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Abstract: This paper proposed an efficient and adaptive frequency sampling algorithm for frequency
response analysis using dynamic condensation-based reduced-order modeling. For the degree of
freedom-based model reduction method, the reduced-order basis becomes a frequency-dependent
matrix since the relationship between master and slave degrees of freedom stems from partial
equations of a second-order dynamical system. Such frequency-dependency makes the analysis
inefficient for investigating the frequency response of the system. Considering that the coverage of a
local reduced-order basis at a single frequency varies depending on the frequency, a new frequency
sampling algorithm was proposed with a strategy of constructing multiple local reduced-order
models (ROMs) at sample frequencies. For adaptive sampling, the frequency range of a local ROM
was evaluated, and a new sample was added if there was a gap between two adjacent ROMs. As
a result, the accuracy of the local ROM can be estimated, and the efficiency in the online stage was
greatly enhanced. The proposed method was verified by performing frequency response analysis
with several numerical examples, including a large-scale structural and dynamic system.

Keywords: reduced-order modeling; dynamic condensation; frequency response analysis; adaptive
frequency sampling

MSC: 70-08

1. Introduction

As the requirement for complex and sophisticated modeling of structural systems has
increased continuously, demands efficient surrogate models have also increased since they
can provide accurate and reliable solutions to various problems of interest in a timely fash-
ion. Particularly, reduced-order models (ROM) derived from the original full-order model
(FOM) guarantee more robust input-output relations than pure data-fit approaches [1,2].
Therefore, ROMs are frequently used when we face time-critical applications that also
require a certain level of accuracy.

Most of the model order reduction techniques rely on the projection of the FOM to a
subspace containing the physical properties of a given system. For linear, time-invariant
dynamical systems, eigenmodes from mass and stiffness matrices can be a projector that
transforms FOM to a generalized coordinate system of a subspace. In this case, a linear
combination of the portion of the column-wise projection matrix and the unknown variable
can describe the approximated behavior of the system. Thus, the main characteristic of the
ROM is determined by that of the reduced-order basis (ROB, i.e., projection matrix). Several
approaches have been popularly used for analyzing complicated dynamical systems [3–5].
Recently, the ROMs for dynamic systems are extending their scalabilities by combining with
data-driven approaches in a non-intrusive manner showing efficient approximations for the
behavior of complex systems [6,7], retaining selected physical information [8], computing
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structural responses including sensitivities [9], and can be extended to various engineering
disciplines including acoustic-structural multiphysics problems [10].

One fundamental property to be addressed in this research is that most ROBs transform
FOM into generalized coordinate systems. As a result, a recovery process is mandatory for
the approximation of the FOM. If the ROB is derived considering the relationship between
each degree of freedom in physical coordinates, the reduced variable can present the same
property in the physical domain. We refer to such methods as the degree of freedom-based
reduced-order model [11,12], also known as a static (or dynamic) condensation [13,14].
Research on DOF-based ROM is relatively less active than those on mode-based ROM due
to the convenience of constructing ROBs in generalized coordinates. However, because the
physical DOF of the ROM can be synchronized with the actual sensor location directly, DOF-
based ROM can be a powerful tool, particularly when we consider data acquisition-based
modeling and simulations [15], system identification based on sensor data [16], model
updating techniques and experiments [17], and so on. Meanwhile, for transformation
between reduced variables in modal coordinates and those in physical coordinates, the
SEREP method [18] can be applied by dividing ROM into parts of master and slave DOF
with pseudo-inverse of the partitioned ROB. Thus, one can acquire the advantage of
DOF-based ROM even when using ROB of generalized coordinates.

Another motivation of the present research is that most ROBs are not adaptive to parame-
ters of interest such as the frequency in this research. Usually, various physical properties such
as geometric and material properties, initial and boundary conditions, loading conditions,
and uncertainties are system parameters. Thus, to efficiently approximate output quantities of
interest into input parameter change, various research has been performed within the paramet-
ric reduced-order model (PROM) framework. There are several approaches for considering
parametric variations, including using global ROBs [19–21], manifold interpolation-based
approaches [22–24], perturbation-based methods [25,26], introducing domain decomposition
methods [27–29] or Sherman-Morrison-Woodbury formula [30], using conventional interpola-
tions, or enhanced interpolation scheme [31,32] and so on. The basic procedure of the PROM
is decomposing the system or the ROB into parameter-dependent and -independent terms.
Parameter-dependent terms can be either a basis of a function space or a weighting function.
Parameter-independent terms are data acquired from multiple offline simulations or parts
derived by extracting parameter-dependent terms from original matrices during the modeling
procedure. By a linear combination of the two terms, ROB can be adapted to the new input
value of the parameter.

On the other hand, the Krylov subspace method and Padé approximation method [33–37]
have been used in a similar context with PROM, one of the most popular methods for frequency
sweep analysis. The methods approximate frequency responses by deriving the coefficient
of the interpolation function from the differentiation of the governing equation at the upper
and lower bounds of the frequency range of interest. Results show that interpolatory ROM is
efficient with an ability to adaptively control accuracy by adding more sample points.

In the present work, localization of the ROB with an adaptive frequency sampling strat-
egy was proposed within the framework of dynamic condensation. Specifically, multiple
transformations and associated ROMs were constructed from several sampling frequency
instances. Sampling ranges were adaptively refined considering the difference between
two adjacent ROMs. Previously, dynamic condensation considering the dependency of
the ROB on the frequency and its variants has been introduced in the literature [13,15].
However, performing an inversion of a dynamic stiffness matrix corresponding to parts
of the slave DOF at every frequency is neither efficient nor appropriate. In general, the
number of master DOFs is much less than that of slave DOFs since there are limited sensors
in a real situation. Thus, the inverse of the dynamic stiffness of the slave DOF is not as
efficient as that of a full system matrix. This computational burden can be relieved by con-
structing multiple ROMs at sample frequencies and using them depending on a new input
frequency. For such an offline-online procedure, the offline phase should not be overridden,
as multiple high-fidelity simulations require significant computational resources. Thus,
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an efficient sampling strategy should also guarantee a certain level of accuracy. The key
advantage of the frequency sampling method proposed in this paper is that it can select
a new frequency sample by computing the difference between two responses obtained
by two adjacent local ROMs. Such an adaptive procedure also provides the error of the
constructed ROM, which is considered for an efficient frequency response analysis.

This paper is organized as follows: In Section 2, a mathematical formulation of the
dynamic condensation procedure is revisited and a new algorithm for adaptive frequency
sampling is proposed. Section 3 presents numerical examples for validating the accuracy
and efficiency of the proposed method. In Section 4, conclusions and suggestions for future
research topics are provided.

2. Mathematical Formulation
2.1. Frequency Response Analysis Based on Dynamic Condensation

We investigate a steady-state, time-harmonic response of a structural system. Let ω be
an angular frequency and
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)

u(ω) = Z(ω)u(ω) = f(ω), (2)

where M ∈
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N , respectively. Z(ω) represents an impedance matrix. Solving
Equation (2) gives the frequency response of the system.

In the present study, we neglected the damping of the system without losing the
generality of the proposed method. Previous research [38,39] has shown that even though
we consider damping of the system resulting in a complex ROB matrix, the basic procedure
of constructing ROM does not change, which is projecting high-dimensional field variables
into low-dimensional space. Hence, the response vector is obtained as follows:

u(ω) = Z(ω)−1f(ω) =
(

K−ω2M
)−1

f(ω). (3)

In Equation (3), the response vector is the function of a frequency. In the rest of the
paper, the dependency of u with respect to the frequency will be omitted since u is an
output depending on the change of frequency.

As presented in the literature [11,13,14], deriving DOF-based ROM starts by dividing
the degrees of freedom of a given system into master and slave ones such that[

Zmm(ω) Zms(ω)
Zsm(ω) Zss(ω)

][
um
us

]
=

[
fm(ω)
fs(ω)

]
, (4)

where subscripts m and s denote master and slave DOFs, respectively. Using the notation
of the subscript, (�)sm = (�)T

ms. Displacement vectors are us ∈
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of sensors, which finally determines the size of the ROM. The relationship between master
and slave DOF is derived from the lower part of Equation (4) as follows:

Zsm(ω)um + Zss(ω)us = fs(ω). (5)

Consequently, displacement of the slave DOF can be expressed by the linear combina-
tion of the transformation matrix and the master DOF with a forcing term to the slave DOF
as follows:

us = t(ω)um + Z−1
ss (ω)fs(ω), (6)

where t :
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Ns×Nm is defined as

t(ω) := −Z−1
ss (ω)Zsm(ω). (7)

Substituting Equation (6) into the upper part of Equation (4) results in a ROM with an
unknown vector displacement of master DOF such that

ZR(ω)um = fR(ω), (8)

where
ZR(ω) = Zmm(ω)− Zms(ω)t(ω), (9)

fR(ω) = fm(ω)− t(ω)Tfs(ω). (10)

For numerical frequency sweeping simulation, discrete frequency instances are selected
in
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𝐮𝑚

𝐮𝑠
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𝐟𝑚(𝜔)

𝐟𝑠(𝜔)
], (4) 

where subscripts m and s denote master and slave DOFs, respectively. Using the notation 

of the subscript, (∎)𝑠𝑚 = (∎)𝑚𝑠
𝑇  . Displacement vectors are 𝐮𝑠 ∈ ℝ𝑁𝑠  and 𝐮𝑚 ∈ ℝ𝑁𝑚 , 
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. Let the kth frequency instance be ωk, a set of discrete frequencies is defined as follows:

S = {ωk|ωL ≤ ωk ≤ ωU} ⊂
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where k = 1, 2, . . . , Nω. Thus, dynamic condensation is derived from the transformation
matrix defined by tk := t(ωk). Successively the dynamic ROM by the Galerkin projection
of Equation (3) using Equation (7) is obtained as follows:

um(ωk) =
(

KR,k −ω2
kMR,k

)−1
fR,k, (12)

where
KR,k = Kmm + tT

k Ksm + Kmstk + tT
k Ksstk, (13)

MR,k = Mmm + tT
k Msm + Mmstk + tT

k Msstk, (14)

fR,k = fm + tT
k fs. (15)

In Equation (12), system matrices and frequency are expressed explicitly without using
the impedance matrix. From a computational point of view, the transformation matrix is
computed at ωk. Using Equations (13) and (14), reduced matrices are obtained. Successively,
the final frequency response is obtained using Equation (12).

2.2. Multiple Local ROMs at Sample Frequencies

For the conventional dynamic reduction method, transformation tk and reduced
matrices KR,k and MR,k are constructed whenever the frequency changes, which increases
computational cost due to the inversion of the impedance matrix with a size of Ns × Ns.
In this work. the framework of surrogate modeling is introduced, which builds multiple
model surrogates in the offline stage and computes a response with a new input frequency
in the online stage. In other words, dynamic ROMs are localized by solving high-fidelity
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models at several frequency instances in the offline phase, and near, real-time responses are
obtained by solving local ROMs in the online stage.

A set of frequency samples are first defined in a bounded range as follows:

S(j) =
{

ω(j),k

∣∣∣ω(j),L ≤ ω(j),k ≤ ω(j),U

}
⊂ S. (16)

The subscript (j) denotes the jth range in S with j = 1, 2, . . . , NR. The union of each
set becomes S = S(1) ∪ S(2) ∪ · · · ∪ S(NR)

. Therefore, ωL = ω(1),L and ωU = ω(NR),U . The
jth local ROM covers the frequency range in S(j). It will be constructed in the middle point
in S(j), which is

ω(j) =
ω(j),L + ω(j),U

2
, (17)

where upper and lower bounds of the jth range are determined by the algorithm including
an error estimation, which will be presented in the following section.

The middle point ω(j) becomes the jth sample frequency. Thus, the local ROM is
constructed. Its response is computed as follows:

um

(
ω(j),k

)
=
(

KR(j) −ω2
(j),kMR(j)

)−1
fR(j). (18)

where the system matrices are expressed using the notation without the upper bar, t(j): =

t
(

ω(j)

)
since system matrices are always evaluated at the sampling frequency. Additionally,

note that the response vector um

(
ω(j),k

)
is an approximation except for ω(j),k = ω(j), as

the ROM is constructed using a local ROB, t(j).

Remark 1. For the 1st and the NRth ranges, upper and lower bounds become sample frequencies.
For example, ω(1) = ωL and ω(NR)

= ωU . Thus, local ROMs at lower and upper bounds cover
only the upper and lower half of each local range, respectively.

Remark 2. In the offline stage, KR(j), MR(j), and fR(j) are constructed and saved. As a single
reduced matrix contains only N2

m elements and the number of samples is adaptively determined by
satisfying NR � Nω , the proposed method does not require much memory for saving ROMs, which
is also beneficial for efficient computation in the online stage.

2.3. A New Adaptive Sampling Method and Construction of Local ROMs

Once displacement vectors are computed from local ROMs, the final response is
obtained simply by stacking each vector in S. However, as the local frequency range is set
as defined in Equation (8), upper and lower bounds of adjacent range overlap with each,
for example, ω(j),U = ω(j+1),L. There exists a gap between displacement vectors obtained
at these bounds. In other words, approximated displacements from two adjacent ROMs
at a single frequency are not the same since the approximation accuracy decreases if the
difference between input and sampling frequencies increases. Let um(j),k := um

(
ω(j),k

)
,

then the difference can be written as follows:

∆um = um(j),U − um(j+1),L. (19)

Thus, if the difference is greater than a specific criterion, another dynamic ROM is
constructed at the point and the range that local ROM needs to be covered becomes narrow.
This is a key idea of the new adaptive sampling method proposed in this paper.

In the proposed method, the first set of sample frequencies is determined by the user.
The next sample set then becomes the union of the first set and additional samples. Let the
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pth set of sample frequencies be S(p), then elements within the domain of interest can be
expressed as follows:

S(p) =

{
ω
(p)
(1) , ω

(p)
(2) , · · · , ω

(p)

(N(p)
b )

}
, (20)

where the superscript (p) is used to designate the level of sampling, and N(p)
b denotes the

number of frequency samples in the pth level. Although every mid-point of two adjacent
samples should be evaluated for p = 1, only selected ranges where new samples have been
added in the previous level are divided if p ≥ 2. Let ω

(p)
c,q be the qth candidate frequency to

be evaluated in the jth range, which is expressed as follows:

ω
(p)
c,q =

ω
(p)
(j) + ω

(p)
(j+1)

2
. (21)

As illustrated in Figure 1, there is no relationship between the candidate number q
and the range number, j. Thus, a mapping of indices is required to designate the position of
the candidate and adjacent samples, for example, j = f (p)(q), where f (p) : N→ N. Once
candidate frequencies on the pth level are determined, displacement vectors associated
with candidates can be calculated using two adjacent local ROMs such that

um(j),U =
(

KR(j) −ω
(p)
c,q MR(j)

)−1
fR(j), (22)

um(j+1),L =
(

KR(j+1) −ω
(p)
c,q MR(j+1)

)−1
fR(j+1), (23)
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frequency domain.

If the ∆um in Equation (19) satisfies the criteria, for example, |∆um| < tol., ω
(p)
c,q is not

chosen as a new sample. Otherwise, the associated local ROM at ω
(p)
c,q is constructed as
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a new sample at the (p + 1)th level. The overall process of selecting sample frequency
and constructing local ROMs is presented in Algorithm 1, where the number of candidate
frequencies and selected frequencies to be added to the next level are denoted by N(p)

c and
N(p)

a , respectively, and the set associated with selected frequencies is represented by S(p)
a .

Thus, the number of elements is defined by the cardinality as N(p)
a := n

(
S(p)

a

)
. In fact, the

numbers of candidates and selections have the following relationships except for p = 1
such that

N(p+1)
b = N(p)

b + N(p)
a , N(p+1)

c = 2N(p)
a . (24)

Algorithm 1 Adaptive Frequency Sampling and Local ROM Construction.

1: Define a set of frequency samples, S(1) as in Equation (20)

2: N(1)
b ← n

(
S(1)

)
3: N(1)

c ← N(1)
b − 1

4: for j = 1, 2, · · · , N(1)
b , do

5: Compute t
(

ω
(1)
(j)

)
and KR(j), MR(j), fR(j)

6: Compute um(j) as in Equation (18)
7: end for

8: Compute candidate frequencies, ω
(1)
c,q ←

ω
(1)
(j)+ω

(1)
(j+1)

2 , where j = 1, 2, · · · , N(1)
c

9: Construct a mapping from the index j to p as, j← f (1)(q)
10: p← 1
11: while (1), do

12: S(p)
a ← ∅ , r ← 0

13: for q = 1, 2, · · · , N(p)
c , do

14: Compute um(j),U and um(j+1),L at ω
(p)
c,q as in (22) and (23) with j = f (p)(q)

15: if |∆um| > tol.

16: ω
(p)
a,r ← ω

(p)
c,q , and map the indices, q← g(p)(r)

17: S(p)
a ← S(p)

a ∪
{

ω
(p)
a,r

}
18: r ← r + 1
19: end if
20: end for
21: if r = 0
22: break
23: else

24: N(p)
a ← r

25: for l = 1, 2, · · · , N(p)
a , do

26: Compute t
(

ω
(p)
a,l

)
and K

R(N(p)
b +l)

, M
R(N(p)

b +l)
, f

R(N(p)
b +l)

27: Compute u
m(N(p)

b +l)
as in Equation (18).

28: ω
(p+1)
c,q ←

ω
(p)
(j) +ω

(p)
a,l

2 and ω
(p+1)
c,(q+1) ←

ω
(p)
a,l +ω

(p)
(j+1)

2 with j = f (p)
(

g(p)(l)
)

29: end for
30: Construct a mapping from the index j to q as, j← f (p+1)(q)

31: N(p+1)
b ← N(p)

b + N(p)
a

32: N(p+1)
c ← 2N(p)

a

33: S(p+1) ← S(p) ∪ S(p)
a

34: p← p + 1
35: end if
36: end while
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Remark 3. If we use uniform samples initially, which is not necessarily for the proposed method,
the pth level candidate covers (1/2)p(ωU −ωL) ranges.

Remark 4. The relationship between tolerance and efficiency was not explicitly revealed in this
study. As accuracy is also affected by the selection of the master DOF, tolerance-efficiency tradeoffs
need to be further determined in the future.

2.4. Frequency Response Analysis in the Online Phase

In the online phase, local ROMs are recalled depending on the frequency input.
Assume that local ROMs satisfy the tolerance at all-sample frequencies on the pth level,
then sets of frequency ranges can be expressed as follows:

S(p)
(j) =

{
ω
(p)
(j),k

∣∣∣ω(p)
(j),L ≤ ω

(p)
(j),k ≤ ω

(p)
(j),U

}
. (25)

where j = 1, 2, · · · , N(p)
b − 1. Sample frequency also satisfies ω

(p)
a,q ∈ S(p)

(j) with q = f (p)−1(j).

Finally, frequency responses in S(p)
(j) are obtained using Equation (18).

Once all local responses corresponding to master DOFs are obtained, responses at
the boundaries of sets need to be handled. Considering that each range overlaps with
others, two distinct displacement vectors are obtained despite their difference being lower
than the tolerance. In fact, a vector from either the upper or lower range can be selected
for efficiency. Otherwise, the two vectors are simply averaged, increasing the accuracy of
displacement at boundaries as follows:

um

(
ω
(p)
a,q

)
=

um(j),U + um(j+1),L

2
. (26)

Since reduced vectors represent a physical displacement for the DOF-based ROM, di-
rect superposition of two vectors is possible unlike, for example, variables in the generalized
coordinate system.

3. Numerical Examples

For assessment and verification of the proposed method, a simple M-K system, an
L-shape plate, and a large-scale wing-box structure were investigated as representative
examples. All simulations were conducted with MATLAB R2022b in Windows 11 environ-
ment. A 12-core CPU running at 4.3 GHz was used for computation.

3.1. Example 1: 16-DOF Mass-Spring System

Figure 2 shows a simple mass-spring system. The number of DOFs was set to 16 with
k1 = k2 = · · · = k16 = 300 N/m, and m1 = m2 = · · · = m16 = 1 kg. Four random DOFs
were selected as master DOF, which were 3, 7, 14, and DOF 16 was both master and input
DOF. As investigated in previous studies [38,40], the selection of master DOF is another
important topic in dynamic condensation. Although the selection of the master DOF affects
the dynamic behavior of the ROM, their causality is not fully revealed yet. ROMs of the
proposed method were obtained after determining master DOFs, and various selection
algorithms are applicable, which should be completed before ROM construction. Thus, this
paper focuses on the adaptive algorithm and its accuracy and efficiency. The frequency
range was 0 to 3 Hz, and the number of frequencies was 3000, which was ∆ωk = 0.001 with
ωk+1 = ωk + ∆ωk, where k = 1, 2, . . . , 3000.
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Figure 2. Example 1: A mass-spring system.

First, updates of sample positions are presented in Figure 3. For initial sampling,
seven uniform instances were selected as shown in the first graph, with a 0.5 Hz gap
between each sample. After running the algorithm, an update was conducted a total of
eight times by setting the tolerance to 3% in the norm of the relative difference. New
samples were adaptively selected at each level. An apparent increase in accuracy was
observed for the proposed local ROM, particularly at earlier levels. For the eighth level,
the frequency response of the ROM was almost the same as that of the FOM. At several
positions around 1.25 Hz, 2.1 Hz, and 2.75 Hz, ranges were divided more than other
regions, which proved that the coverage of the local ROM was not uniform due to the
dependency of the dynamic transformation matrix on the frequency. In other words, local
ROB guarantees the accuracy of the ROM in a limited range. As a result, the accuracy
can change depending on the frequency of the instance. In fact, dynamic behaviors of a
structure dramatically change at the eigenfrequency due to a change in the phase angle.
However, the oscillating behavior does not change much between the two eigenfrequencies.
Therefore, if the sampling frequency is near the eigenvalue, the coverage of the local
ROB becomes narrow. Consequently, sample frequencies are distributed unevenly in the
frequency domain. The proposed algorithm can resolve such properties by introducing
an adaptive selection algorithm. In Figure 4, frequency responses and phase angles of the
FOM, local ROM with initial samples, and the local FOM with final samples are plotted
at each master DOF. The proposed method converged to the FOM even though the initial
sample had a noticeable difference from the FOM.
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Figure 4. Comparison of frequency responses and phase angle at master DOF: (a) Frequency response;
(b) Phase angle.

For quantitative comparisons, absolute and relative errors were evaluated. The abso-
lute error was computed by the difference between the proposed method and the FOM at
each frequency and the relative error was obtained as follows:

Err(ωk) =
1

Nm

Nm

∑
j=1

∣∣∣∣∣u
j
FOM(ωk)− uj

LROM(ωk)

uj
FOM(ωk)

∣∣∣∣∣, (27)

where uj is the jth component of a vector u. Thus, at every ωk ∈ S, the error was com-
puted and averaged to the number of master DOF. As shown in Figure 5, each error was
plotted, showing that both errors decreased depending on the level of the sample division.
Particularly, near the mid-point of the initial sample showed the largest error. The error
drastically decreased when p = 3. Figure 6 presents the average relative error depending
on the sampling level. Furthermore, the tolerance of selecting a new sample point was
changed from 10% to 1%. By decreasing the tolerance, both the accuracy and the level of
the sampling increased. When |∆um| = 0.1, the average relative error was 5.82%, and the
number of samples was 39. For |∆um| = 0.01, the error became 1.89%, and the sample
number was 95. Considering the total number of frequency instances was 3000, 1.30% to
3.33% of frequencies resulted in errors of 1.89% to 5.82%.
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3.2. Example 2: L-Shaped Cantilever Plate

The second example used an L-shaped plate with one fixed end. Its geometry is shown
in Figure 7, and the thickness was 0.1 m. Material properties were E = 73.1 GPa, ν = 0.33,
and ρ = 2770 kg/m3. For finite element modeling, a discrete Kirchhoff triangular element
was used. The numbers of elements and nodes were 294 and 176, respectively. Among
528 DOFs, six DOFs were selected as master ones, indicated by blue circles in Figure 7. The
frequency input was applied to the corner of the plate indicated by a black arrow in Figure 7.
The frequency range was 0–80 Hz, and 1600 instances were used with ∆ω = 0.05 Hz. For
the first sampling, 11 frequencies including upper and lower bounds were selected with a
uniform range.
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In Figure 8, frequency responses of all master DOF are plotted to compare responses of
the proposed method and those of the FOM with initial and final samples. The coordinates
of each master DOF are presented in Table 1. Sampling tolerance was set to be within 3% of
the relative difference. At every position of the master DOF, responses of local ROM well
agreed with those of the FOM, although there were some deviations at the initial level.
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Table 1. Coordinates and numbers of master DOF of example 2.

Master Node Number x-coord. (m) y-coord. (m) Master DOF

1 1.5 −0.4 1
2 1.5 0 4
3 3 −0.4 7
4 3 0.8 10

29 2.1 0.8 85
42 1.2 0.8 124

Figure 9 shows decreases in relative errors averaged in the whole frequency range
depending on the level number for four different tolerance cases. At the initial level, the
relative error was over one as eleven samples among 1600 frequencies cannot appropriately
describe the ROM’s behavior. Accuracy jumps at the third level lowering the error to
nearly 10% with 40 samples, which was almost four times the initial sample numbers.



Mathematics 2023, 11, 2683 13 of 18

As the tolerance decreased, the number of sampling levels and the accuracy of local
ROM increased. When the tolerance was 10%, there was no further sampling after 6-time
divisions of the selected range. The number of adaptive samples was 48, which was 3%
of all frequency instances. The converged error was 5.97%. For 1% tolerance, 11-time
updates were performed, resulting in 178 samples with an average relative error of 0.81%.
Furthermore, the level of 3% tolerance was the same as that of 1%. The number of sample
frequencies was 121, which was smaller than the 1% tolerance case. Although the accuracy
of the proposed ROM was not exactly the same as the tolerance, the overall error of the
ROM was close to the tolerance. Thus, the error level of local ROM might be roughly
predicted. The exact prediction needs to be developed further, including the generalization
of the proposed method to various dynamical systems. In Figure 10, the CPU time of each
method was compared. The original dynamic ROM requires more computational resources
than the FOM due to the projection of system matrices. For the proposed method, the
online time was about 45.8 times faster than the FOM. Furthermore, the time for offline
computation was much shorter than that of the FOM.
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3.3. Example 3: Wing-Box Model

The third example was a wing-box model consisting of upper and lower skins, five
ribs, and five spars. The material was assumed to be aluminum with E = 72 GPa, ν = 0.3,
and ρ = 2700 kg/m3. Semi-span of the wing was 14.94 m. The thicknesses of each part
were tU_skin = tL_skin = 3 mm, tribs = 5 mm, and tspars = 7 mm. They are represented
using different colors in Figure 11. Regarding the finite element modeling, the MITC4 shell
element was used. Thus, the wing structure had 12,560 elements and 12,073 nodes, and the
total DOF was 72,438. The root of the wing was fixed, and the input was applied to the tip
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of the wing, as denoted by a black arrow in Figure 11. A total of 11 DOFs were randomly
selected as master DOF, including the loading position. Each node associated with the
master DOF is presented as black circles in Figure 11. The frequency range was 3–10 Hz,
and 7000 instances were used with ∆ω = 0.001 Hz. Initially, the sampling range was set to
be 0.2 Hz, and the number of initial samples was 36, including upper and lower bounds.
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Figure 11. Example 3: A wing-box structure with a tip input, 11 master DOFs, and five selected
DOFs.

In Figure 12, responses obtained by the proposed method with initial and final samples
are plotted at each selected one among master DOFs. The frequency response showed more
complex behavior than the previous two examples. Nevertheless, the proposed method
approximated the result of the FOM including the 8–10 Hz region where there were a lot of
frequency peaks. As the proposed sampling strategy adapts well to complex conditions
from large-scale models, the proposed method is also expected to be universally applied to
various structural analyses.

Figure 13 shows an averaged relative error of the proposed method depending on
the tolerance of sampling. The tolerance changed from 10% to 5%, 3%, 1%, and 0.5%.
As expected, the number of sampling levels and the accuracy of the ROM increased.
Compared to previous examples, the gap between tolerance and average relative error
was increased. As example 3 had larger frequency instances with more peak points than
example 2, the overall error became larger than that of example 2. Figure 14 shows an
efficiency comparison of the proposed method. The online time of the proposed method
was 8349 times faster than the FOM. The offline time was also smaller than the FOM. In fact,
the efficiency of the proposed method increases depending on the number of frequency
instances. This proves the efficiency and usefulness of the proposed method, especially for
large-scale dynamical systems.
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4. Conclusions

In this paper, a new frequency sampling algorithm was proposed within a framework
of dynamic condensation-based reduced-order modeling. As the frequency response
obtained by using DOF-based ROM does not need to be recovered, the efficiency in the
online phase is guaranteed. Nevertheless, since the ROB becomes a function of frequency,
implementing a global ROB that is applicable to the whole frequency range of interest
is limited. Therefore, localizing the ROB and constructing multiple ROMs are suitable
solutions for frequency response analysis of a large-scale structural system. Such a ROM
construction process is regarded to be an offline stage where data are obtained by solving
a full-scale, high-fidelity model in general. After that, responses are approximated using
local ROMs in the online stage.

The proposed method was successfully applied to both offline and online stages. First,
the evaluation of offline sampling was adaptively handled by estimating differences in
responses computed at each sample point. In addition, an approximation of frequency
response was efficiently performed in the online stage using local ROMs. Different from
conventional ROMs that project the displacement vector into a generalized coordinate
system, the reduced displacement vector of the proposed dynamic condensation-based
method is in physical coordinates. Therefore, responses computed by local ROMs were
directly stacked up, showing a possibility of real-time evaluation without additional treat-
ments. Since the proposed method proved its efficiency and capability of adjusting accuracy
within the offline-online framework, parametric variations such as initial, boundary, and
loading conditions, material, and geometric properties of the system can be considered
for future investigation. In fact, since the proposed method only considered frequency as
an input parameter, the ROB needs to be changed in the form of a parametric reduced-
order modeling method to take various parameters into account. Therefore, enhancing
the proposed algorithm from a parametric modeling viewpoint is a desirable topic. Ad-
ditionally, extending the proposed method to consider proportional and nonproportional
damping effects is expected to develop efficient approximation in frequency sweeping of
acoustic-structural combined analysis.
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