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Abstract: The present research investigates symmetric soliton solutions for the Fractional Coupled
Konno—-Onno System (FCKOS) by using two improved versions of an Extended Direct Algebraic
Method (EDAM) i.e., modified EDAM (mEDAM) and r+mEDAM. By obtaining precise analytical
solutions, this research explores the characteristics and behaviours of symmetric solitons in FCKOS.
Further, the amplitude, shape and propagation behaviour of some solitons are visualized by means
of a 3D graph. This investigation fosters a more thorough comprehension of non-linear wave
phenomena in considered systems and offers helpful insights towards soliton behavior in it. The
outcomes reveal that the recommended techniques are successful in constructing symmetric soliton
solutions for complex models like the FCKOS.

Keywords: Fractional Coupled Konno-Onno System; extended direct algebraic method; solitons
solutions
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1. Introduction

Fractional Partial Differential Equations (FPDEs) have attracted a great deal of interest
due to their capacity to explain different complicated phenomena that display memory
effects, long-range interactions, and anomalous diffusion [1-6]. The importance of FPDEs
lies in their capacity to offer more precise and realistic models for a variety of natural and
artificial systems [7-12]. In view of such applications, researchers have taken an active
interest to address FPDEs with the help of two different approaches called numerical and
analytical methods [13-19]. Researchers are more interested in examining analytic solutions
to FPDEs than numerical ones as analytical solutions provide more thorough understand-
ings of the characteristics and behaviour of the system, enabling a better comprehension
of the underlying mechanisms [20-22]. Secondly, analytical solutions offer computational
efficiency, making it possible to do calculations and computations more quickly than with
numerical approaches, particularly for FPDEs that are more straightforward or idealised.
Therefore, many analytical methodologies like the (G’/G)-expansion method [23], method
of homotopy perturbation [24], variational iteration method [25], exp-function method [26],
He’s semi-inverse method [27], tan-expansion method [28], EDAM [29] etc. were developed
to solve FPDEs analytically [30-35].

Mathematics 2023, 11, 2686. https:/ /doi.org/10.3390/math11122686

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math11122686
https://doi.org/10.3390/math11122686
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0199-6850
https://orcid.org/0000-0001-6227-5817
https://orcid.org/0000-0001-9560-105X
https://orcid.org/0000-0003-4306-8489
https://doi.org/10.3390/math11122686
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11122686?type=check_update&version=1

Mathematics 2023, 11, 2686

2 of 30

The coupled integrable dispersion-less system known as the Coupled Konno—-Oono
System (CKOS) was developed by Konno and Oono [36]. The behaviour of a current-fed
string interacting with an external magnetic field and the parallel transport of a curve’s
points along the direction of time with a magnetic-valued connection are two examples
where it has been researched. The importance of the CKOS may be attributed to both
its integrability characteristics and its applicability to certain physical phenomena. Inte-
grability’s property of the system means that the system has conserved quantities and
symmetries. This knowledge may find applications in electromagnetism, materials science,
or solid-state physics depending on the particular system being modelled. The CKOS is
presented as [37]:

uy(x,t) — 2u(x, t)o(x, t) =0, .
ve(x, £) + 2u(x, uy(x,t) = 0. @

Due to its benefits in mathematical modelling, memory effects, generalisation and
flexibility, accuracy and precision, as well as control and optimisation, the fractional form
of the CKOS, i.e., FCKOS is favoured in this study. Fractional derivatives offer a more
precise illustration of intricate physical processes and more truly portray the behaviour
of the system. Memory effects, which are common in real-world systems, are also taken
into account by fractional derivatives, allowing the system to preserve knowledge from
the past. In comparison to integer-order models, fractional models are more accurate and
precise and better fit experimental data. Additionally, using a fractional form allows for the
use of cutting-edge control and optimisation methods for improved system performance
and stability. The mathematical form of FCKOS is presented as below [38]:

uif(x,t) —2u(x, t)v(x,t) =0,
t 0,

; @
vy (x, t) + 2u(x, f)uy(x,t)

where 0 < &, B < 1. The functions u(x,t) and v(x,t) present the displacements of two par-
ticles that interact in a medium with fractional derivatives. Before this research work,
many researchers have tackled both CKOS and FCKOS with the help of different analytical
methods; in [39] Kocak et al. have utilized modified exp-function method to obtain travel-
ling wave solution for the CKOS. The exact solutions to the CKOS have been developed
via the tanh-function and extended tanh-function approaches in [40]. By employing He’s
variational technique, Elbrolosy and Elmandouh have studied dynamical behaviour of
conformable time-fractional coupled Konno-Oono equation in magnetic field in [38]. Aliza-
mini et al. in [37] have utilized simple EDAM to address CKOS in integer order and have
obtained only one set of solution for CKOS by supposing U(¢) = Y1, a;(G(¢))' series
form solution. It was found by comparison that their all obtained closed form solutions
can be obtained from our employed mEDAM version second case’s solution for letting
« = B = 1 thus, their study is the special subcase of our work.

The aim of this study is to construct symmetric soliton solutions for FCKOS via two
improved variants of EDAM called mEDAM and r + mEDAM. EDAM is a novel analytical
method for solving FPDEs. It applies variable transformations to turn FPDEs into nonlinear
Ordinary Differential Equations (NODEs) and then assumes a series form solution to
turn these NODEs into a system of algebraic equations. The obtained system of algebraic
equations is then solved to obtain families of soliton (also called solitary waves) solutions for
FPDEs.A soliton represents a self-sustaining wave that does not dissipate or spread out and
keeps its shape and speed. It engages in interaction with other solitons while maintaining
its uniqueness and displaying stability. Solitons have special features because of the precise
balance between nonlinearity and dispersion. They are investigated in several domains to
improve our knowledge of wave behaviour, nonlinear dynamics, and integrable systems.
They have practical uses in communication networks, water channels, and biological
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modelling. Solutions from soliton offer perceptions into the underlying physical operations
and system operation.

The derivative operator proposed by Caputo is used to define the fractional derivatives
found in (2). This derivative operator is shown as below [41]:

1 s %z(t,p)
DYz(s,t) = { T-0) Jo o e, o€ (0,1) -
s ’ 9z(s,t) .
% o=1

where the function z(x, t) is suitably smooth. To transform FPDEs present in (2) into
NODEs, we use the following two properties of this operator:

Fr1+k) 4+,

DG ¢k = Mtk-a? - 4
Dgy[x(9)] = v (x(¢))Dgx(¢) = DIy (x(¢))[x'(¢)], ®)

where k € Rand y(¢) and x(¢) are differentiable functions.

2. Method and Materials

In this section, the working methodology of EDAM is outlined. Consider the following
general FPDE [42]:

Q(®, 9 d, 05 @,07,®, s d,..) =0, 0 <, B,y <1, 6)

where ® is a function of t and x1, x, X3, ..., Xp.
To solve (6), we take the following steps:

1. Firstly, a variable transformation of the form ®(f,xq,x2,%3,...,%,) = U(g),
¢ = ¢(t,x1,%2,X3,...,Xp), (Where ¢ can be described in different ways) is carried out
to transform (6) into a NODE of the form:

T(U, U, u'U,...) =0, @)

where derivatives of U in (7) are with regard to ¢. Equation (7) can be integrated one
or more times occasionally to acquire integration’s constant.
2. According to the version of EDAM, we assume one of the following solution for (7):

1. mEDAM suggests the following series form solution:
- l
Up) = ) a(Gle), ®)
I=—n
2. r+mEDAM suggests the following series form solution:
& 1
Up) = ) a(r+G(e), ©)

I=—n

where g;(I =n,...,-1,0,1,...,n) are unknown constants to be determined later,
and G(¢) is the general solution of the following ODE:

G'(¢) = Ln(n)(A + BG(¢) +C(G(¢))?), (10)

where u # 0,1 and A, B and C are in variables.

3.  Taking the homogeneous balance between the highest order derivative and the great-
est nonlinear term in (7) gives the positive integer n presented in (8) and (9).



Mathematics 2023, 11, 2686

4 of 30

4. After that, we put (8) or (9) into (7) or in equation generated by integrating (7)
and then we collect all the terms of (G(¢)) of the same order which turn out an
expression in (G(¢)). By the principle of comparing the coefficient, we equate all the
coefficients in the expression to zero, which yields a system of algebraic equations in
a(l=—-n,...—1,0,1,...,n) and other parameters.

5. We employ Maple software to solve this system of algebraic equations.

6. The symmetric soliton solutions to (6) are then investigated by calculating the un-
known coefficients and other parameters and putting them in (8) or (9) along with the
U(¢)(general solution of (10)). By this general solution of (10), the following families
of soliton solutions can be generated:

Family. 1: When R < 0 C # 0 then we obtain the subsequent family of soliton solutions:

B LY —Rtan, (1/2+v/—Rg)

thg) = - 2C 2C ’
Us(p) = _% B mcoty(zlc/zm¢),
Us(¢) = —% + \/TR(tany(mq)) ;:C<\/Wsecy(\/—7R(P))) ,
_ B V=R(coty(V—Re) + (/p7escu (V—Ro)))
Hale) = 7o 2C ,

and

Us(g) = _% | V=R(tan,(1/4 ﬁ;oc) —coty(1/4V=Ry))

Family. 2: When R > 0 C # 0 then we obtain the subsequent family of soliton solutions:

B \/ﬁtanhy (1/2 \/ﬁ(p)

Us() = Ye 2C ’
Uz (9) = —% - ﬁcmhyz(cl:/z ﬁq))’
g VR(tanh,(vVRe) + (/pasech,(VRe)))
Us(g) = “oc 2C ,
5 VR (cothy(\@fp) + (\/WCSC’“” (\/E(p)»
Us(g) = “oc 2¢ ,

and

B \/ﬁ(tanhy (1/4 \ﬁcp) — cothy, (1/4 \/ﬁq))>
2C 4C '
Family. 3: When AC > 0 and B = 0 then we obtain the subsequent family of soliton solutions:

Uy (p) = \/? tan, (VACy),

U (p) = —\/g coty (VACo),
it B (700 (0 (2720)
Ua(g) = —/? (cotu(2V/ACp) = (vPesau(2VAC) ) ).
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and
Uis(g) = 21/ (tany (1/2VACq) — coty (172 VACo) ).

Family. 4: When AC > 0 and B = 0 then we obtain the subsequent family of soliton solutions:

U16((p) = Htanhy (\/*714(?([)),

Uiy (@) = \/?cothy (\/—7AC¢>,

Uys(@) = — [~ 2 (tanh (2V=ACg) + (i piseca (2 ACy) ) )

Uo(g) = — H(cothy (2 v —ACgo) + (\/Wcschy (2 \/—7AC<p) )),
and

Uno () = —% H (tanhy (1 /2 \/—Txc(p) + coth,, (1 /2 \/—ch)) ) .

Family. 5: When C = A and B = 0 then we obtain the subsequent family of soliton solutions:
Uz (9) = tan,(Ag),

Uxn (@) = — cot,(Ag),
U (¢) = tany, (2 Ap) £ (\/pgsecy(2 Ag)),
Upa(p) = — coty (2 Ag) £ (\/Pqcscu(2 Ag)),

and
1
Ups(¢) = 5 tany,(1/2 Ap) = 1/2 coty(1/2 Ag).

Family. 6: When C = —A and B = 0 then we obtain the subsequent family of soliton solutions:
Uz (@) = —tanh, (Ag),

Uy7(¢) = — cothy (Ag),
Upg(¢) = — tanhy, (2 Ag) £ (i/pgsech, (2 Ag)),
Ung (@) = — cothy (2 Ag) + (y/pieschy (2 Ag)),

and
Uz () = —% tanh, (1/2 Ap) —1/2 coth, (1/2 Ag).

Family. 7: When R = 0 then we obtain the subsequent family of soliton solutions:

A(B®Lnp+2)

U31((P) = _2 BZ(PLHI/I

Family. 8: When B = v, A = NA(N # 0) and C = 0 then we obtain the subsequent family
of soliton solutions:
Usa(g) = u'? = N.

Family. 9: When B = C = 0 then we obtain the subsequent family of soliton solutions:

Uss(p) = A Lnp.
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Family. 10: When B = A = 0 then we obtain the subsequent family of soliton solutions:

1
CoLnu

Usy(p) = —

Family. 11: When A = 0, B # 0 and C # 0 then we obtain the subsequent family of
soliton solutions:

Uss () = C(coshy (Bg) — sinhy (Bg) + p)’

and
B(coshy, (Bg) + sinh, (Bg))

C(coshy (Bg) + sinh, (B¢) +q)

Family. 12: When B = v, C = Nv(N # 0) and A = 0 we obtain the subsequent family of
soliton solutions:

Use(p) = —

pu’?
Usy(g) = — P "
(9) = o N

When R = B2 —4AC, p,q > 0 and are referred to as deformation parameters. The gen-
eralised trigonometric and hyperbolic functions are expressed as below:

siny, (¢) = M, cosy(¢) = M,
sech(9) = cop o Su9) = g

tan, (@) = :;r:;(((P;, cot, (@) = (S:::E(P))

Similarly,
sinhy, () = Efﬁ:%éﬂﬂ:f, cosh, (¢) = Elfiié@ﬁif,
sechy (@) = Coshu((p)’ cschy (@) = smhly(q))
o) = ey )= Sy
3. Results

In this section we implement two proposed versions of EDAM to the targeted model.
We start with the following variable transformation:

xP kot*
X‘B kg_tﬂ‘
which transform (2) to the following set of NODEs:
— klU" —2vU =0,
g , (12)
—koki V' +2k;U'U = 0.
By integrating second part in (12) with respect to ¢ yields:
2
v H+U (13)

ky
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where H is constant of integration. Putting (13) in first part of (12) implies:
(kikp)?U" +2HU 4 2U° = 0. (14)

To estimate balance number # in (8), we consider homogenous balance between
highest order derivative U” and nonlinear term U3 in (14) which results that n = 1.

3.1. Implementation of mEDAM

First we solve NODE in (14) with the help of mEDAM. Putting n = 1 in (8) implies the
following series form solution for (14):

1
U(p) = ZZ a;(G(9)) = a_1(G(9)) ' + a0 +a1(G(9))", (15)
=1

where a_1, ag and a; are constants to be calculated, and G(¢) is the general solution of ODE
in (10). By putting (15) in (14) and collecting all terms with the same powers of G(¢), we
get an expression in G(¢). By equating the coefficients to zero yields a system of algebraic
equations in a_1, ag, a1, k1, ko, H, u, A, B and C. Upon solving this system for a_1, ag, a1, ky
and ky using Maple, we reach at the following two cases of solutions:

Case. 1
HA /
(11:0,11_1:2
2 —B2+4CA
VH(=B2+4CA)’ 16)
2 H
ky = V- ko = k.
YT n(uk, V —BZ+4CcAT T 2
Case. 2
HC H
a =2 0 :Ola = B’
VT JH(- B r4ca) T T VoBrr4aca W)

2 H
ky = W - ky = ky.
' n(wk, V=B +4cAT? T

Assuming case. 1, we get the following families of symmetric soliton solutions for (2):

Family. 1: When R <0 A, B,C # 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

2HA

(%, 1) = H(—B2+4 AC) i /EB
A5 = B \/TRtan”(l/Z\/fR(p) —R™’
—xct 7C

2HA (18)
_ 1 H(—B2+4 AC) i 5
vl(x,t) - k2<( (_ B n JthanM(l/ZJjR¢)) + —RB) +H)’
2C 2C

2HA

_ H(—B2+4 AC) H
ua(xt) = ( B mcoty(1/2m¢)) TV RP

B
2C 2C

2HA (19)

_ 1 v/H(-B24+4 AC) H
UZ(x/t) - kz(( ( B \/TRCOt}l(1/2\/—7R(p)> + _RB) +H)/
—2C T 2C
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2HA

uz(x,t) = V/H(-B>+4AC) + EB
R (—ch+ M(tanu(JTR¢)i(Msec}l(¢jR¢)))) R

2C

2HA
H(—B2+4 AC) H

\/7R(tan;,(\/7R(p)i(\/Wsec#(\/7R(p)))) -R

B
ct 3C

2HA
H(—B2+4 AC) H
/t = 7B/
uy(x,t) (_B_ \/R(cot},(\/R(p)i(\/ﬁcscy(\/R(p)))) + —R
2C 2C

2HA (21)

1 H(—B>+4 AC) | H
04(3(, t) N kz(( <_ B \/TR(cotll(\/—iRQD)ié\/ﬁcscﬂ(\/j‘P)))> i _RB) +H),

2HA
H(—B2+4 AC)

| H
/t = 7B/
us (1) (_ B \/R(tan;,(1/4\/R(p)cotﬂ(1/4\/R(p))) VIR
1

C

264 (22)

H(—B2+4 AC)

[ H .,
—B H).
\/_R(tanﬂ(1/4\/—qu)—cot;,(l/él\/—R(p))) + —R ) + )
4C

Family. 2: When R >0 A, B, C # 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

2HA
. H(-B2+4 AC) i
ug(x,t) = ( p \/Etanh;,(l/z\/ﬁfp)> +\/ B
—c T 2C
(23)
2HA
_ 1 H(—B2+4 AC) H ,»
U(,(X, t) - kz(( B \/ﬁtanh}l(l/Z\/ﬁ(p) + —RB) +H)l
—2c 2C
2HA
B H(—B?+4 AC) H
ur(x 1) = (_B _ Jﬁcothy(l/zx/ﬁqo)) + V —RB’
2~ 2
2HA (24)

_ 1 \/H(—B2+4 AC) i 5
U7(x/t) - kz(( (_B - \/ECOthy(l/Z\/E(p)) + —RB> +H)/

2C 2C
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2HA
v/H(—B24+4 AC) H
/t = 7Br
ug(x,t) <_B_ \/ﬁ(tanh;,(\/qu)i(\/ﬁsechy(ﬁ(p)))> + —R
2C 2C
2HA (25)
1 H(—B2+4 AC) H _.»
) = — —B H),
vs(x, 1) k2(<(lgcf(tanh#(\f<p) (fsechy(\f¢)))> o —gBHH)
2
2HA
H(—B2+4 AC) H
/t = 7B/
u9(x ) (—ZBC— f(coth#(f(p) (fcscly,(f(p)))) + —R
2HA (26)
1 H(—B2+4 AC) H
) = — —B H
vo(x ) = ¢ (( (_B_f(coth,l(m) (fcschquJ)))) + —gB T H),
C
and
2HA
_ H(—B2+4 AC) H
o(x ) = < 5 \/ﬁ(tanh;,(l/4\/§<p)cothy(1/4\/ﬁ¢))> Y ZRY
—a2c ic
2HA (27)
_ 1 v/H(—B2+4 AC) H
v10(x, t) = kz((< Y ﬁ(tanhy(1/4f(p) cothy(1/4f(p))) +4/ _RB) + H).
2C

Family. 3: When AC > 0 and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

up (x,t) = \/ﬁ(tany (\/Rq)) ) B

) 9 (28)
o (x,t) = E((Vﬁ(tany (\/Rqo)) )+ H),
upp(x,t) = —\/ﬁ(cotﬂ (\/E(p))il
~ (29)
via(x, t) = klz((—\/ﬁ(cotﬂ (\/R(p)) 1)2 + H),
uz(x,t) = \F(tany( F(p) (ﬁsecy( \/742))) ,

o (2 00) = (s (7)) e
o13(X,t) = k) ,
u4(x, t) = —\/ﬁ(coty (2 \/E(p) + (\/ﬁcscy (2 \/Eq))))_l,

(31)

((ﬁ(coty (2 JTC(p) + <\/Wcscy (2 \/ﬁ(p)))_l)Z + H)
ko ’

v14(x, t) =
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and
g5 (%, £) — 2\/ﬁ(tany (1/2 \/Eq)) — cot, (1 /2 W(p) ) N

_ (32)
v15(x, f) = %((2\/?(&1@4 (1/2 \/E(p) — coty, (1/2 \/Egp)) 1)2 + H). ”

Family. 4: When AC > 0 and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

u1(x,t) = —\/j(tanhy (\/—7AC(p) ) 71,

1 1 (33)
v16(x, 1) = E((—m(mnhy(V—ch))) )2+ H),
uy7(x,t) = —\/ﬁ(cothy (\/—7ACq)) ) 71, -
o1 (x, ) = kiz((—\/ﬁ(cothy(\/m(p))*)z +H),
ug(x, t) = —\/ﬁ(tanhy (2 \/—7AC(p) + (i\/ﬁsechy (2 \/%(p) ) ) 71, -
35
o1s(x, 1) = klz((\/ﬁ(tanhy (2v/=ACp) + (iy/pgsech, (2v/—ACg) )) )2 + H),
urg(x, t) = —\/ﬁ(CO’chl4 (2 \/—7AC(p> + (\/Wcschy (2 \/—7AC<p) ) ) 71, a6
v19(x, t) = %((—m(cothy (2 \/—7ACcp) + (\/ﬁcschy (2 \/—7AC¢> ) )2+ H),
and
s (x,t) = —2v/—H (tanhy (1 /2 \/—Tu:go) + coth, (1/2 \/—Txap))_l -
37

v (%, t) = é((—zm(tanhy (1/2\/—ACq)),+cothH (1/2 \/Tacgo))—l)z +H).

Family. 5: When C = A and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

vH
uz1(x, ) = "~ cot, (Ag)’
1 ' vVH ~
) = (ot (agy)
u (x t) = \/E
2 (tany (2 Ag) = (Vpasec, (2 Ag)))” (39)
\/ﬁ

)2+ H),

"2 =, (an, 2 49) = (Vi secs 2 49)))
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ug(x, ) = /e '
(~ cotu(2.49) F (/paesc, (2 Ag))) (40)
1 vH :
000 = L (o @an = (vresqeag))) 7
g (x, 1) = vH
2u(x,t) = (1/2 tan,(1/2 Ag) — 1/2 cot, (1/2 Ag))’ (41)
ouln ) =g (( (1/2 tany (1/2 Ag) —1/2 coty(l/ZAq)))) o
and
N
B\ = tanh, (Ag)’ (42)
1 vVH
0ps(x, ) = E((_m) + H).

Family. 6: When C = —A and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

v—H
tanh, (Ag)’

1 VH
ko tanh, (A¢)

M26(X, t) - -
(43)

026(x/ t) = )2 + H)/

(44)

) = anh, (2 4g) ¥ (1y/pised (249)))”

1
vps(x,t) = E(( (— tanhy, (2 Ag) F (i/pasechy (2 Ag))) )+ H),

(45)

—~

vV-H
—coth, (2 Ag) F (\/pgeschy (2 Ag)))’
1 vV-H
v (%, 1) = E(( (— cothy (2 Ap) T (/Paeschy(2 Ag))) )’ H),

u29(x/ t) = (
(46)

and
v—H
—1/2 tanhy,(1/2 Ap) —1/2 coth,(1/2 Ag))’

v—H
—1/2 tanh, (1/2 Ag) — 1/2 cothy,(1/2 Ag))

u30(x/ t) = (
(47)
)2+ H).

UBO(Xr t) = kliz(( (
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Family. 7: When B = v, A = Nv(N # 0) and C = 0 then (11), (13) and corresponding
general solutions of (10) imply the following family of symmetric soliton solutions:

uz (x, 1) = m+\/ﬁ i
1., 2v/—HN ) (48)
v (x,t) = E((m+¢ﬁ> + H).

. 2 H B ko™
where ¢ = In(p)ky \/E(F(EH) N F(of+1) )

Now, assuming case. 2, we get the following families of symmetric soliton solutions
for (2):
Family. 8: When R <0 A, B, C # 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

M32(x,t) — \/TR(B-FZC(—B—i— \/TRtany(l/Z\/—qu))>)/

2C 2C )
49
v3(x,t) = klz(( —I_;{(B+2C<_2BC i \/TRtanyglc/Z\/—iR(p)>))2+H),
uss(x,t) = \/TR(B +2C <—2Eé - ‘/TRCOtV(;C/Z \/Tch)))’ .
50
vs3(x, ) = klz(( _ER(B +2C<—2Eéj - \/TRCOtVSC/Z \/TR(P)>))2 +H),
wsa(x,) = _ﬁwm(_;& , V=R(tan,(v=Rg) ZWsecu(mqo))))),
(51)
v3g(x,t) = _ER(B +2C <_2BC + V=R(tan, (V=Rg) :ztc(\/ﬁsecy(ﬁgo))) ) )2+ H),
o) = Fo e~ £ - YREo /R (Ve (SR
(52)
v3s(x, t) = _ER(B +2C (—213: ~ V=R(coty (V—Rp) ;—LC(\/WCSCV(M(P») > )2+ H),
and
uze(x,t) = \/ _ER(B +2C <—2]i + vV —R(tan, (1/4 mfc) —coty (1/4 \/7RfP))>,
(53)
v36(x, 1) = _ER(B—FZC <_2BC n v —R(tan, (1/4 \/TRZDg —coty (1/4 \/TR¢))>)2+H)
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Family. 9: When R >0 A, B, C # 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

uzy(x,t) = E(BJFZC (B \/Etanhy(l/2\/ﬁ(p)>),

—R 2C 2C
1. [H g VRtanh,(1/2VRp) &Y
037(X,t):E(( —I{(B+2C(_2C_ e )))2+H),
usg(x, t) = \/TR(B +2C (_ZBC _ \/ECOthyz(clj/z \/EQO) ) ),
1 H B VRcoth, (1 /2 \@(p) )
vss(x,t)—b((\/TR(B+2C(—2C— o )))2+H),
uzo (x, £) = _ER(B +2C (—212 - VR tanhy (VRp) izémmh” (VRe))) ) y
(56)
v39(x, t) = kiz(( _ER(B +2C (_ZBC — ﬁ(tanh” (ﬁqo) izgmsem” (ﬁqo))) ) )2+ H),
ugo(x,t) = _ER(B +2C <_2fé _ \/E(C()th” <\ﬁ¢) iz((:\/WCSCh” (\/E(P))) ) ),
1 H B \/E(mthy (\/Eq)) + <\/Wcschy <\/E(p> )) R (57)
w0, ) = () e B+ 20 % 50 - e )
+H),
and
ugr(x,t) = \/—TR(B 12C (;i: B \/ﬁ(tanhy (1/4 \/Ei)c_ cothy, (1/4 \/ﬁ(p)> ) )
(58)

on (1) = (4 2C 4C

ko —R

j2] (B+2C( B \/ﬁ(tanh,l(l/éh/ﬁq)) —cothy(1/4\/§(p))>))2+H)'

Family. 10: When AC > 0 and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

ug(x,t) = \/ﬁtany (\/R(p),

1 (59)
v (x,t) = E((\/ﬁtany(\/ﬁgo))z +H),
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ugs3(x, 1) = —coty(\/TC(p),

o4 (x,£) = klz((— coty (VACg) 2+ H), 0
ug(x, t) = f(tany( \/7(/)) (ﬁsecy< \/74)))) .
U44(x,t):k1—2((\ﬁ(tany( \/743) (\/Tysecy( F¢))))2+H),
uys5(x, t) = — f(cot;,( \/74)) (ﬁcscy< \/74)))) )
62
045(x,t):kl2((—\/>(coty( \/7(;)) (ﬁcseu( \/74))))) H),
and
e (x, 1) = \/ﬁ(tanﬂ (1/2 \/R(p) — coty, (1/2 \/Ego)),
(63)

046 (x, 1) = kl—z((\/ﬁ(tany (1/2V/ACg) ~ coty (1/2VACe) )2 + H).

Family. 11: When AC > 0 and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

ug7(x,t) = —/—H tanh,, (\/—7AC¢),

. (64)
var(x, 1) = E((—Vﬁtanhy(\/—ch)))z +H),
ugg(x,t) = —v/—H coth, (\/—7AC(;)> H(—Bi A .
ous(x, ) = %((—MCothy<\/—7AC(p> H(—B;+4AC) 4 m),
ugg(x, 1) = m(tanh (2\/7¢)j:(i\ﬁsechy(2\/—7AC<p>)),
66
049(x,t):—2(( H(tanh ( \/j(p> (fsech ( \/—7AC¢))))2+H), 0
uso(x,t) = m<coth (2\/?(;)) + (\/ﬁcschy<2\/—7ACgo>)),
67
U5O(x,t):—(( (cothy<2\/jgo> (Mcschy<2m¢))))2+H), 7
and
s ( xt = — H(tanh (1/2\/jq))+coth (1/2\/?(/)))
(68)

vs1 (1) = (( F(tanhy(l/Z\/jq))+coth (1/z¢7¢)))2+ﬂ).
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Family. 12: When C = A and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

usa(x, 1) = VEitan, (Ag),

es2(0,1) = - ((VELtamy (Ag)? 4 H), @
us3(x,t) = —\/Ecoty(Ago),
70
vs3(x, t) = é((—ﬁCOfy(AGD)VﬂLH)f 70
use(x,t) = VH(tan, (2 Ag) £ (\/pgsec,(2 Ag))),
1 ) (71)
Usq(x,t) = E((\E(tany(ZAgo) + (\/pgsecu(2A9))))” +H),
uss(x,t) = VH(—coty (2 Ag) F (VPicscu(2 Ag))),
1 ) (72)
vss(x, 1) = E((@(_COtu(2A¢) F (VPiescu(2A9))))" + H),
and
use(x,t) = VH(1/2 tan, (1/2 Ap) — 1/2 cot,(1/2 Ag)),
1 (73)

vse(x,t) = —((VH(1/2 tany, (1/2 Ap) — 1/2 cot,(1/2 Ag)))* + H).

k2

Family. 13: When C = — A and B = 0 then (11), (13) and corresponding general solutions
of (10) imply the following family of symmetric soliton solutions:

us7(x,t) = —v/—H tanhy, (Ag),

os7(51) = o ((~V~Hlanhy (Ag) + H), 7
usg(x,t) = —v/—H coth, (Ag),
vsg(x,t) = klz((—\/jco’chy(A(p))2 + H), @)
uso(x,t) = V—H(—tanhy, (2 Ag) F (i\/pgsechy (2 Ag))), )
6
vsg(x,t) = klz((m(— tanhy, (2 Ag) F (iy/pgsech, (2 Ag))))* + H), 7€)
ugo(x,t) = V/—H(— coth, (2 Ap) F (\/pgeschy (2 Ag))),
77
vgo(x, 1) = klz((\/ﬁ(— coth, (2 Ag) F (/pgeschy (2 Ag))))* + H), 7
and
ug(x,t) = V—H(—1/2 tanh, (1/2 Ag) — 1/2 coth,,(1/2 Ag)),
(78)

ve1(x,t) = kt((m(-;tanhy(l/2A(p) — ;cothy(l/ZAgo)>)2 + H).
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Family. 14: When A = 0, B # 0 and C # 0 then (11), (13) and corresponding general
solutions of (10) imply the following family of symmetric soliton solutions:

e V—Hp
ug(x,t) = v—H -2 (coshy (Bg) —sinhy (Bg) - p)’ o)
v (x,8) = ~ (V—H -2 V=—Hp )2+ H)
’ ko (coshy (Bg) — sinhy, (Bg) + p) ’
and
) — VT v/—H (coshy (Bg) + sinh, (Bg))
63(x,t) = V—H =2 (cosh(Bg) + sinh(B¢) + q) (80)

— V= H(coshy(Bg) + sinh,(Bg))
VoH -2 (cosh(B¢) + sinh(B¢) + q)

vea(t) = - 7+ H).

Family. 15: When B = v, C = Nv(N # 0) and A = 0 then (11), (13) and corresponding
general solutions of (10) imply the following family of symmetric soliton solutions:

u64(x, i’) =v—-H+2 MI
(p—Nqu’?) 81)
1 v —HNpu"?¢
vea(x, 1) = E((WHH%Y +H).

. o H B ko t*
where ¢ = In(pt)ky \/ﬂ(r([ﬁ‘rl) n 1"(0?—&-1) )

3.2. Implementation of r + mEDAM

To construct more symmetric soliton solutions for (2), we now solve NODE in () with
the help of r + mEDAM. Putting n = 1 in (9) implies the following series form solution
for (14):

1
U(e) = 12 a(r+G(9)) = a_1(r+G(9)) " +ag + a1 (r + G(9))", (82)
——1

where a_1, ag and a; are constants to be calculated, and G(¢) is the general solution of ODE
in (10). By putting (82) in (14) and collecting all terms with the same powers of G(¢) , we
get an expression in G(¢). By equating the coefficients to zero yields a system of algebraic
equations in a_q, ag, a1, k1, ko, H, r ,ui, A, B and C. Upon solving this system for a_1, ag, a1,
ki and k, using Maple, we reach at the following two cases of solutions:

Case. 1

(A-rB+Cr?)vVH o VH(—2Cr+ B)
ViAC—_B2 T T Viac-B ' )

2 H
k= In(u)k, V  4AC— g2 = ke
=24/———C,a_
H

a = 0,{1_1 =2

Case. 2

H .. _,. _ H=2Cr+B)
Vaac—B "' " T H@AC - BY)

2
k= In(u)k, V' 4AC — g2 = ke

Assuming case. 1, we get the following families of symmetric soliton solutions for (2):

(84)
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Family. 16: When R < 0 A, B, C # 0 then (11), (13) and corresponding general solutions
of (10) imply the following family of symmetric soliton solutions:

2(A—rB+Cr¥)VH
% VH(—2Cr + B)

Hes (¥ £) = ( 5 mtany(l/ZM¢)> + VR '
—3c T 3C
(85)
2(A—rB+Cr?)VH
(5, 8) = R § VHE2CrE8) 0 g,
’ ko (_B R mtany(l/szp)) VR ’
2C 2C
2 (A—rB+C?)VH
s 1) = Iy S N VH(=2Cr + B)
’ (_B B mcoty(1/2m¢)) v—R ’
2C 2C
(86)
2(A—rB+Cr?)VH
1 VR VH(=2Cr+B),,
v66(x’ t) N E(( ( B ﬁcoty(l/Z\/—quO)> + \/TR ) * H)I
—a2c 2C
2 (A—rB+Cr?)VH
ugr(x,t) = V-R + \m(—ZCr—b—B),
(_B N m(tan;,(m(p)i(msecy(mfp)))) V—R
2C 2C
(87)
—r 7'2 \/7
ver(6, 1) = L (( HAmErer)VE % PE N \/ﬁ(—ZCr+B))2+H>
ASA A <B+ \/7R(tan;,(\/7Rgo):t(\/ﬁseC#(\/7R<p)))) v—R ’
2C 2C
2 (A—rB+Cr?)vVH
uég(x, l’) = VR + \/E(_ZCT"‘FB),
(_2% _ M(C(’t%(m@)ié\/ﬁcscﬂ(m‘/’)))) vV—R
(88)
—r 7'2 \/7
- L A ne VEC2C B,
85— <—ch— \/7R(coty(\/7R<p)§é\/ﬁcscﬂ<\/7R¢)))) v—R ’
and
2 (AfrB+C72) vVH
o (x, £) = /R n \/ﬁ(—ZCr-l-B),
<_B n m(tan;,(1/4m¢)cotﬂ(l/4m¢))) v —R
2C ac
(89)
2 (A-rB+Cr?)VH
oo (1) = L (( VX § YHE2CrB) 0 |

<_B n \/7R(tar1ﬂ(1/4\/7RqJ)coty(l/4\/7Rq)))> v —R
2C 4C
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Family. 17: When R > 0 C # 0 then (11), (13) and corresponding general solutions of (10)
imply the following family of symmetric soliton solutions:

2(A—rB+Cr¥)VH
% VH(—2Cr + B)

u70(x,t) - ( B ﬁtanh#(l/Z\/E@)) + v/ —R !
—2Cc 2C

2(A—rB+Cr?)VH (90)
or0(x, 1) = - (( VR (YRGB gy
! k2 (_B _ \/Etanhy(l/Z\/f(p)> v/ —R !
2C 2C
2(A—rB+Cr¥)VH
iy (3, ) = ( \/TR) Jr\/ﬁ(—ZCrJrB)
e (_ B \/Ecothy(l/wﬁqv)) VAAC—-B?
2C 2C
2(A-rB+CP)VH 1)
on(xt) = L(( /R VH(Z2Cr4B)p |
’ ko (_B - \/ﬁcothy(l/?.\/ﬁgo)) VAAC — B2 ’
2C 2C
2 (A—rB+Cr?)VH
() = -~ VR N VH(=2Cr + B)
' <—ch _ \/ﬁ(tanhy(\/ﬁfr))ﬂ;(cﬂswhzxwm)))) vV—R '
2 (A-rB+Cr?)VH 2)
oma(x, 1) = —(( /R p YH2CHB) )
, ko (BC B \/ﬁ(tanhy(\/ﬁfp):t(c\/ﬁsechy(\/ﬁgo)))) v/—R
2 p)
2 (A—rB+Cr?)vVH
(2, ) = ~— VR N VH(—2Cr + B)
A (_B _ \/E(cothy(\/f(p)i(\/ﬁcschy(ﬁ(p)))> /—R ’
2C 2C
2 (A*}'B*FCTZ) vVH (93)
; (xt)—l(( J/—R +\/ﬁ(—ZCr—i-B))szH)
P T (_B - ﬁ(cothymwi(mschy(m)))) V=R ’
2C 2C
and
2 (AfrB+C72) vVH
g, ) = VR Jr\/ﬁ(—ZCrJrB)
7 ( B \/E(tanh],(l/él \/Eq))cothy(l/‘l\/ﬁ(f’))) vV—R ’
—2c ic
2 (A-rB+Cr?)VH (04)
VR \/H(fZCr+B))2+H)

ora(,t) = E(( <_B _ \/E(tanhy(l/ﬁl\/ﬁip)Cothﬂ(l/4\/§4’))> i V-R
2C ic
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uz7(x,t)

v77(x, t)

uzg(x,t) =

u79(x, t)

Family. 18: When AC > 0 and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

) = (1+ ) VA (tan, (VACy) ) ' = /1,

(95)
v75(x, t) = klz(((l + %)\/ﬁ(tany (\/Eq)))_l — \/Tr)z + H),
u76(x,t):—(1+r27c)\/ﬁ(coty(\/ﬁq)))_l— %r, )
76 (x, 1) = é((—(l + %C)\/H(coty(\/ﬁq)))_l - ﬁr)z +H),
— (1+2C) Vi(tan, (2 VACy) £ (ysec, (2VAC) ) -/ 1S5, o
:klz(((l—l—rZAC)\F(tany( \/74)) (ﬁsec;,( F(p))) —ﬁr)2+H),
_(1+727C)\F(coty( Fq)) (ﬁcscy( \ﬁq)))) - HTFr, o8
v78(x,f)—]32((—(1+r1(:)\r(cotﬂ( Fgo) (ﬁcscy< \/749))) - Hjcr
and
:2(1+7’27C)\/ﬁ(tany<1/2\/ﬁ(p>—coty(l/zm(p))*l— HTFr,
(99)

v79(x, t) =

ugy(x,t) =

ng(x, t) =

%2((2(1 + rZTC)\/ﬁ(tany <1/2 \/Rq)) — coty, (1/2 \/Ego))’l — ﬁr)z + H).

Family. 19: When AC > 0 and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

sts) =1+ 6oy (v7C0)) -

(100)
vgo(x, 1) = k12 ((=(1+ %)\/ﬁ(tanhy (\/—;ACq)))il - ﬁr)z + H),
ugi(x,t) = —(1+ %)\/ﬁ(cothy (\/—7AC(p))_1 — HTCr, aon

vg1(x,t) = 5 (( 1+ %)ﬁ(cothy (\/*AC@))il B EQZ + H))2 +H),

—(1+ %)m(tanhy (2 V —ACq)) + (i\/ﬁsechy (2 V —AC(p)))_1 - HTF”/
~(1+56)V-H HC (102)

1
E(( (tanh, (2 \/_714(:49) + (i\/ﬁsechy (2 \/—7AC(P)>) v

r)?+H),
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ugs(x,t) = —(1+ %)m(wthy (2 \/-7AC(p> + (\/Wcschy (2 \/—7AC<p>))*1 - %r,
. 1+ 26y i (103
ol E) = E(( (cothy, (2 \/—7AC(p) + (f/ﬁcschy (2 v —AC(p))) \/77’)2 +H),
and
uga(x,t) = =2(1+ rzjc)\/j(’fanhy (1/2 \/—7AC(p) + cothy, (1/2 \/—7AC(p))*1 - ﬁr,
1 —2(1+5F)V=H HC (104)
sl t) = E(( (tanhy (1/2 vV —ACq)) jcothy (1/2 \/—7ACq))) - \/jr)z +H).

Family. 20: When C = A and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

ugs(x,t) = (1+ rz)\/ﬁtal’lyl(Aq}) — \/ﬁl’/

1 (105)
pss(x 1) — E(((l N rz)\/ﬁm — VHr)? + H),
() = (1 4 PWVE L — VB
86(x, 1) (1+ )\/ﬁcoty(Aq)) VHr, (106)
vge(x,t) = %((_(1 + rz)ﬁcot’jAgo) ~ VH+ H),
ugy(x,t) = (+r)vH -V
g7(x, 1) (tan, (2 Ag) = (\/pgsecy(2 Ag))) v (107)
_ 1 (1+r)VH — VHr)?
vg7(x, 1) = kz(( (tanu (2 Ag) + (\/Pgsecy(2 Ag))) VIO,
ugg(x,t) = L+ )Vl SV
8001 = (ot 2 Ag) F (vricscn 2 A9)) Vi (108)
vgg (X t):l(( (1+r)vH — VHr)* + H)
00 = (Coon@an = (Ve A9) |
and
B (1 —I—T’Z)\/ﬁ — r
ugg(x,t) = (1/2 tany,(1/2 Ag) — 1/2 cot,(1/2 Ag)) v, (109)
(1+)VH

1
vgo(x, 1) = g(( (1/2 tan, (1/2 Ag) —1/2 coty(1/2Ag)) VHr)’ + H).
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uge(x,t) = —

V96 (X, 1) =

Family. 21: When C = —A and B = 0 then Equations (19) and (10) imply the following
solitary wave solutions:

ugg(x,t) = —(1— 72)m¥ ++/—Hr,

tanh, (Ag) (110)
voo(x, 1) = é((-(l - rZ)\/ﬁtanh:(Aq)) +VZH) 1 H),
wna(x,t) = ~(1 = AWV H o 1( 5+ Vo
(111)
o1 1) = (0= )W H s V4 H),
B (1—-7r?)v/—H
ug (X, t) = (—tanhy, (2 Ag) F (i\/pgsech, (2 Ag))) +V-Hy
1 (1—-r?)/-H 2 (112)
vo2(x,t) = k ( (—tanh, (2 Ag) F (i\/pgsech, (2 Ag))) +V-H) 4+ H),
_ (1-r)V-H —
o () = (— cothy (2 Ap) T (/Paeschy(2 Ag))) V- 113)
03 (3,1) = (A=r)v—H VTR )
93~ ka " (—cothy (2 Ag) F (\/pqeschy, (2 Ag))) ’
and
_ (1-r)V-H
toa (%) = (—1/2 tanh, (1/2 Ap) — 1/2 coth, (1/2 Ag)) V-, -
oy 114
(( (—1/2 tanhﬂ(l/(ZlA(p)):/lfcothy(l/Z Ago)) + mr)Z T H)
oa(x,t) = k :

Family. 22: When B = v, a4 = Nv(N # 0) and C = 0 then (11), (13) and corresponding
general solutions of (10) imply the following family of symmetric soliton solutions:

N—r)m+ VH(-2Cr + B)
(n¢—N) VAAC—B2 ' 115)
(N—r)\/ﬁJr \/ﬁ(—2Cr+B))2+H)

(¢ —N) V4AC — B2 '

Family. 23: When A = 0, B # 0 and C # 0 then (11), (13) and corresponding general
solutions of (10) imply the following family of symmetric soliton solutions:

u95(x, t) =2 (

vos (1, 1) = - ((2

—rB + Cr?)vVHC (coshy,(Bg) — sinhy, (Bg) + p) \/ﬁ(fz Cr+ B)

(=2 pB2i Bi

pB?i Bi ’

(=B + Cr?)v/HC (coshy (Bg) — sinhy, (Bg) + p) \/ﬁ(—ZCr+B) (1

)2+ H),

and
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oy (2, ) = —2 (—rB+Cr?) \/HC(coshy(B(p) +sinh, (Bg) +q) +H(-2Cr+ B)

Bi(coshy, (B¢) + sinhy, (Bg)) Bi ’ a17)
o (2, £) = l((_z (=B + Cr?)v/HC(coshy (Bg) + sinh, (Bg) + q) N VH(=2Cr + B) 24 )
T T Bi(coshy, (Bg) + sinh, (Bg)) Bi '
Family. 24: When B = v, C = Nv(N # 0) and A = 0 then (11), (13) and corresponding
general solutions of (10) imply the following family of symmetric soliton solutions:
Nr2 —r)VH(p — Nqu"? H(—2Nr+1
wos (1, 8) =2 N7 r)\ffj;; qu'?) | VH(=2Nr+1)
piK ! (118)
1, (NP?2—r)VH(p—Nqu'?) VH(-2Nr+1),
Ugg(x, f) = E((Z pipt 9 + 7 ) "FH)/
_ 2 H B ko t*
where ¢ = s/~ —priaca (r(gﬂ) = TlarD) )-
Now assuming case. 2, we get the following families of symmetric soliton solutions
for (2):
Family. 25: When R < 0 A, B,C # 0 then (11), (13) and corresponding general solutions
of (10) imply the following family of symmetric soliton solutions:
H(-2Cr+B H
ugg(x,t) = A(=2Cr+B) +14/— (—B + v —Rtany (1/2 vV —Rq))),
—RH R (119)
1 H(-2Cr+B) H 5
Ugg(x, t) = E((T —+ TR (*B —+ v thanP, (1/2 V 7R§0))) + H),
H(—-2Cr+B | H
u0(x, t) = A(=2Cr+B) +4/— (—B — VvV —Rcoty (1/2 \/—R(p)),
—RH —R (120)
1, H(-2Cr+B) | H — — 5
—2Cr+B H
u101(x,t) = ( —7 ) + _—R(—B—f—\/ —R(tanﬂ(\/ —R(p) + <\/WSGCV<\/ —R(P>))>,
(121)
1, H(-2Cr+B H
v101(x, 1) = kz(((\/TH) V=R (—B +V —R(tany (\/—Rgo) + (\/ﬁsecﬂ (\/ —ch)))))2 +H),
H(—-2Cr+ B) H
up(x, f) = +1/— (—B —V —R(Cot,4 (\/ —R(p) <\/Wcscy (\/ —R(p)))),
i —R
H(RI;C B) H (12)
—2Cr+
v102(x, t) = E« 7 —I—q/_—R(—B—\/—R(coty(\/—ch) (\/ﬁcsc}, (\/—ch>>)))2—|—H),
and
H(-2Cr+B) H vV —R(tan, (1/4+v/—R¢) — cot, (1/4v/—Rg))
ua(x,t) = —————+1/—| -B+ ,
—RH —R 2
v —R(tan, (1/4v—Rg) (1/4v/—Rg)) 129
1 H(-2Cr+B H —R(tan - — cot —
0103(x/t):E(( ( 7 )4 —R<_B+ : (g : Y ))2+H)~
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Family. 26: When R > 0 A, B, C # 0 then (11), (13) and corresponding general solutions
of (10) imply the following family of symmetric soliton solutions:

woat ) = MBS (o Rianhy (1/2VRy) ),

—RH (124)
0104(x,t):k12((w+\/71{( B — VRtanh (I/Z\Fq)))) H),
u105(x, t) = I_I(?/Z_CiI::I_B) + \/—TR(B — \/Ecothy (1/2 ﬁq’)), 125
0105(x’t):]32<(w+\/71{( \@cothy(lﬂfqv))) H),
uy06(x, ) = H(\/Z—LI:;B) + \/?R( B — \f(tanhy (\F(p) (\/ﬁsechy <\FR¢)))), 126)
v106(x, t) = klz((H(—Z_CI:;I—B) + \/TR( B— \F(tanh (f¢) (\/ﬁsechy (\/ﬁ(p)))))z—i—H),
ug7(x, t) = w + \/?R( B— \F(coth (\/E(p) + (\/ﬁcschy (\/qu)))), W)
o) = L(HEZEED) [T R (cotn, (VRo) & (st (VRe) )) )+ 10,
and
ujos(x, t) = —H(—Z_CIZIJ; 5) + _ER (B - \/E(tanhﬂ <1/4 \/E(P)z ot (1/4 ﬁ‘/’)) ) ,
(128)

1 W*\/E("g— \/ﬁ(tanhy(l/él\/ﬁ(P)z—cothM(l/ﬁlx/E‘P))))Z_FH).

Family. 27: When AC > 0 and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

JHC
uige(x,t) = —r a1 + \/ﬁtany (\/ACq)),

(129)
v100(x, £) = é((—m / % + VHtan, (VACg))? + H),
urig(x,t) = —r HTF — V/H oty (\/R(p),

(130)

v110(x, t) = l((—r % — \/ﬁcoty (\/Ego>)2 +H),
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up11(x, t) = —rﬁ—f— VH(tan,, (2 \/R(p) + (Msecy (2 \/E<p))),

(131)
v111(x, t) = klz((—rﬁ—k \/ﬁ(tany (2 \/qu) + (ﬁsecy( F(p))))z + H),
upp(x, t) = —r\/i 2\/>(coty( \/TC(p) + (\/T]CSCV( F(p))) 1)
v112(%, 1) = klz((—r\/j—Z\/ﬁ(cotﬂ@m(p) + (ﬁcscy( F¢)>)) H),
and
un3(x, ) = —rﬁ + \/ﬁ(tany (1 /2 \/R(p) — coty, (1 /2 \/A7C(p) ), )

on1a(x, 1) = klz ((—r E + V/H(tan,, (1 /2 mq;) — cot, (1 /2 \/ch)) )2 + H).

Family. 28: When AC < 0 and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

upa(x, t) = —r ;HC — v —Htanhy, (\/—AC(p),

1 —HC (139
v114(x, 1) = kz((—r — v/—Htanhy, (\/—7AC¢))2 +H),
ups(x, ) = —r - \/ﬁcothy (\/—7AC(p),
(135)
o () = kl—z((—r ;HC ~ V= Heothy (V=ACp))* + H),
u16(x, t) = —r _ZC — v/ —H(tanh ( \/jq)) ( V/pgsechy, ( \/—7AC¢))), w36)
v116(x, ) = klz((—r _ZIC — v/—H(tanh, (2 \/—7ACq)> + (i\/ﬁsechy (2 \/—7AC¢))))2 + H),
uny(x, t) = —r _ZIC B \/ﬁ(cothy (2 \/—7AC(p) + (\/ﬁcschy (2 \/—7AC¢))), )
o117(x, t) = k1—2((—r —ZC — v/—H(coth,, (2 V —ACq)) + (\/Wcschy (2 V —AC(p))))2 +H),
and
upg(x, t) = —r _ZIC — v/—H(tanh, (1/2 \/—7AC¢> + cothy, (1/2 \/—7AC(p)),
(138)

v11s(x, t) = kl—z((—r _TI?IC — v/—H(tanh, (1/2 V —Aqu) + cothy, (1/2 \/—ACcp)))2 + H).
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Family. 29: When C = A and B = 0 then (11), (13) and corresponding general solutions of
(10) imply the following family of symmetric soliton solutions:

u19(x, ) = \/ﬁ(l —r) tany, (Ag),

139
v119(%, t) = kiz((\/ﬁ(1fr)tany(A¢))2+H), (1)
uo(x,t) = —VH(1+ ) coty(Ag),
1 (140)
v120(%, ) = k—z((—\/ﬁ(l +7) coty(Ag))* + H),
u (x, ) = VH(1 — 7) (tan, (2 Ag) £ (\/pgsec,(2 Ap))),
1 (141)
o101 (X, 1) = k—z((\/ﬁ(l —r)(tan, (2 Ag) £ (/pqsecu(2 A(p))))2 + H),
u(x,t) = —VH(1 +7)(—coty(2A¢) T (v/Pgescu(2Ag))), a2
142

v122(x, ) = klfz((—\/ﬁ(l +7)(—coty(2A9) F (Pacscu(2 Ag))))* + H),

and

uppa(x,t) = VH(1 —7)(1/2 tan,(1/2 Ap) — 1/2 cot, (1/2 Ag)),

(VH(1—r)(1/2 tan,(1/2 Ap) — 1/2 cot,(1/2 Ag)))* + H) (143)
v13(x, t) = T :

Family. 30: When C = —A and B = 0 then (11), (13) and corresponding general solutions
of (10) imply the following family of symmetric soliton solutions:

U124 (x, t) = m(i’ — 1) tanhy(Ago),

144
U124 (%, 1) = klz((m(r—l)tanhy(A¢))2+H)/ .
upps(x,t) = vV—H(r — 1) coth, (Ag),

1 , (145)

0125()(, t) = E((m(r — 1)C0thy(A(p)) + H),

une(x,t) = V—H(r + 1) (— tanh, (2 Ag) F (i\/pgsech, (2 Ag))),
o126 (x, 1) = ((\/7H(1’+1)(—tar1hp,(21‘1gol){2 F (i\/pgsechu (2 Ag))))? , (146)

urp7(x,t) = V—H(r + 1) (— cothy, (2 Ag) F (\/pqcsch, (2 Ag))),
((V=H(r +1)(— coth, (2 Ag) F (\/Pqeschu (2 Ag))))? (147)

’t 7
v127(%, ) = ko
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Ui (x,t) =

and

uig(x,t) = vV—H(r +1) <1 tanh < Aq0> L = coth <;Aq0>),

((V—=H(r+1) (—%tanhy (iA(p) -3 cothy(%Aq,)))z +H)
ko :

(148)

v128(x, t) =

Family. 31: When A = 0, B # 0 and C # 0 then (11), (13) and corresponding general
solutions of (10) imply the following family of symmetric soliton solutions:

H(-2C B . _
(Hr;z) —2+/—Hp(coshy (Bg) — sinh, (Bg) + p) l,
- (149)
1, H(-2Cr+B . _
= kz(((—HBZ) —2+/—Hp(cosh,(Bg) — sinh, (B¢) + p) l)2 + H),
and
s (3, 1) = H(-2Cr+B) _ = cosh,(Bg)+sinh,(Bg)
B = T T HR? coshy, (Bg) + sinh, (Bg) + ¢’
2Cr+B —5 coshy (B¢)+sinh;, (Bg) (150)
(( (\/,77 : -2 _Hcoshy}B(p +smhp€B(p)+q) + H)
'0130(.7(7, t) = k2 .

Family. 32: When B = v, C = Nv(N # 0) and A = 0 then (11), (13) and corresponding
general solutions of (10) imply the following family of symmetric soliton solutions:

w131 (x,£) = V—H(—2Nr + 1) + 2 —HNpu"?(p — Ngu'9)"},

((V=H(-2Nr+1) +2=HNpp'?(p — Ngu'?) "2 +H) (15D
% :

9 H B ko t®
where ¢ = (k> \/ﬁ(rém h F(o?+1) )-

4. Discussion and Graphs

v131(x, t) =

We successfully constructed families of symmetric soliton solutions for FCKOS by
employing two adapted versions of EDAM i.e., mEDAM and r+EDAM in this study.
By supposing series form solutions, we were capable to apply these approaches to translate the
given system of NODEs formed from the model into a system of algebraic equations. We were
capable to obtain the model’s symmetric soliton solutions by solving this algebraic system.

In Figure 1, the 3D graph of the first equation in (28) is depicted in Figure 1 for
A=3B=0C=1pu=¢H =3, kp =2, «a = B = 1. This profile shows a symmetric
lump wave which is significant wave that can come into view in a range of physical systems.
Figure 2, the 3D graph of the second equation in (80) is plotted in Figure 2 for A =0, B =
2,C=1,u=e¢H=2=ky, «a =0.5, p=0.9. This profile shows a symmetric kink wave
which descends or ascends from one asymptotic state to another and at infinity it attains
a constant velocity profile. Figure 3, the 3D graph of first equation in (95) is illustrated
in Figure3for A=2,B=0C=4uy=3H=-5k=2r=p=gq=1La=8=1
This profile shows a symmetric solitary wave which has a fixed shape and constant speed
which is asymptotically zero at large distance. The 3D graph of the real part of the second
equation in (107) is illustrated in Figure 4 for A=1,B=0,C =1Ly =¢,H = -2, kp =
109,r =5, p =2, 9 =10, « = 0.9, B = 0.5. This profile shows a symmetric periodic
wave which are travelling waves that show periodicity while propagating. The constructed
symmetric soliton solutions include solitary waves, lump waves, periodic waves, kink
waves, etc. all of which show symmetries in their profiles. The existence of symmetries
improve the stability and robustness of solitons and it offer insight into conservation laws
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and essential physical properties. The study of these symmetric solitons contributes to a
healthier understanding of the complicated dynamics concerning dispersion, nonlinearity
and supplementary influencing factors in targeted FCKOS. This investigation present
precious insights into intricate wave phenomena and their applications in various fields of
nonlinear physics (Figures 1-4).

Figure 1. The 3D graph of the first equation in (28) is depicted in Figure 1 for A =3,B=0,C =1,
u=eH=23, kp =2, «a = B = 1. This profile shows a symmetric lump wave which is significant
wave that can come into view in a range of physical systems. These waves are characterized by a
swift increase in amplitude and a sluggish decline reverse to their early level.

lllll'lllllu -:Il |

Ii 1|1l‘|||||| i

H' ‘ I i '| i
". |l"" |

Figure 2. The 3D graph of the second equation in (80) is plotted in Figure 2 for A =0,B =2,C =1,
u=eH=2=ky), a =0.5, B =0.9. This profile shows a symmetric kink wave which descends or
ascends from one asymptotic state to another and at infinity it attains a constant velocity profile.
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Figure 3. The 3D graph of first equation in (95) is illustrated in Figure 3 for A = 2,B = 0,C = 4,
u=3H= -5k =2, r=p=¢q=1,a=p = 1. This profile shows a symmetric solitary wave
which has a fixed shape and constant speed which is asymptotically zero at large distance.

=962

v —962.

250005 |

¥ 10000

Figure 4. The 3D graph of the real part of the second equation in (107) is illustrated in Figure 4
forA=1B=0C=1Luy=¢H=-2k =109r =5 p=249=10, «a =09, B = 05.
This profile shows a symmetric periodic wave which are travelling waves that show periodicity
while propagating.

5. Conclusions

In this research work, FCKOS was addressed using two improved variants of EDAM.
For the offered system of NODEs, the mEDAM and r+mEDAM approaches were able to
discover a series form a solution, which was then distorted into a system of nonlinear
algebraic equations to get verities of symmetric soliton solutions that are significant to the
problem’s physical interpretation. The existence of different travelling waves including
kink waves, solitary waves, periodic waves, lump waves, etc., in soliton solutions were
shown by depicting some 3D graphs. The article highlights the implication for several
practical applications in different areas of science and demonstrate the potential of the
EDAM in constructing families of soliton solutions for complex problems.
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