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Abstract: Synthetic aperture radar (SAR) automatic target recognition (ATR) has been widely applied
in multiple fields. However, the special imaging mechanism of SAR results in different visual features
of the same target at different azimuth angles, so single-aspect SAR target recognition has the limita-
tion of observing the target from a single perspective. Multi-aspect SAR target recognition technology
can overcome this limitation by utilizing information from different azimuths and effectively improve
target recognition performance. Considering the order dependency and data limitation of existing
methods, this paper proposes a multi-aspect SAR recognition method based on Non-Local, which
applies a self-attention calculation to feature maps to learn the correlation between multi-aspect
SAR images. Meanwhile, in order to improve the generalization ability of the proposed method
under limited data, a network based on contrastive learning was designed to pre-train the feature
extraction part of the whole network. The experimental results using the MSTAR dataset show that
the proposed method has excellent recognition accuracy and good robustness.

Keywords: synthetic aperture radar (SAR); automatic target recognition (ATR); multiview; Non-Local;
contrastive learning

MSC: 68T01; 68T07; 68T45

1. Introduction

Synthetic aperture radar (SAR) is a type of high-resolution coherent imaging radar that
is not affected by lighting and weather conditions, enabling all-day and all-weather ground
detection [1]. SAR is widely used in various fields [2] due to its advantages of long-range
and high-resolution imaging. In recent years, with the maturity of SAR technology and the
enhancement of data acquisition capabilities, it has become an important problem in SAR
applications to extract useful information rapidly from massive high-resolution SAR image
data. Nowadays, automatic target recognition (ATR) technology [3] for SAR images, which
is aimed at solving this problem, has become a hot research topic.

In the past few decades, SAR ATR technology has made significant progress from
theoretical research to practical applications. Classical methods for SAR ATR are based
on templates and models. The template-based method can be further divided into direct
template-matching methods [4], which calculate the correlation or distance between the
test sample and the template obtained from the training sample itself, and feature template-
matching methods, which use commonly used classifiers such as SVM [5], KNN [6] and
Bayesian classifiers [7], to compare the geometric [8], mathematical [9,10], or electromag-
netic scattering features [11,12] extracted from the training and test samples. Although
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template-matching methods are simple in principle and easy to implement, it is difficult to
establish a complete template library in practical applications and requires high storage and
computation space. To overcome these limitations, the model-based SAR target recognition
methods [13,14] are proposed, which use electromagnetic simulation software to calculate
the electromagnetic scattering images based on the established models of the targets and
perform feature matching with test samples to achieve target recognition.

Classical SAR target recognition methods rely on laborious manual-designed feature
engineering, which to some extent are limited by data structure and feature extraction
capability, leading to unstable recognition performance. Therefore, the automatic feature
extraction ability of neural networks enabled the application of deep learning methods in
SAR target recognition. Initially, the deep learning model used for computer vision tasks
is directly fine-tuned for SAR target recognition [15], and some unsupervised learning
methods are also directly used for SAR target feature extraction [16–18]. Subsequently, the
methods specifically designed for SAR image amplitude information characteristics are
proposed. Chen et al. [19] designed A-ConvNet based on VGG for the MSTAR dataset target
recognition task and achieved a recognition rate above 99%; Lin et al. [20] proposed a deep
convolutional Highway Unit for SAR ATR with few samples; Gao et al. [21] proposed a dual-
branch deep convolutional neural network (Dual-CNN) to extract polarization and spatial
features and fuse them together; Jiao et al. [22] designed a Wishart deep stacking network
(DSN) specifically for polarimetric SAR target classification, which performed well on real
polarimetric SAR data. Li et al. [23] proposed a fully convolutional attention module that
focuses on important channels and target areas, improving the computational efficiency and
significantly improving the performance of SAR target recognition. Recent studies attempt
to combine deep learning with physical models, focusing on the characteristics brought
about by the special imaging mechanism of SAR. Zhang et al. [24] introduced a network
called DKTS-N to combine deep learning networks with domain-specific knowledge in
the context of SAR. Huang et al. [24] proposed Deep SAR-Net, which uses CNN and
Convolutional Autoencoders to extract spatial and scattering features of SAR images for
classification tasks. Feng et al. [25] proposed a method based on integrated partial models
and deep learning algorithms to combine electromagnetic scattering characteristics with
deep neural networks.

In practical applications, due to the special imaging mechanism of SAR, the visual
features of the same target vary greatly under different observation azimuths, which
poses challenges for single-aspect SAR target recognition. As SAR systems advance, the
development of multi-aspect SAR techniques, such as Circular SAR, enables the continu-
ous observation of a given target from various viewing angles. Multi-aspect SAR target
recognition technology utilizes multiple images of the same target obtained from different
observation angles to combine the scattered characteristics from different perspectives. By
fully exploiting the complementary and correlated recognition information of the target at
different angles, multi-aspect SAR target recognition can significantly improve the accuracy
and anti-interference ability of target recognition.

The deep learning methods used for multi-aspect SAR target recognition are mainly
based on recurrent neural networks (RNN) and convolutional neural networks (CNN).
For example, MA-BiLSTM [26] and BCRN [27] are based on long short-term memory
networks, MVDCNN [28] is based on parallel CNN with hierarchical merging and fusion
structures, while MVDFLN [29] combines the recurrent unit and convolution. The existing
multi-aspect SAR target recognition methods mainly face the following challenges:

1. Multi-aspect SAR image recognition methods based on RNN or CNN are limited by
sequence constraints. It is difficult to learn the correlation between two images that
are far apart in the multi-aspect SAR image sequence, leading to information loss.

2. The number of SAR image samples is insufficient to meet the needs of deep learn-
ing training networks. Most existing methods adopt supervised learning methods
combined with data augmentation. The limited SAR data restrict the generalization
ability of deep learning models.
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To address the limitations of existing methods, a multi-aspect SAR target recognition
method based on contrastive learning (CL) and Non-Local is proposed in this paper. After
pre-training, the encoder part of the CL network is used to extract feature maps from
each image in the multi-aspect SAR image sequence. Based on the obtained feature maps,
high-dimensional features are further extracted, while Non-Local computation is inserted
between different feature extraction layers to achieve multi-aspect feature learning.

This paper proposes an innovative approach to exploit the correlation between multi-
aspect SAR images by utilizing Non-Local [30]. Self-attention calculation is not affected
by the order of images in the sequence; thus, it can mine the correlation information
between images more effectively. As a classic application of self-attention in computer
vision, Non-Local directly operates on two-dimensional images and achieves pixel-level
self-attention calculation between feature maps with a simple and flexible structure. In
consideration of the loss of local detailed information in self-attention calculation, the
ResNet [31] structure is designed to extract feature maps. Convolutional operations and
pre-training based on CL are employed to reduce the requirement for sample quantity and
improve the generalization ability of the network.

Compared to existing methods, the novelty and contribution of the proposed method
in this paper can be summarized as follows.

1. A Non-Local structure is introduced for multi-aspect SAR feature learning. By im-
plementing self-attention calculation multiple times in feature spaces of different
dimensions, Non-Local can effectively capture the correlation information among
multi-aspect SAR images.

2. The lightweight contrastive learning network is applied to SAR image feature extrac-
tion tasks in order to fully utilize the limited SAR data to train an effective feature
extraction network.

3. Compared with existing methods, our method achieves higher recognition accuracy
on the MSTAR dataset and demonstrates better generalization performance in case of
few samples and strong interference.

The remainder of this paper is organized as follows. A comprehensive description of
the proposed network structure is provided in Section 2. Section 3 outlines the experimental
details and discusses the obtained results. Section 4 discusses the benefits of the proposed
method and outlines potential future work. Section 5 provides a summary of the entire paper.

2. Proposed Method

The overall architecture of the proposed network includes four parts, i.e., sequence
construction, feature extraction based on pre-training by contrastive learning, multi-aspect
feature learning based on Non-Local, and classification, as shown in Figure 1.

The multi-aspect SAR image sequences are constructed based on the single-aspect
SAR images, which are also used for pre-training. In the CL network for pre-training,
traditional data augmentation methods are used to generate two enhanced views for a
single SAR image, each serving as input for the two branches. The optimization of the pre-
train network is achieved by reducing the differences between the output features of two
branches. After pre-training, the encoder part of the upper branch is transferred to extract
the feature map of each image in the multi-aspect SAR image sequences. Then, during
the multi-aspect feature learning process, the extracted feature maps of each image are
input into the multi-aspect encoder based on Non-Local and ResNet to learn the correlation
between multi-aspect SAR images. The output features of the multi-aspect encoder are
dimensionally reduced and then averaged along the sample dimension for feature fusion.
Finally, the softmax classifier is used to obtain the prediction probability. The following
sections will provide details and training process of the proposed method.
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Figure 1. The overall architecture of the proposed network.

2.1. Sequence Construction

From different azimuth and depression angles, multi-aspect SAR images of the target
can be obtained through one or more platforms, which can be used to construct multi-
aspect SAR image sequences based on the following steps [32]. The original SAR image set
Xr = {X1, X2, · · · , XC} consists of multiple categories Xi. The images in each category are
sorted according to the azimuth, which is denoted as Xi = {xi

1, xi
2, · · · , xi

ni
}. C represents

the total number of target categories, ni represents the number of images contained in each
class and ϕ(xi

j) is assumed to be the azimuth angle of the image. For the given sequence
length k, k + 1 images are selected from the original image set by a sliding window with
the step size of 1, which are combined in different permutations to obtain sequences. The
sequences in which the azimuth difference between any two images is less than the given
angle range θ are selected as the experimental sample. Assume that the final constructed
sequences of a certain class are denoted as Xi

S = {Xi
s1

, Xi
s2

, · · · , Xi
sNi
}, where Ni represents

the number of sequences. The construction process above is shown in Algorithm 1, and an
example of multi-aspect SAR image sequence construction is shown in Figure 2.

Algorithm 1 Sequence construction algorithm

Initialization: The angle range θ, the sequence length k
Input: Original images Xr = {X1, X2, · · · , XC} and the number of classes C
Output: The constructed sequence set XS = {X1

S, X2
S, · · · , XC

S }
for i = 1 to C do

for j = 1 to ni − k do
if |ϕ(xi

j)− ϕ(xi
j+k)| ≤ θ

Combine to add all possible sequences of length k except {xi
j+1, xi

j+2, · · · , xi
j+k}

else if |ϕ(xi
j)− ϕ(xi

j+k−1)| ≤ θ

Add the sequence {xi
j, xi

j+1, · · · , xi
j+k−1}

end for
if |ϕ(xi

j+1)− ϕ(xi
ni
)| ≤ θ

Add the sequence {xi
j+1, xi

j+2, · · · , xi
ni
}

end for
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θ

Seq10：Img 3，Img 4，Img 5，Img 6

Figure 2. Example of sequence construction.

2.2. Feature Extraction Based on Contrastive Learning

To introduce contrastive learning into SAR image feature extraction, considering that
the visual features presented in SAR images are often quite similar, we choose the Bootstrap
Your Own Latent (BYOL) [33] network, which is based on the asymmetry of two branches
instead of negative samples, for pre-training the ResNet model used for single-aspect SAR
image feature extraction.

As shown in Figure 3, the online branch of the pre-training network based on BYOL
consists of the encoder based on ResNet, the projector and predictor based on multi-layer
perceptron (MLP) with the same structure. The target branch only includes the encoder
and projector with the same structure as the online branch.
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Figure 3. The structure of the pre-training network.

The encoder based on ResNet is used to output the feature representation of the input
image. To obtain a lightweight model, Deep Separable Convolution (DSC) [34] is designed
to replace the original convolution layer in ResNet, which consists of deep convolution
and pointwise convolution, as shown in Figure 4. Deep convolution applies a separate
convolution kernel to each channel of the input, while pointwise convolution uses the 1× 1
convolution to fuse the output of deep convolution across channels and change the channel
number of the final output. Compared to original convolution, DSC achieves a significant
reduction in parameter and computational costs.

The input convolutional layer of the encoder contains a DSC layer and ReLU activation
function. Then, the core structure consists of several units with the same structure stacked
together, each of which contains a max pooling layer and two Lite ResBlocks. The Lite
ResBlock includes two DSC layers and the residual connection as shown in Figure 5. The
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output pooling layer of the encoder uses average pooling, which computes the average of
values within the pooling window as the value after pooling.

Input channel = 3

Kernel Map

Input channel = 3

Depthwise 

Convolution

Pointwise 

Convolution

(a) (b)

Figure 4. Schematic diagram of (a) convolution and (b) DSC process.

R
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N
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U

D
S
C

D
S
C

Figure 5. The structure of Lite ResBlock.

Assuming that the input image of the encoder is x, the DSC operation is denoted
as dsconv and σ represents the ReLU activation function, the calculation of the input
convolution layer can be expressed as:

x0 = σ(dsconv(x)) (1)

Then, suppose the input of the nth unit stacked is xn−1 and the output is xn, where
the input of the first unit is x0. Suppose ΦRes denotes the computation of Lite ResBlock,
and fDown denotes the max pooling operation. The operation of the nth unit can be
represented as:

xn = ΦRes(ΦRes( fDown(xn−1))) (2)

Suppose ΦBN is the batch normalization operation; then, the calculation process of
ΦRes is defined as:

ΦRes(z) = z + ΦBN(dsconv(σ(ΦBN(dsconv(z)))) (3)

The output of the last unit xN passes through the average pooling layer, denoted as
fAVG, to obtain the final output xr of the encoder, which can be expressed as:

xr = fAVE(xN) (4)

The projector and predictor are based on the multi-layer perceptron with the same
structure, consisting of two fully connected layers separated by batch normalization and
ReLU activation functions, which expand and reduce the dimensionality of the feature
vector. The input of the projector is the output of the encoder xr, and the output of the
projector is denoted as xpro. The predictor takes the output of the projector as its input and
is denoted as xpre. The calculation process of the projector and predictor is as follows:

xpro = ΦFC2(σ(ΦBN(ΦFC1(xr)))) (5)

xpre = ΦFC4(σ(ΦBN(ΦFC3(xpre)))) (6)
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where ΦFC1 and ΦFC2 represent the two fully connected sub-layers in the projector, while
ΦFC3 and ΦFC4 represent the two fully connected sub-layers in the predictor.

The pre-training network takes the single-aspect SAR image as input and generates
two augmented views through methods such as rotation, flipping, cropping, scaling, and
brightness adjustment. The online branch goes through the encoder, projector, and predictor
to obtain the output vector, while the target branch obtains the output vector only through
the encoder and projector. During pre-training, the network is optimized by minimizing
the error between the output vectors from the two branches, which will be introduced in
Section 2.5.1. After pre-training, the input convolutional layer and the first N stacked units
of the online branch encoder will be transferred for extracting feature maps of each image
in the sequence. The obtained feature maps are denoted as xN

(i),i = 1, · · · , k.

2.3. Multi-Aspect Encoder Based on Non-Local

The multi-aspect encoder, which combines Non-Local and ResNet, is designed to
achieve multi-aspect feature learning. The main structure and details of the multi-aspect
encoder are shown in Figure 6.
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Figure 6. The main structure and details of the multi-aspect encoder.

The multi-aspect encoder is composed of multiple layers. Each layer concatenates
the feature maps extracted from each SAR image in the input multi-aspect SAR image
sequence and performs self-attention calculation via the Non-Local layer. Then, the output
of Non-Local is split along the sample dimension to extract higher-level features separately
for each image by ResBottleneckBlock. Finally, the output is downsampled through the
maxpool layer. Suppose there are M layers in the multi-aspect encoder. The detailed
calculation process for each layer will be described next.

Assuming the mth layer of the multi-aspect encoder takes input xm−1
(i) ∈

Rdm−1×dm−1×cm−1 , i = 1, · · · , k and output xm
(i) ∈ Rdm×dm×cm , i = 1, · · · , k, where k is

the length of the multi-aspect SAR image sequence, dm−1 and dm are the feature map sizes
of the input and output of the mth layer, and cm−1 and cm represent the number of channels
of the input and output in the mth layer. The input in the first layer is the output xN

(i),
i = 1, · · · , k from the feature extraction part of the network. Firstly, we concatenate the
input feature maps into Xm−1 = [xm−1

(1) , · · · , xm−1
(i) ], which serves as the input vector for

Non-Local.
Non-Local is a residual structure that computes the output by adding the input

vector with the result of the self-attention computation. Given an input vector Xm−1 ∈
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Rk×dm−1×dm−1×cm−1 , three convolution operations with kernel size 1× 1× 1 are performed
to obtain query vector θm, key vector φm, and value vector gm with the same dimensions
as the input vector. The convolution kernels are denoted as Wm

θ , Wm
φ , and Wm

g , and
the corresponding biases are denoted as bm

θ , bm
φ and bm

g . The calculation process can be
expressed as:

θm = Xm−1 ∗Wm
θ + bm

θ (7)

φm = Xm−1 ∗Wm
φ + bm

φ (8)

gm = Xm−1 ∗Wm
g + bm

g (9)

The shapes of θm, φm and gm are flattened into (vm−1, cm−1), where vm−1 = k× dm−1×
dm−1. Next, the original correlation matrix Âm ∈ Rvm−1×vm−1 is calculated through the dot
product, which means transposing the key vector φm and multiplying it with the query
vector θm. Then, the weight matrix Am is obtained by normalizing Âm. The calculation
process is as follows:

Âm = (φm)
Tθm (10)

Am = Âm/Nm (11)

where Nm represents the position number of the input vector, that is, vm−1. The weight
matrix Am is multiplied with the value vector gm to obtain the output Ŷm of self-attention,
which is given by:

Ŷm = gm Am (12)

Finally, reshape Ŷm into (k, dm−1, dm−1, cm−1) and add it to the input vector Xm−1 of
Non-Local to complete the residual calculation and obtain the output Ym, which can be
expressed as:

Ym = Xm−1 + Ŷm (13)

The output of Non-Local Ym is split back into individual feature maps ym
(i) ∈

Rdm−1×dm−1×cm−1 , i = 1, · · · , k, which are then fed into ResBottleneckBlock with shared
parameters for further feature extraction. ResBottleneckBlock is a residual structure where
the input vector passes through a 1× 1 convolution layer with batch normalization (BN)
and ReLU, which is followed by a 3× 3 convolution layer with BN and ReLU and finally a
1× 1 convolution layer with BN only. The output of ResBottleneckBlock is then added to
the input vector and passed through another ReLU activation function. The calculation
process can be expressed as follows:

x̂m
(i) = σ(ym

(i) + Ψ1×1(Φ3×3(Φ1×1(ym
(i))))) (14)

where Φ3×3 represents the 3× 3 convolution with BN and ReLU, Φ1×1 represents the 1× 1
convolution with BN and ReLU, and Ψ1×1 represents the 1× 1 convolution with only BN.
The output of the ResBottleneckBlock is downsampled using the maxpool layer to obtain
the output of the mth layer in the multi-aspect encoder.

xm
(i) = fDOWN(x̂m

(i)) (15)

2.4. Feature Dimensionality Reduction and Classfication

The output of the Mth layer of the multi-aspect encoder is k 1-D feature vectors, which
are denoted as xM

(i), i = 1, · · · , k. They are concatenated along the sample dimension to

obtain XM = [xM
(1), · · · , xM

(i)], with the size k× cM. The feature dimension of XM is reduced

by a 1× 1 convolution layer to obtain the output Z ∈ Rk×C, where C is the number of
sample classes. After averaging Z along the sample dimension to achieve feature fusion,
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the softmax classifier is applied to obtain the predicted probabilities of the input samples
output by the network.

2.5. Training Process
2.5.1. Pre-Train Based on CL and Layer Transfer

As described in Section 2.2, the CL network is optimized by minimizing the difference
between the outputs of the online and target branch. The MSE loss function is used to
calculate the error between the two branches, which is computed as the distance between the
L2 normalized output vectors of the two branches. The loss function can be formulated as:

LAug1 = ‖x1
pre − x2

pro‖
2
2
= 2− 2

〈x1
pre, x2

pro〉
‖x1

pre‖ · ‖x2
pro‖

(16)

where x1
pre represents the output of the online branch for the augmented view Aug1, and

x2
pro represents the output of the target branch for the augmented view Aug2. Due to

the asymmetry of the structure, the network needs to exchange input views of the two
branches; then, the complete loss function of the network is:

LPretrain = LAug1 + LAug2 (17)

The parameter of the online branch is updated by backpropagation (BP), while the pa-
rameter of the target branch is updated using the momentum update mechanism, meaning
that the update is determined based on the corresponding parameter of the online branch.
The momentum update mechanism can be expressed as:

ξ = mξ + (1−m)η (18)

where ξ represents the parameter of the target branch and η represents the updated pa-
rameter of the online branch. m is the weight coefficient which is usually large, so that the
parameter of the target branch changes slowly and steadily approaching η.

After the pre-training network converges, the first few layers of the online branch
encoder are transferred to the entire network to extract feature maps from each image in
sequences. During the training process of the entire network, the parameters of the feature
extraction part are fixed and unchanged.

2.5.2. Training of Overall Network

Considering that DSC used in the Lite ResBlock may lead to the loss of model accuracy
under certain conditions [35], Knowledge Distillation (KD) [36] is introduced into the
overall network training. The supervised information of better performing but more
complex models can be involved in the training of lightweight models through KD, thereby
improving the performance of lightweight models.

The proposed lightweight network is the student model, and the network using
convolutional layers instead of DSC is the teacher model. One of the key points of KD is to
add a temperature parameter T to the softmax classifier, which can be described as:

qi =
ezi/T

∑j ezj/T (19)

In the training process of the student model, the parameters of the teacher model
that has been trained based on the cross-entropy loss function remain unchanged. The
loss function of the student model includes the cross-entropy loss between the output and
the sample label and the distillation loss that measures the gap at the same temperature t



Mathematics 2023, 11, 2690 10 of 17

between the student model and the teacher model using Kullback–Leibler divergence. The
loss function can be formulated as:

Lso f t = −
N

∑
j

pt
j log(qt

j) (20)

Lhard = −
N

∑
j

cjlog(q1
j ) (21)

L = αLso f t + (1− α)Lhard (22)

where N represents the number of class types, pt
j and qt

j represent the prediction probability
for class j output by the teacher model and student model at temperature t, cj represents
the value of the sample label corresponding to class j, and α is the proportion coefficient.

3. Experiments and Results
3.1. Network Architecture Setup

In the experiment, the input SAR images are cropped to 64× 64. The structure of each
layer in the online branch of the pre-train network is shown in Table 1, while the target
branch does not include the projector. The Conv1 to ResBlock2 layers of the pre-trained
model are transferred for feature extraction after pre-training. The number of channels
in each layer of the multi-aspect encoder is 256, and the size of the maxpool layer in the
ResBottleneckBlock is 3× 3 with the stride 2.

Table 1. The structure of each layer in the online branch of the pre-train network.

Part Layer Name Input Size Parameters

Encoder

Conv1 64 × 64 × 1 DSC 7 × 7, 64, stride 2
Maxpool1 32 × 32 × 64 Maxpool 3 × 3, 64, stride 2
ResBlock1 16 × 16 × 64 Lite ResBlock-128 × 2
Maxpool2 16 × 16 × 128 Maxpool 3 × 3, 64, stride 2
ResBlock2 8 × 8 × 128 Lite ResBlock-256 × 2
Maxpool3 8 × 8 × 256 Maxpool 3 × 3, 64, stride 2
ResBlock3 4 × 4 × 256 Lite ResBlock-512 × 2
Avepool3 4 × 4 × 512 output size = (1, 1)

Projector FC1 1 × 1 × 512 2048-d
FC2 1 × 1 × 2048 512-d

Predictor FC3 1 × 1 × 512 2048-d
FC4 1 × 1 × 2048 512-d

Our proposed network is implemented using Pytorch 1.9.1. The key hardware used
for all experiments in this paper are an Intel Core i7-9750H CPU and NVIDIA GeForce RTX
2060 GPU. The weight coefficient of the pre-train network is 0.99. With the mini-batch size
of 32, the learning rate is 0.001 for pre-training and 0.0001 for overall training.

3.2. Dataset

The MSTAR dataset [37] mainly comprises high-quality SAR images captured using
the X-band high-resolution Spotlight SAR from 10 stationary military vehicles with the
resolution of 0.3× 0.3 m and HH polarization. The azimuth angle of images for each
type of target covers 0∼360◦, and the interval between images is 5∼6◦. The optical and
corresponding SAR images of ten targets are shown in Figure 7.
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2S1 T-72 T-62 D7 BMP-2 BRDM-2 BTR-60 BTR-70 ZSU-234 ZIL-131

Figure 7. The optical and SAR images of ten targets.

Standard Operating Condition (SOC) and Extended Operating Condition (EOC) are
two categories of the acquisition conditions in the MSTAR dataset. SOC indicates that the
target category of training and testing data is the same with the similar imaging conditions,
while the data difference is greater and the recognition difficulty is higher under EOC.

3.3. Results under SOC and SOC

The training and testing data in the experiment under SOC are of the same category
with the depression angles of 17◦ and 15◦, respectively. Considering the actual radar
imaging situation and the trade-off between data acquisition and network training costs [28],
the angle range is set to 45◦ when constructing the sequences. Table 2 shows the class
types used in the experiment and the number of training and testing samples with different
sequence lengths.

Table 2. Dataset of SOC.

Training Testing

Class Type Image
Samples

2-Aspect
Sequences

3-Aspect
Sequences

4-Aspect
Sequences

Image
Samples

2-Aspect
Sequences

3-Aspect
Sequences

4-Aspect
Sequences

2S1 299 578 840 1084 274 525 755 956
BRDM2 298 576 837 1080 274 525 755 956
BTR60 256 489 709 906 195 362 508 589

D7 299 578 840 1084 274 525 755 959
T72 232 443 640 814 196 364 499 569

BMP2 233 443 642 812 195 362 494 558
BTR70 233 442 639 817 196 363 496 568

T62 299 578 840 1084 273 522 749 954
ZIL131 299 578 840 1084 274 525 755 956
ZSU234 299 578 846 1087 274 525 755 959

Total 2747 5283 7673 9852 2425 4598 6521 8024

Compared with SOC, the target recognition tasks under EOC are more challenging due
to the greater differences between the training and testing data, which mainly include the
configuration variation (EOC-C) and version variation (EOC-V). EOC-V refers to the same
type of target built based on different blueprints, while EOC-C denotes targets of same
manufacturing mathed with different post-production equipment added. The training data
for EOC consists of four types of targets with the depression angle 17◦. The testing data for
EOC-C include seven different configurations for two types of targets at 17◦ and 15◦, while
the testing data for EOC-V consist of images of five different versions of T72. The training
and testing data of experiments under EOC are listed in Tables 3–5.

Based on the data shown in Tables 3–5, the recognition performance of the method
proposed is experimentally verified. When the input is the single-aspect SAR image or the
image sequence with different lengths, the experimental results on SOC and EOC data are
shown in Table 6.
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Table 3. The training data of EOC.

Class Type Depression
Angle

Image
Samples

2-Aspect
Sequences

3-Aspect
Sequences

4-Aspect
Sequences

BMP2 17◦ 233 443 642 812
BRDM2 17◦ 298 576 837 1080
BTR70 17◦ 233 442 639 817

T72 17◦ 232 443 640 814
Total 17◦ 996 1904 2758 3523

Table 4. The testing data of EOC-V.

Class Type Depression
Angle

Image
Samples

2-Aspect
Sequences

3-Aspect
Sequences

4-Aspect
Sequences

T72/A32 17◦ & 15◦ 572 1103 1595 2046
T72/A62 17◦ & 15◦ 573 1105 1604 2050
T72/A63 17◦ & 15◦ 573 1105 1598 2044
T72/A64 17◦ & 15◦ 573 1105 1598 2050
T72/S7 17◦ & 15◦ 419 789 1116 1349

Total 17◦ & 15◦ 2710 5207 7511 9539

Table 5. The testing data of EOC-C.

Class Type Depression
Angle

Image
Samples

2-Aspect
Sequences

3-Aspect
Sequences

4-Aspect
Sequences

T72/A04 17◦ & 15◦ 573 1105 1598 2044
T72/A05 17◦ & 15◦ 573 1105 1598 2050
T72/A07 17◦ & 15◦ 573 1105 1604 2050
T72/A10 17◦ & 15◦ 567 1092 1577 2001
T72/812 17◦ & 15◦ 426 803 1133 1369

BMP2/9566 17◦ & 15◦ 428 807 1145 1401
BMP2/C21 17◦ & 15◦ 429 811 1143 1381

Total 17◦ & 15◦ 3569 6828 9798 12,296

Table 6. Recognition accuracy of the proposed method under different inputs.

Input Recognition Accuracy (%)
SOC EOC-C EOC-V

single-aspect 98.10 95.21 98.52
2-aspect 99.52 96.68 99.27
3-aspect 99.64 97.75 99.69
4-aspect 99.94 98.81 99.75

Based on the experimental results shown in Table 6, the proposed method in this paper
achieves higher recognition accuracy compared to single-aspect SAR target recognition
when inputing multi-aspect SAR image sequences under both SOC and EOC. Moreover,
the recognition accuracy gradually increases as the length of the multi-aspect SAR image
sequence increases. The experimental results show that the proposed method based on CL
and Non-Local for multi-aspect SAR target recognition can effectively learn the correlation
information between features of multi-aspect SAR images.

3.4. Recognition Performance Comparison

To further validate the recognition performance, the proposed method is compared
with six existing multi-aspect SAR target recognition methods, including three classical
methods, i.e., JSR [38], SRC [39] and data fusion [40], and three deep learning methods,
i.e., MVDCNN [28], BCRN [27] and MVDFLN [29]. The results are shown in Table 7
while ensuring that the inputs of each method are as close as possible. The experimental



Mathematics 2023, 11, 2690 13 of 17

results show that the proposed method achieves higher recognition accuracy compared to
existing multi-aspect SAR target recognition methods, which confirms the effectiveness of
the proposed method.

Table 7. Recognition accuracy of the proposed method and existing methods.

Method Recognition Accuracy (%)
SOC EOC-C EOC-V

JSR 94.69 - -
SRC 98.94 96.78 -

Data Fusion 98.32 - -
MVDCNN 98.52 95.45 95.46

BCRN 99.50 97.21 98.59
MVDFLN 99.62 97.84 99.10

Our Method 99.94 98.81 99.75

3.5. Discussion

The proposed multi-aspect SAR target recognition method learns multi-aspect features
by performing multiple Non-Local calculations on the feature map. To verify the effec-
tiveness of this structure, the experiment is designed to compare the network recognition
performance under different Non-Local layers, and the experimental results are shown
in Table 8. When the number of Non-Local layers increases, the recognition accuracy of
the network also increases, proving that multiple self-attention calculations help to focus
more on the correlation information between features in multi-aspect SAR images, thereby
improving the recognition accuracy of the network.

Table 8. Recognition accuracy with different layers of Non-Local.

Number of Layers Recognition Accuracy (%)
SOC EOC-C EOC-V

1 98.87 97.63 98.58
2 99.41 98.32 99.34
3 99.94 98.81 99.75

To verify the lightweight effect of the model, the comparison of model size and FLOPs
between the proposed method and other existing methods is shown in Table 9. It can be
seen that our proposed lightweight design can effectively reduce the number of parameters
and FLOPs of the proposed method. After lightweight, the proposed method significantly
reduced the number of parameters compared to existing methods. However, as for the
FLOPs, which reflects the inference speed of the network, our proposed method can still be
further optimized.

Table 9. Model size and FLOPs comparison with 4-aspect input sequences.

Method BCRN MVDCNN
Our Method

without
Lightweight

Our Method

Model Size(M) 135.25 11.49 5.28 1.63
FLOPs(G) 1.894 2.654 45.759 10.984

In order to experimentally verify the robustness of the proposed method, first, the
training sample sequences are downsampled to simulate the few-sample condition. The
results of MVDCNN, BCRN, and our method with different sampling ratios are summa-
rized in Table 10, which show that when the current sampling ratio is reduced to 2%, the
recognition accuracy of our method can still be maintained at above 90%, demonstrating
good robustness with few samples.
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Next, in order to quantitatively verify the robustness of this method under noise,
Table 11 shows the recognition accuracy of different methods when adding Gaussian white
noise with variance from 0.01 to 0.05 to the testing data. The experimental results show
that our method can still maintain a higher recognition accuracy than BCRN under strong
noise and is basically on par with MVDCNN, proving that the proposed network has good
anti-noise ability.

Table 10. Performance comparison between this and existing methods with few samples.

Methods Recognition Accuracy of Different Sampling Ratios (%)
100% 50% 25% 10% 5% 2%

MVDCNN 99.09 98.75 98.45 97.33 95.00 87.99
BCRN 99.50 99.43 98.99 94.34 91.43 77.70

Our Method 99.94 99.77 99.31 98.68 96.27 91.84

Table 11. Comparison of anti-noise performance between this and existing methods.

Methods Recognition Accuracy with Different Variance of Noise (%)
0.01 0.02 0.03 0.04 0.05

BCRN 98.46 88.73 70.31 54.78 44.63
MVDCNN 98.17 94.64 90.32 83.21 72.49

Our Method 98.72 94.35 89.64 81.59 70.57

Finally, the simulated occlusion images are generated by blocking the peak points [41]
in the testing images to test the recognition performance of the proposed method under
partial target occlusion. Specifically, after preprocessing, the multi-aspect SAR images are
rotated to a uniform orientation based on the azimuth angle. Each SAR image is then
scanned to identify peak points, whose grayscale value is greater than that of all its eight
neighbors. The total number of peak points in each image is recorded to determine the
number of peak points based on the occlusion ratio. Each SAR image is scanned along four
vertical directions denoted as d1 to d4, and the peak points encountered first are occluded
by setting their grayscale values to zero to simulate the occlusion of targets. Taking an
occlusion ratio of 50% as the example, the simulated SAR occluded images generated in
the directions of d1 to d4 are shown in Figure 8. The performance of our method under
different occlusion ratios with different inputs is shown in Table 12. It can be seen that a
4-aspect input provides more learnable feature information for target recognition than the
single-aspect input under target occlusion, thus achieving better recognition accuracy.

𝑑1 𝑑2 𝑑3 𝑑4
Figure 8. Example of simulated SAR occlusion target image.

Table 12. Comparison under different occlusion ratios and different inputs.

Input Recognition Accuracy with Different Occlusion Ratios (%)
10% 20% 30% 40% 50%

single-aspect 98.03 97.75 96.94 95.76 93.28
4-aspect 99.91 99.86 99.73 99.54 99.09
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4. Discussion
4.1. Advantages

The experimental results in Section 3.4 indicate that the proposed method achieves
higher recognition accuracy under both SOC and EOC compared to existing methods,
which proves the feasibility of achieving multi-aspect SAR target recognition through
self-attention calculation between 2D feature maps under various complex conditions.

The proposed method can achieve higher recognition rates than other methods under
few samples as shown in Section 3.5. Considering the high cost of SAR image acquisition
and annotation in practical applications, our method is more practical due to its ability to
achieve more effective target recognition under limited data.

Meanwhile, the results of experiments under noise and occlusion verify the good
generalization performance of the proposed method. In practical SAR target recognition
tasks, noise and occlusion are very common but pose significant difficulties for target
recognition. The good anti-noise and anti-interference performance for ground vehicle
target recognition makes the proposed method more valuable in practice.

4.2. Future Work

Although the proposed method has been experimentally validated for the effectiveness,
there are still some issues that can be further studied and improved from the following two
aspects in the future.

Firstly, the experiments in this paper are all based on the MSTAR dataset and simula-
tion data. On one hand, the construction process of multi-aspect SAR sequences requires
further experiments and optimization, such as the impact of angle range and sliding win-
dow step size on the subsequent experiments. On the other hand, considering the ideality of
simulation methods and the singularity of existing data on the target, the actual application
performance and effectiveness against other targets of the model of the proposed method
still need to be further verified after collecting data in real environments.

In addition, the characteristics brought about by the special imaging mechanism of
SAR are currently an important direction that needs to be studied. The proposed method
only focuses on the amplitude information of SAR images, but it ignores the additional
information contained in complex SAR images which can also be learned through networks
to further improve model performance.

5. Conclusions

This paper proposes a multi-aspect SAR target recognition method based on contrastive
learning and a Non-Local structure. Specifically, the lightweight ResNet model is pre-trained
using a contrastive learning network based on single-aspect SAR images, after which it is
transferred for SAR image feature extraction. Then, Non-Local is used to apply self-attention
to two-dimensional feature maps to fully learn the correlation between multi-aspect SAR
image features and improve the recognition accuracy by performing multiple pixel-level self-
attention calculations in different dimensional feature spaces. Experiments conducted on
the MSTAR dataset validate that the proposed multi-aspect SAR target recognition method
achieves satisfactory recognition accuracy and good generalization performance.
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