput. Ind. Eng. 2022, 163, 107828. [CrossRef]
4. Martínez-Muñoz, D.; García, J.; Martí, J.; Yepes, V. Discrete swarm intelligence optimization algorithms applied to steel–concrete

composite bridges. Eng. Struct. 2022, 266, 114607. [CrossRef]
5. Martínez-Muñoz, D.; García, J.; Martí, J.V.; Yepes, V. Optimal design of steel–concrete composite bridge based on a transfer

function discrete swarm intelligence algorithm. Struct. Multidiscip. Optim. 2022, 65, 312. [CrossRef]
6. Dokeroglu, T.; Deniz, A.; Kiziloz, H.E. A comprehensive survey on recent metaheuristics for feature selection. Neurocomputing

2022, 494, 269–296. [CrossRef]
7. Agushaka, J.O.; Ezugwu, A.E.; Abualigah, L.; Alharbi, S.K.; Khalifa, H.A.E.W. Efficient Initialization Methods for Population-

Based Metaheuristic Algorithms: A Comparative Study. Arch. Comput. Methods Eng. 2023, 30, 1727–1787. [CrossRef]
8. Li, Q.; Liu, S.Y.; Yang, X.S. Influence of initialization on the performance of metaheuristic optimizers. Appl. Soft Comput. 2020,

91, 106193. [CrossRef]

https://drive.google.com/drive/folders/19D-vuV55a19MVjNZCEGCnFtKV2RiHC04?usp=sharing
https://drive.google.com/drive/folders/19D-vuV55a19MVjNZCEGCnFtKV2RiHC04?usp=sharing
http://doi.org/10.1016/j.neucom.2021.08.156
http://dx.doi.org/10.1007/s13042-015-0450-6
http://dx.doi.org/10.1016/j.cie.2021.107828
http://dx.doi.org/10.1016/j.engstruct.2022.114607
http://dx.doi.org/10.1007/s00158-022-03393-9
http://dx.doi.org/10.1016/j.neucom.2022.04.083
http://dx.doi.org/10.1007/s11831-022-09850-4
http://dx.doi.org/10.1016/j.asoc.2020.106193


Mathematics 2023, 11, 2695 20 of 20

9. Georgioudakis, M.; Lagaros, N.D.; Papadrakakis, M. Probabilistic shape design optimization of structural components under
fatigue. Comput. Struct. 2017, 182, 252–266. [CrossRef]

10. Agushaka, J.O.; Ezugwu, A.E. Initialisation approaches for population-based metaheuristic algorithms: A comprehensive review.
Appl. Sci. 2022, 12, 896. [CrossRef]

11. García, J.; Lemus-Romani, J.; Altimiras, F.; Crawford, B.; Soto, R.; Becerra-Rozas, M.; Moraga, P.; Becerra, A.P.; Fritz, A.P.;
Rubio, J.M.; et al. A binary machine learning cuckoo search algorithm improved by a local search operator for the set-union
knapsack problem. Mathematics 2021, 9, 2611. [CrossRef]

12. Goldschmidt, O.; Nehme, D.; Yu, G. Note: On the set-union knapsack problem. Nav. Res. Logist. (NRL) 1994, 41, 833–842.
[CrossRef]

13. Wei, Z.; Hao, J.K. Multistart solution-based tabu search for the Set-Union Knapsack Problem. Appl. Soft Comput. 2021, 105, 107260.
[CrossRef]

14. Ozsoydan, F.B.; Baykasoglu, A. A swarm intelligence-based algorithm for the set-union knapsack problem. Future Gener. Comput.
Syst. 2019, 93, 560–569. [CrossRef]

15. Liu, X.J.; He, Y.C. Estimation of distribution algorithm based on Lévy flight for solving the set-union knapsack problem. IEEE
Access 2019, 7, 132217–132227. [CrossRef]

16. Tu, M.; Xiao, L. System resilience enhancement through modularization for large scale cyber systems. In Proceedings of the 2016
IEEE/CIC International Conference on Communications in China (ICCC Workshops), IEEE, Chengdu, China, 27–29 July 2016;
pp. 1–6.

17. Yang, X.; Vernitski, A.; Carrea, L. An approximate dynamic programming approach for improving accuracy of lossy data
compression by Bloom filters. Eur. J. Oper. Res. 2016, 252, 985–994. [CrossRef]

18. Feng, Y.; An, H.; Gao, X. The importance of transfer function in solving set-union knapsack problem based on discrete moth
search algorithm. Mathematics 2019, 7, 17. [CrossRef]

19. Wei, Z.; Hao, J.K. Kernel based tabu search for the Set-union Knapsack Problem. Expert Syst. Appl. 2021, 165, 113802. [CrossRef]
20. García, J.; Crawford, B.; Soto, R.; Castro, C.; Paredes, F. A k-means binarization framework applied to multidimensional knapsack

problem. Appl. Intell. 2018, 48, 357–380. [CrossRef]
21. Lister, W.; Laycock, R.; Day, A. A Key-Pose Caching System for Rendering an Animated Crowd in Real-Time. Comput. Graph.

Forum 2010, 29, 2304–2312. [CrossRef]
22. Arulselvan, A. A note on the set union knapsack problem. Discret. Appl. Math. 2014, 169, 214–218. [CrossRef]
23. Wei, Z.; Hao, J.K. Iterated two-phase local search for the Set-Union Knapsack Problem. Future Gener. Comput. Syst. 2019,

101, 1005–1017. [CrossRef]
24. He, Y.; Xie, H.; Wong, T.L.; Wang, X. A novel binary artificial bee colony algorithm for the set-union knapsack problem. Future

Gener. Comput. Syst. 2018, 78, 77–86. [CrossRef]
25. Feng, Y.; Yi, J.H.; Wang, G.G. Enhanced moth search algorithm for the set-union knapsack problems. IEEE Access 2019,

7, 173774–173785. [CrossRef]
26. Wu, C.; He, Y. Solving the set-union knapsack problem by a novel hybrid Jaya algorithm. Soft Comput. 2020, 24, 1883–1902.

[CrossRef]
27. Zhou, Y.; Zhao, M.; Fan, M.; Wang, Y.; Wang, J. An efficient local search for large-scale set-union knapsack problem. Data Technol.

Appl. 2020, 55, 233–250. [CrossRef]
28. Gölcük, İ.; Ozsoydan, F.B. Evolutionary and adaptive inheritance enhanced Grey Wolf Optimization algorithm for binary

domains. Knowl.-Based Syst. 2020, 194, 105586. [CrossRef]
29. Ozsoydan, F.B.; Gölcük, İ. A reinforcement learning based computational intelligence approach for binary optimization problems:

The case of the set-union knapsack problem. Eng. Appl. Artif. Intell. 2023, 118, 105688. [CrossRef]
30. Dahmani, I.; Ferroum, M.; Hifi, M. Effect of Backtracking Strategy in Population-Based Approach: The Case of the Set-Union

Knapsack Problem. Cybern. Syst. 2022, 53, 168–185. [CrossRef]
31. Martínez-Muñoz, D.; García, J.; Martí, J.V.; Yepes, V. Hybrid Swarm Intelligence Optimization Methods for Low-Embodied

Energy Steel-Concrete Composite Bridges. Mathematics 2022, 11, 140. [CrossRef]
32. He, Y.; Wang, X. Group theory-based optimization algorithm for solving knapsack problems. Knowl.-Based Syst. 2021, 219, 104445.

[CrossRef]
33. García, J.; Moraga, P.; Valenzuela, M.; Pinto, H. A db-scan hybrid algorithm: An application to the multidimensional knapsack

problem. Mathematics 2020, 8, 507. [CrossRef]
34. Ozsoydan, F.B. Artificial search agents with cognitive intelligence for binary optimization problems. Comput. Ind. Eng. 2019,

136, 18–30. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.compstruc.2016.12.008
http://dx.doi.org/10.3390/app12020896
http://dx.doi.org/10.3390/math9202611
http://dx.doi.org/10.1002/1520-6750(199410)41:6<833::AID-NAV3220410611>3.0.CO;2-Q
http://dx.doi.org/10.1016/j.asoc.2021.107260
http://dx.doi.org/10.1016/j.future.2018.08.002
http://dx.doi.org/10.1109/ACCESS.2019.2940538
http://dx.doi.org/10.1016/j.ejor.2016.01.042
http://dx.doi.org/10.3390/math7010017
http://dx.doi.org/10.1016/j.eswa.2020.113802
http://dx.doi.org/10.1007/s10489-017-0972-6
http://dx.doi.org/10.1111/j.1467-8659.2010.01715.x
http://dx.doi.org/10.1016/j.dam.2013.12.015
http://dx.doi.org/10.1016/j.future.2019.07.062
http://dx.doi.org/10.1016/j.future.2017.05.044
http://dx.doi.org/10.1109/ACCESS.2019.2956839
http://dx.doi.org/10.1007/s00500-019-04021-3
http://dx.doi.org/10.1108/DTA-05-2020-0120
http://dx.doi.org/10.1016/j.knosys.2020.105586
http://dx.doi.org/10.1016/j.engappai.2022.105688
http://dx.doi.org/10.1080/01969722.2021.2008687
http://dx.doi.org/10.3390/math11010140
http://dx.doi.org/10.1016/j.knosys.2018.07.045
http://dx.doi.org/10.3390/math8040507
http://dx.doi.org/10.1016/j.cie.2019.07.007

	Introduction
	Advancements in Solving the Set-Union Knapsack Problem
	Initialization, Metaheuristic, and Search Operators
	Initialization Operators
	Machine Learning Binarization Operator
	Local Search Operator

	Results
	Parameter Setting
	Insight into Binary Algorithm
	Comparisons

	Discussion
	Conclusions
	References

